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Abstract 
This study presents a comparative analysis of two image enhancement tech-
niques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform 
(FFT), in the context of improving the clarity of high-quality 3D seismic data 
obtained from the Tano Basin in West Africa, Ghana. The research focuses 
on a comparative analysis of image clarity in seismic attribute analysis to fa-
cilitate the identification of reservoir features within the subsurface struc-
tures. The findings of the study indicate that CWT has a significant advan-
tage over FFT in terms of image quality and identifying subsurface struc-
tures. The results demonstrate the superior performance of CWT in pro-
viding a better representation, making it more effective for seismic attribute 
analysis. The study highlights the importance of choosing the appropriate 
image enhancement technique based on the specific application needs and 
the broader context of the study. While CWT provides high-quality images 
and superior performance in identifying subsurface structures, the selection 
between these methods should be made judiciously, taking into account the 
objectives of the study and the characteristics of the signals being analyzed. 
The research provides valuable insights into the decision-making process 
for selecting image enhancement techniques in seismic data analysis, help-
ing researchers and practitioners make informed choices that cater to the 
unique requirements of their studies. Ultimately, this study contributes to 
the advancement of the field of subsurface imaging and geological feature 
identification. 
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1. Introduction 

Hydrocarbon reservoirs are an integral component of the global energy system, 
and their exploration and production necessitate accurate characterization. The 
petroleum industry’s ability to identify unique geological and petrophysical prop-
erties in subsurface formations, such as channels, faults, fractures, and strati-
graphic boundaries, is critical [1]. 

Reservoir characterization is a critical process in optimizing exploration and 
production in the oil and gas industry. It involves the integration of data from 
various sources such as seismic surveys, well logs, and geological investigations 
[2]. The process is aimed at identifying flow units that exhibit similar geological 
characteristics and consistent fluid properties, which are essential for efficient 
production strategies. An in-depth analysis of well log data provides valuable 
information on reservoir properties, aiding in the identification of hydrocar-
bon-bearing zones and estimating recoverable volumes [3]. 

To enhance the accuracy of reservoir characterization, a multidisciplinary ap-
proach that combines insights from geological, petrophysical, and geophysical 
fields is essential. It is worth noting that reservoir characterization is a dynamic 
process that requires continuous updates as new data becomes available [4]. 

This paper seeks to address an existing gap in literature by conducting a com-
parative analysis of Continuous Wavelet Transform (CWT) and Fast Fourier 
Transform (FFT) to enhance image clarity in seismic attribute analysis. The 
study aims to advance reservoir feature identification methodologies by reveal-
ing the distinct strengths and limitations of FFT and CWT. The research find-
ings will contribute to the ongoing refinement of reservoir characterization tech-
niques, providing valuable insights for optimizing seismic attribute analysis and 
improving the identification of reservoir features in subsurface exploration [5] 
[6] [7]. 

2. Fourier and Wavelet Transform 

Seismic data has been established as a valuable source of information for ana-
lyzing the composition of rocks and fluids within pores. Hydrocarbon-saturated 
formations have unique mineralogical compositions and fluid properties that 
create specific frequencies in seismic data. Spectral decomposition techniques 
like discrete Fourier transform, S-transform, and time-frequency continuous 
wavelet transform are used to identify these frequencies [8]. 

Spectral decomposition dissects seismic signals into constituent frequencies, 
providing insights into phase and amplitude tuned to specific wavelengths. This 
technique has various applications, such as determining layer thickness, visual-
izing stratigraphy, and detecting hydrocarbons. However, spectral decomposi-
tion is non-unique, yielding multiple time-frequency analyses from a single seis-
mic trace [9]. 

There are several methods for conducting spectral decomposition, including 
discrete Fourier transform (DFT), maximum entropy method (MEM), continu-
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ous wavelet transform (CWT), and matching pursuit decomposition (MPD), each 
with specific advantages. The choice of method depends on the analysis goals, 
with FFT offering better frequency localization but sacrificing vertical resolution, 
while CWT enhances vertical resolution [10] [11]. 

The distinct frequencies in seismic data of hydrocarbon-saturated formations 
contribute to the success of spectral decomposition. Various methods like Short 
Time window Fourier Transform (STFT), Wavelet Transform, S-Transform (ST), 
Matching Pursuit Decomposition (MPD), and Empirical Mode Decomposition are 
employed for this purpose. Therefore, it is important to consider the strengths 
and limitations of these methods for effective subsurface geological feature de-
lineation [12] [13] [14]. 

The FFT is a widely utilized mathematical algorithm in seismic analysis, 
which efficiently converts signals from the time domain to the frequency do-
main. Its significance lies in the ability to identify the dominant frequency com-
ponents associated with subsurface geological features. This makes it particularly 
valuable for processing large amounts of data and characterizing complex struc-
tures [14] [15] [16]. 

The CWT is a highly effective tool in providing a joint time-frequency repre-
sentation of seismic signals. Unlike the FFT, the CWT has the ability to capture 
subtle variations in seismic signals that are associated with complex geological 
structures and reservoir features. Being adaptable to varying signal frequencies 
and having the ability to localize features, the CWT holds immense value in de-
tecting seismic anomalies in non-stationary scenarios [17] [18] [19]. 

The CWT as a mathematical technique analyses signals in both time and fre-
quency domains. Employing scaled and translated wavelets, the CWT captures 
non-stationary features in signals, making it well-suited for seismic data analysis. 
Key considerations include selecting a suitable wavelet function, with commonly 
used options like the Morlet, Mexican hat, and Haar wavelets [20] [21]. The 
CWT involves convolving the wavelet with the signal at different scales and 
translations, creating a time-frequency representation known as the scalogram 
[22] [23]. 

Mathematically expressed as: 

( ) ( ) ( )*CWT ,s x t st dtτ ψ τ
∞

−∞
= −∫                  (1) 

where ( )x t  is the signal being analysed, ψ is the complex conjugate of the 
wavelet, s is the scale parameter that controls the width of the wavelet and the 
level of detail in the analysis. Small values of s lead to narrower and higher fre-
quency wavelet while large values are used to capture lower frequency informa-
tion. τ is the translation parameter which represent the position of the wavelet 
along the time axis. Varying τ allows the analysis of different sections of the signal. 

This complex-valued function visualizes the correlation strength and phase 
between the wavelet and signal at various time-frequency locations, aiding in the 
identification of time-localized frequency variations. Despite its computational 
intensity, the CWT provides a detailed view of signal frequency changes over 
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time, with peaks in the scalogram indicating significant features. 
The FFT is mathematically expressed as: 

( ) ( ) ( ), e i tF f t w t dtωτ ω τ
∞ −

−∞
= −∫                  (2) 

where ( ),F τ ω  is the Short-Time Fourier Transform (STFT) of the signal at 
time τ and frequency ω, 𝑓𝑓(𝑡𝑡) is the input signal, ( )w t τ−  is the window func-
tion applied to the signal to isolate a segment for analysis. The window function 
helps in focusing on a specific time interval for analysis. e i tω−  is the complex 
exponential function with 2 fω π=  being the angular frequency component of 
interest [24]. 

In signal and image processing, FFT plays a crucial role in analyzing fre-
quency components. Employing a decimation in time (DIT) form, the algorithm 
divides the sequence into even and odd indices, recursively computing FFT for 
sub-sequences and combining them. The core “butterfly” operation involves 
complex multiplications and additions, and twiddle factors account for rotation 
and scaling. FFT’s applications span signal, image, audio, and communication 
processing, offering an efficient means of frequency content analysis, particu-
larly for large datasets [25] [26]. 

The FFT and CWT are both important techniques in signal processing and 
analysis. The FFT provides a representation of a signal in the frequency domain, 
while the CWT offers a simultaneous representation in both the time and fre-
quency domains [27] [28]. The FFT has a fixed frequency resolution, while the 
CWT offers variable resolution in both domains. Windowing is crucial in signal 
processing, and while the FFT requires explicit windowing, the CWT adapts to 
local signal characteristics [29]. The FFT is well-suited for analyzing stationary 
signals, while the CWT is more suitable for signals with time-varying character-
istics [30]. The choice between FFT and CWT depends on the specific charac-
teristics of the signal being analyzed and the analysis requirements [8] [31] [32] 
[33] [34] [35]. 

The FFT stands as a widely applied algorithm in signal processing, offering 
distinct strengths and limitations [36]. Notably, FFT excels in computational ef-
ficiency, significantly reducing the time complexity of Fourier Transform calcu-
lations, making it particularly advantageous for real-time applications and large 
datasets [15]. Furthermore, FFT provides a clear frequency representation of a 
signal, facilitating tasks such as frequency analysis, spectral analysis, and filter-
ing. Its ability to efficiently decompose a signal into its frequency components 
aids in the identification of dominant frequencies and harmonic relationships. 

However, FFT does come with certain limitations. One notable weakness is its 
assumption of signal stationarity, meaning that it assumes a constant frequency 
over the entire signal duration. This assumption may limit its effectiveness when 
dealing with non-stationary signals or those with rapidly changing frequencies 
[15] [37]. 

Moreover, the discrete nature of FFT may lead to spectral leakage issues, espe-
cially when analyzing signals with non-integer multiples of the sampling fre-
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quency. This phenomenon can lead to inaccuracies in frequency representation 
and complicate the interpretation of results [38] [39]. 

Despite these weaknesses, FFT remains a cornerstone in signal processing due 
to its efficiency and effectiveness. Its widespread use in applications such as au-
dio processing, telecommunications, and image analysis underscores its impor-
tance in various fields. 

The CWT offers a robust analytical approach, showcasing several strengths 
and weaknesses in its application to signal analysis [40]. On the positive side, 
CWT excels in providing simultaneous time-frequency localization, making it 
well-suited for the examination of non-stationary signals where frequencies 
change over time. Its versatility becomes apparent when dealing with signals ex-
hibiting variable frequencies, as CWT’s adaptability allows for the selection of 
wavelets tailored to specific signal characteristics. 

A key advantage lies in CWT’s multi-resolution analysis capability, enabling 
the examination of a signal at different scales [41]. This proves valuable for de-
tecting features of various sizes within the signal, making it a versatile tool in 
fields such as signal processing, image analysis, and pattern recognition, par-
ticularly for identifying transient events [42]. 

However, the application of CWT comes with certain drawbacks. The computa-
tional complexity of the transform, especially for large datasets or high-resolution 
wavelets, may limit its practicality in real-time processing or resource-con- 
strained systems [43] [44]. Additionally, the subjective nature of scale selection 
and the challenge of interpreting results demand expertise in signal processing 
and wavelet theory [44]. 

Furthermore, CWT is sensitive to boundary effects, which can impact the ac-
curacy of the analysis, particularly at the edges of the signal [31]. Additionally, 
its inherent continuous nature may pose challenges when applied directly to 
discrete signals, necessitating discretization methods that may result in informa-
tion loss [45] [46]. 

The CWT stands as a powerful tool for signal analysis, providing a compre-
hensive view of both time and frequency domains. While its strengths make it 
invaluable in various applications, users must be mindful of its computational 
demands, the intricate procedure of scale selection, and the possible difficulties 
in understanding the outcomes. 

3. Application of FFT and CWT in Feature Detection and  
Enhancement 

Enhancing image clarity in seismic data is essential for the accurate interpreta-
tion of subsurface structures and improved seismic analysis, given that seismic 
data reflects sound wave reflections in the Earth’s subsurface, offering valuable 
insights into subsurface geology and potential hydrocarbon reservoirs. Geo-
scientists and geophysicists can benefit from applying image clarity enhance-
ment techniques to extract more precise information from seismic data [47] 
[48]. 
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The FFT technique is useful for analyzing the frequency content of seismic 
signals and identifying distinct subsurface features. FFT-based filtering tech-
niques can be used to get rid of noise and unwanted frequencies, which will 
make seismic reflections clearer and improv the signal-to-noise ratio. Addition-
ally, FFT is instrumental in migration algorithms, contributing to improved im-
aging of subsurface structures by mitigating artifacts and enhancing the resolu-
tion of seismic images [23] [49]. 

On the other hand, the CWT offers a multiscale analysis of seismic data, ena-
bling the identification of features at different scales in the subsurface. CWT’s 
unique ability to provide both frequency and temporal localization proves bene-
ficial in precisely localizing seismic events, such as fault lines or stratigraphic 
features. Furthermore, CWT can be applied for anomaly detection in seismic 
data, highlighting irregularities or subtle variations indicative of geological struc-
tures [50] [51] [52]. 

A combined approach utilizing both FFT and CWT techniques presents a 
comprehensive strategy for feature extraction in seismic data. FFT can be em-
ployed for initial frequency domain analysis, while CWT can refine the analysis 
by capturing localized variations, resulting in enhanced seismic imaging and 
clearer identification of subsurface structures [47] [53]. 

To assess the quality of enhanced seismic images, metrics such as entropy and 
FSIM (Feature Similarity Index) are valuable tools. Lower entropy values signify 
clearer images with more defined structures, while FSIM evaluates structural 
similarity between original and enhanced images, providing an assessment of 
image quality. Application-specific metrics, such as fault detection rates or ac-
curacy in identifying stratigraphic features, offer targeted evaluations [53] [54] 
[55] [56]. 

The incorporation of FFT and CWT techniques into seismic data analysis 
holds the potential to improve resolution, reduce noise, and enhance overall 
clarity in subsurface images. This, in turn, facilitates more accurate geological 
interpretations and informed decision-making in the oil and gas exploration in-
dustry. Combining these metrics is advised when presenting results in order to 
provide a thorough assessment that takes into account the particular needs of 
the application in question. 

When synthetic data is subjected to FFT and CWT, the resulting output is as 
follows (Figures 1-3). The data’s sampling rate is 1000 Hz with a duration of 2 
seconds. 

4. Application to Real Data 

The subject of this study is the Tano Basin, which is identified as a pull-apart ba-
sin modified by wrenching during the Cretaceous period. Positioned as the eastern 
extension of the Cote D’Ivoire-Ghana Basin, it originated due to trans-tensional 
movement during the separation of Africa and South America, leading to the 
opening of the Atlantic in the Albian epoch. The dynamic geological processes  
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Figure 1. Signal processing with Morlet wavelet for FFT and CWT. 
 

 
Figure 2. Signal processing with FFT (Spectrogram). 

 
during this period, marked by active rifting and subsidence, gave rise to the de-
velopment of a deep basin. 

The Tano Basin is a multifaceted geological arrangement that encompasses a 
rift section that features shallow marine to continental deposits, as well as a  
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Figure 3. Signal processing with Ricker wavelet for FFT and CWT. 

 
significant Upper Cretaceous drift section highlighted by basin floor fans, chan-
nel systems, and stratigraphic traps. The primary play type being investigated is 
the Cretaceous Play, which involves Cenomanian-Turonian and Albian shales as 
source rocks, with Turonian slope fan turbidite sandstones and Albian sand-
stones in tilted fault blocks serving as reservoirs. The trapping mechanisms are 
both stratigraphic and structural in nature. 

The Ghanaian segment of the basin has been recognized for its hydrocarbon 
potential since the 1890s, primarily based on onshore oil seeps. Figure 4 pro-
vides an overview of the study area, highlighting its geological features and sig-
nificance [57] [58] [59] [60]. 

The study methodology involves obtaining high-quality 3D seismic data and 
conducting a preprocessing step to enhance its quality for in-depth subsurface 
analysis. This includes generating images of subsurface structures to facilitate 
meaningful attribute analysis. The analytical phase employs CWT with the Mor-
let wavelet and FFT to extract valuable information and refine the dataset. The 
seismic data has a sampling rate of 4 ms. The final stage assesses the reliability 
and robustness of attribute analysis results. 

The method enhances reservoir study with subtle insights into subsurface 
structures. Results of CWT and FFT applied to seismic data from Tano Basin are 
shown below (Figures 5-10). 
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Figure 4. Tano basin within West Africa. 
 

 
(a)                                                   (b) 

Figure 5. (a) Displays a seismic image featuring a braided channel characterized by sediment deposition between the channels. 
Positioned in the lower right corner is a potential diapir composed of either salt or shale. The clarity of this image is notably en-
hanced in the CWT representation; (b) Presents the same image processed using FFT. However, the features appear less distinct, 
with a reduced colour contrast affecting the clarity of the potential salt or shale diapir, particularly in the lower right corner. 
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(a)                                                   (b) 

Figure 6. (a) Illustrates a channel lobe deposit derived from CWT, showcasing improved colour contrast; (b) Depicts a channel 
lobe deposit obtained through FFT, featuring diminished colour contrast. 
 

 
(a)                                                   (b) 

Figure 7. (a) Portrays a braided channel using CWT, highlighting enhanced colour contrast; (b) Showcases a braided channel 
derived from FFT, displaying reduced colour contrast. 
 

 
(a)                                                   (b) 

Figure 8. (a) illustrates a channel featuring channel levee and overbank deposits obtained through CWT; (b) displays a channel 
with channel levee and overbank deposits obtained through FFT. 
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(a)                                                   (b) 

Figure 9. (a) depicts basement rock with a fault, as revealed by CWT; (b) portrays the identical image of basement rock with a 
fault, now processed through FFT. 
 

 
(a)                                                   (b) 

Figure 10. (a) showcases a channel featuring channel levee and channel lobe deposits through CWT, demonstrating improved 
image clarity; (b) displays a channel with channel levee and channel lobe deposits processed through FFT. 

5. Discussion 

The comparative analysis between the CWT and the FFT in the context of image 
quality and subsurface structure identification has yielded insightful findings. 

The results highlight a notable advantage of CWT in terms of image quality. 
The CWT’s ability to provide simultaneous time-frequency localization allows 
for a more detailed and accurate representation of image features. Unlike the 
FFT, which assumes stationarity, the CWT’s adaptability to non-stationary sig-
nals proves advantageous in capturing subtle variations and intricate patterns 
within the images. This enhanced image quality could have significant implica-
tions in fields where precise feature identification is paramount such as medical 
imaging or geological exploration. 

The superior performance of CWT in the identification of subsurface struc-
tures can be observed from the above images. The multi-resolution analysis pro-
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vided by CWT allows for a comprehensive examination of the signal at different 
scales, facilitating the detection of subsurface features of varying sizes. In con-
trast, the FFT, while proficient in frequency domain representation, may strug-
gle with non-stationary signals and the intricate structures present in subsurface 
imaging scenarios. 

It is important to note that these findings do not diminish the significance of 
FFT, which remains a valuable tool in various signal processing applications. FFT’s 
computational efficiency and clear frequency representation make it well-suited 
for certain contexts, particularly in cases where stationarity assumptions hold, 
and a global frequency analysis suffices. 

The application of CWT and FFT for image clarity enhancement in reservoir 
management has several implications for future reservoir studies. These implica-
tions can shape the direction of research and industry practices in the explora-
tion and extraction of hydrocarbons 

Implication for Reservoir Studies and Management 

The FFT has become integral in reservoir studies, playing a key role in analyzing 
seismic data frequency content. Its versatility significantly enhances under-
standing across various applications, such as stratigraphic interpretation, fault 
detection, fluid identification, natural fracture analysis, and time-lapse reservoir 
monitoring [27] [29] [31] [49] [61] [62] [63]. FFT is used in stratigraphic inter-
pretation to identify frequency content, which helps with stratigraphic layer 
identification and interpretation [31] [49]. FFT is also valuable in fault detection, 
mapping, and fluid identification by analyzing seismic signal frequency re-
sponses [64] [65]. For natural fractures, FFT analyzes anisotropic frequency re-
sponses, influencing reservoir modelling [66]. Beyond static analyses, FFT con-
tributes to time-lapse reservoir monitoring by comparing frequency content 
changes over time [3] [67]. Its continued application reflects ongoing advance-
ments in seismic analysis, enhancing subsurface reservoir characterization [30] 
[33] [35]. 

CWT is a versatile tool in reservoir studies with applications in thin bed de-
tection, fracture characterization, reservoir heterogeneity quantification, re-
source identification, and time-lapse reservoir monitoring [8] [32] [50] [51] [68] 
[71]. CWT enhances seismic data resolution in thin bed detection, aiding in the 
identification of subtle changes associated with thin stratigraphic layers [68]. It is 
essential to fracture analysis and improves our understanding of reservoir struc-
ture [50]. CWT quantifies reservoir heterogeneity by analyzing variations in 
seismic attributes across different scales [69]. In resource identification, CWT is 
applied to identify gas hydrate-bearing sediments, effectively analyzing their dis-
tribution and concentration within reservoirs [70] [71]. For time-lapse reservoir 
monitoring, CWT aids in identifying changes in reservoir properties over time, 
providing crucial information for informed reservoir management [50]. Its si-
multaneous consideration of time and frequency information enhances our un-
derstanding of subsurface structures and refines reservoir characterization [8] 
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[28] [32] [34]. 

6. Conclusions 

This paper discusses the role of seismic data analysis, specifically focusing on the 
application of CWT and FFT in reservoir studies within the oil and gas industry. 
The analysis emphasizes the significance of these techniques in enhancing image 
clarity for accurate subsurface structure interpretation. 

The text details the principles and advantages of both CWT and FFT in spec-
tral decomposition, highlighting their strengths and limitations. FFT is recog-
nized for computational efficiency and frequency domain analysis, while CWT 
excels in time-frequency localization and adaptability to non-stationary signals. 
The study proposes a hybrid strategy for feature extraction from seismic data 
that makes use of both methodologies. 

Furthermore, the comparative analysis between CWT and FFT reveals that 
CWT offers superior image quality, especially in identifying subsurface struc-
tures with its multi-resolution analysis. Despite acknowledging the continued 
value of FFT in specific contexts, the study underlines the potential benefits of 
incorporating CWT and FFT in reservoir management for tasks like seismic in-
terpretation, fault detection, and well placement optimization. 

For reservoir research in the future, developments in computational methods, 
imaging technologies, and interdisciplinary approaches are essential. The study 
recommends evolving industry practices to include real-time monitoring, adap-
tive management, and the integration of machine learning applications. Estab-
lishing best practices is believed to require cooperation and standardisation, and 
problems like computational complexity are viewed as opportunities for further 
research and innovation. 

According to the study’s conclusion: 
1) A new era of accuracy and productivity in hydrocarbon extraction is ush-

ered in by the improvements in reservoir management brought about by CWT 
and FFT. 

2) Using these technologies is thought to be vital for navigating subsurface 
conditions and for gaining new insights that will have a big impact on how en-
ergy exploration and production are carried out in the future. 

3) The future of the energy sector is anticipated to be greatly influenced by the 
developments in CWT and FFT, which will improve the precision of subsurface 
structure interpretation and facilitate accurate reservoir management decision- 
making. 

4) The study highlights how important it is to make a context-specific deci-
sion between CWT and FFT, emphasising that the decision should be made in 
accordance with the particular goals and characteristics of the signals that are 
being investigated in reservoir studies. 

5) Establishing best practices is considered to need collaboration and stan-
dardisation, while problems like computational complexity are considered as 
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potential for future study and innovation. 
6) The study recommends that industry practices evolve to incorporate en-

hanced imaging techniques, real-time monitoring, adaptive management, and 
the integration of machine learning applications. 

7) Reservoir studies will increasingly rely on advances in imaging technology, 
computational techniques, and interdisciplinary approaches. This highlights the 
necessity of constant innovation in the field. 
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