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Abstract 
Cone penetration testing (CPT) is an extensively utilized and cost effective 
tool for geotechnical site characterization. CPT consists of pushing at a con-
stant rate an electronic cone into penetrable soils and recording the resistance 
to the cone tip (qc value). The measured qc values (after correction for the 
pore water pressure) are utilized to estimate soil type and associated soil 
properties based predominantly on empirical correlations. The most common 
cone tips have associated areas of 10 cm2 and 15 cm2. Investigators also uti-
lized significantly larger cone tips (33 cm2 and 40 cm2) so that gravelly soils 
can be penetrated. Small cone tips (2 cm2 and 5 cm2) are utilized for shallow 
soil investigations. The cone tip resistance measured at a particular depth is 
affected by the values above and below the depth of interest which results in a 
smoothing or blurring of the true bearing values. Extensive work has been 
carried out in mathematically modelling the smoothing function which re-
sults in the blurred cone bearing measurements. This paper outlines a tech-
nique which facilitates estimating the dominant parameters of the cone 
smoothing function from processing real cone bearing data sets. This cone 
calibration technique is referred to as the so-called CPSPE algorithm. The 
mathematical details of the CPSPE algorithm are outlined in this paper along 
with the results from a challenging test bed simulation. 
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1. Introduction 

The Cone Penetration Test (CPT) is an extensively published geotechnical in-situ 
tool which is utilized to identify and characterize sub-surface soil [1] [2] [3] [4] 
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[5]. In CPT a steel cone is pushed vertically into the ground at a typical standard 
rate of 2 cm per second and data are recorded at constant rate during penetra-
tion (typically every 2 cm). The cone penetrometer has electronic sensors to 
measure penetration resistance at the tip (qc) and friction in the shaft (fs) during 
penetration. A CPT probe equipped with a pore-water pressure sensor is called a 
piezo-cone (CPTU cones). For piezo-cones with the filter element right behind 
the cone tip (the so-called u2 position) it is standard practice to correct the rec-
orded tip resistance and sleeve friction for the measured pore pressure. Figure 1 
[6] outlines the equations for obtaining sleeve friction and tip resistance where 
corrections are made for measured pore water pressures and differences in area 
(e.g., tip net area ratio and end area sleeve). 

Figure 2 [7] illustrates the dimensions of the two most commonly utilized 
penetrometers which have cone tips with associated areas of 10 cm2 and 15 cm2. 
Larger cone tip penetrometers (33 cm2 and 40 cm2) are utilized to penetrate gra-
velly soils. Small cone tips (2 cm2 and 5 cm2) are utilized for shallow soil investi-
gations. Figure 3 illustrates the comparable size of cone tips with areas of 2 cm2, 
5 cm2, 10 cm2, 15 cm2 and 40 cm2. 

The distortions which effect the cone tip measurements are two-fold: 1) the 
cone tip resistance is smoothed/blurred [9] [10] [11] [12] where cone tip values 
measured at a particular depth are affected by values above and below the depth 
of interest, and 2) the cone bearing measurements are susceptible to anomalous 
peaks and troughs due to the relatively small diameter cone tip penetrating 
sandy, silty and gravelly soils [1] [13]. The “high” peaks result from the penetra-
tion of interbedded gravels and stones and the “low” peaks results from the pe-
netration of softer materials or local pore pressure build-up. This additive mea-
surement noise can be significantly challenging to remove or minimize. The 
cones with relatively smaller cone tips are significantly more susceptible to the 
anomalous peaks and troughs while the cones with larger cone tips are more 
susceptible to the smoothing of the cone tip measurements. This suggests that 
cones with relatively larger cone tips would be more desirable if accurate deblur-
ring techniques could be implemented (i.e., minimize additive noise and pene-
trate soils with high resistance). 

The blurring effect of cone bearing measurements has been extensively stu-
died. Boulanger and DeJong [9] summarize the numerous studies carried out 
where elastic analyses, nonlinear analyses (cavity expansion and axisymmetric 
models), and physical measurements (centrifuge models, 1 g physical models, 
and field data) were utilized. Based upon this work a mathematical model was 
developed to describe the distortions of the cone penetrometer measurements as 
the cone penetrates variable weak and strong layers. This mathematical model 
was outlined by Boulanger and DeJong [9]. In general terms, a cone weighting 
function is applied to the true cone bearing measurements where true cone 
bearing measurements are averaged over approximately 60 cone diameters at the 
cone tip. The Cone Bearing Weighting Function (CBWF) described by Boulan-
ger and DeJong [9] is a function of several parameters and baseline values are 
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utilized for these when implementing the CBWF for estimating true cone bear-
ing values from blurred measurements. The research purpose and focus of the 
work outlined in this paper was to develop a technique to estimate the CBWF 
parameters based upon real CPT data sets. The technique (so-called CPSPE al-
gorithm) which estimates the CBWF parameters is subsequently outlined along 
with a challenging test bed simulation. 

 

 
Figure 1. Determination of total cone resistance and total sleeve friction [6]. 

 

 
Figure 2. Standard 10 cm2 and 15 cm2 penetrometers [7]. 
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Figure 3. 5 cm2, 10 cm2, 15 cm2 and 40 cm2 pene-
trometers [8]. 

2. Mathematical Background 
2.1. CPT Cone Bearing Model 

The cone tip resistance measured at a particular depth is affected by the values 
above and below the depth of interest as illustrated in Figure 4 [9]. The results 
in an averaging or blurring of the true values (qv) values [9] [10] [11] [12]. 

The measured cone penetration tip resistance qc can then be described as 

( ) ( ) ( ) ( )

( )

1

, , 60
2

cd
N

c c v qc
j

c
qc wc wc

q z w j q j v z

d
z N N
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=

= × ∆ + +

 ∆ = − ∆ ∆ = × = ∆ 

∑
               (1) 

where 
z the cone depth;  
dc the cone tip diameter;  
Δ the qc sampling rate;  
qc(z) the measured cone penetration tip resistance; 
qv(z) the true cone penetration tip resistance; 
wc(z) the qv(z) averaging function; 
v(z) additive noise.  
In Equation (1) it assumed that wc averages qv over 60 cone diameters cen-

tered at the cone tip. Boulanger and DeJong [9] outline how to calculate wc be-
low. 
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Figure 4. Schematic of thin layer effect for a sand layer embedded in a clay layer [9]. 
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where 
w1 accounts for the relative influence of any soil decreasing with increasing 

distance from the cone tip. 
w2 adjusts the relative influence that soils away from the cone tip will have on 
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the penetration resistance based on whether those soils are stronger or weaker.  
z' the depth relative to the cone tip normalized by the cone diameter. 
The four main parameters which influence wc are 50,refz′ , mz, m50, and mq. 

Boulanger and DeJong [9] outline the baseline values for these parameters as 

50, 4.0refz′ = , mz = 3.0, m50 = 0.5, and mq = 2. Boulanger and DeJong also set N = 
60 in Equation (1) (i.e., −30 ≤ z' ≤ 30). The value of N = 60 cone diameters was 
implemented due to wc being close to zero for distance exceeding 30 cone di-
ameters from the cone tip based upon the previously specified baseline cone 
smoothing parameters. The CBWF wc for varying , , 0v z v zq q′ ′=  ratios is illu-
strated in Figure 5. 

The cone penetration unnormalized averaging function cw′  (Equation (2a)) for 
varying , , 0v z v zq q′ ′=  ratios is illustrated in Figure 6. The interaction between va-
rying soil layers can result in highly variable cone bearing averaging functions. For 
example, Figure 7 illustrates the wc function for the case where above the cone tip 

, , 0 10v z v zq q′ ′= = , from the cone tip to an extra depth of 0.16 m , , 0 10v z v zq q′ ′= = , 
from the cone tip plus 0.16 m to an extra depth of 0.24 m , , 0 0.1v z v zq q′ ′= = , and 
at greater depths , , 0 1.0v z v zq q′ ′= = .  

The effect on cw′  of varying the four cone averaging parameters is illustrated 
in Figures 8-10. Figure 8(a) and Figure 8(b) illustrate that increasing the value 
of 50,refz′  increases the breadth of cw′ . Figure 9(a) and Figure 9(b) illustrate 
the effect of increasing and decreasing the value of mz on the shape of cw′ . Fig-
ure 10(a) illustrates that decreasing the value of mq results in a greater influence 
on cw′  for higher , , 0v z v zq q′ ′=  ratios. Figure 10(b) illustrates the effect on the 
shape of cw′  for m50 = 0.8. 

 

 
Figure 5. Normalized cone penetration filter versus normalized depth from 
the cone tip ( , , 0 0.01,0.10,10,100t z t zq q′ ′= = ) [9]. 
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Figure 6. Unnormalized cone penetration filter, cw′ , 
versus normalized depth from the cone tip with lines for 

, , 0v z v zq q′ ′=  = 0.01 (red), 0.1 (green), 1 (black), 10 (blue) 

and 100 (grey). 
 

 

Figure 7. Normalized blurring function wc. 
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(a) 

 
(b) 

Figure 8. Unnormalized cone penetration filter, cw′ , versus normalized 
depth from the cone tip with lines for , , 0v z v zq q′ ′=  = 0.01 (red), 0.1 (green), 

1 (black), 10 (blue) and 100 (grey). (a) 50, 10refz′ =  and (b) 50, 1refz′ = . 
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(a) 

 
(b) 

Figure 9. Unnormalized cone penetration filter, cw′ , versus normalized 
depth from the cone tip with lines for , , 0v z v zq q′ ′=  = 0.01 (red), 0.1 

(green), 1 (black), 10 (blue) and 100 (grey). (a) mz = 10 and (b) mz = 1. 
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(a) 

 
(b) 

Figure 10. Unnormalized cone penetration filter, cw′ , 
versus normalized depth from the cone tip with lines 
for , , 0v z v zq q′ ′=  = 0.01 (red), 0.1 (green), 1 (black), 10 
(blue) and 100 (grey). (a) mq = 1 and (b) m50 = 0.8. 
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2.2. Iterative Forward Modeling 

Iterative forward modeling (IFM) is a parameter estimation technique which is 
based upon iteratively adjusting the parameters until a user specified cost func-
tion is minimized. The desired parameter estimates are defined as those which 
minimize the user specified cost function. The IFM technique which is utilized 
within the CPSPE algorithm for estimating the CBWF parameters is the down-
hill simplex method (DSM) originally developed by Nelder and Mead [14]. A 
simplex defines the most elementary geometric figure of a given dimension: a 
line in one dimension, the triangle in two dimensions, the tetrahedron in three, 
etc; therefore, in an N-dimensional space, the simplex is a geometric figure that 
consists of N + 1 fully interconnected vertices. The DSM starts at N + 1 vertices 
that form the initial simplex. The initial simplex vertices are chosen so that the 
simplex occupies a good portion of the solution space. In addition, it is also re-
quired that a scalar cost function be specified at each vertex of the simplex. The 
general idea of the minimization is to keep the minimum within the simplex 
during the optimization, at the same time decreasing the volume of the simplex. 
The DSM searches for the minimum of the costs function by taking a series of 
steps, each time moving a point in the simplex away from where the cost func-
tion is largest. The simplex moves in space by variously reflecting, expanding, 
contracting, or shrinking. The simplex size is continuously changed and mostly 
diminished, so that finally it is small enough to contain the minimum with the 
desired accuracy. 

3. CPSPE Algorithm 

The CBWF parameters optimal filter estimation technique is referred to as the 
CPSPE algorithm. The CPSPE algorithm relies upon processing known or what 
is termed in this paper as “well-behaved” cone bearing profiles. This does not 
necessarily require that the complete cone profile is processed, just portions of 
the qc profile which are known or “well-behaved”. As more cone bearing data 
sets are processed the estimates of the CBWF parameters become more refined 
and accurate.  

A real data cone bearing profile is considered known if the soil profile has 
been thoroughly investigated which may include supporting soil logging sam-
ples. A “well-behaved” cone bearing profile is defined as containing significantly 
large depth intervals with constant qc values (greater than the transition depth 
uncertainties). Figure 11 illustrates a schematic of two cone bearing profiles 
where it is assumed that they are “well-behaved” (profile 1) and known (profiles 
2) real data cone bearing measurements (e.g., qc21) and associated soil transition 
interface (e.g., z21) for each profile. Areas where uncertainties for the location of 
the interface depth are identified by light grey transparent boxes (i.e., z11, z12 and 
z13). It is not expected that the depth interval of the uncertainty transition would 
exceed 60 to 80 cone diameters. This is equivalent to 2.14 m to 2.85 m for a 10 
cm2 cone and 4.28 m to 5.71 m for a 40 cm2 cone. The reasons for this assump-
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tion are two-fold. 1) The work of Boulanger and DeJong [9] where they set N = 
60 in Equation (1) due to wc being close to zero for distance exceeding 30 cone 
diameters from the cone tip utilizing the baseline CBWF parameters. 2) The si-
mulation of variable values of the CBWF parameters as illustrated in Figures 
8-10.  

In the CPSPE algorithm a simplex is initialized based upon the unknown 
CBWF parameters ( 50,refz′ , mz, m50, and mq) and unknown transition depths 
(e.g., z11, z12 and z13). For example, for the two profiles illustrated in Figure 11 
there are seven unknowns 50,refz′ , mz, m50, mq, z11, z12 and z13. This implies that 
the DSM starts at 8 vertices that form the initial simplex. A scalar cost function 
is determined at each vertex of the simplex by utilizing Equations (1) and (2). 
The initial simplex vertices are chosen so that the simplex occupies a good por-
tion of the solution space (e.g., minimum and maximum values of unknown pa-
rameters). Alternatively, several iterations (e.g., within a while loop) of the DSM 
could be implemented where for each iteration initial samples are drawn for the 
unknown parameters utilizing a Monte Carlo technique [15]. The iteration 
which results in the smallest overall error residual would be the best estimate of 
the unknown parameters.  

The CPSPE algorithm incorporates the following steps: 
1) Specify unknowns and initial vertices of the simplex. For the case illustrated 

in Figure 11 we have seven unknowns (8 vertices): CBWF parameters ( 50,refz′ , 
mz, m50, and mq) and unknown transition depths (e.g., z11, z12 and z13). If the ini-
tial simplex index is denoted as k, we have initial unknowns 50,refzk ′ , mkz, mk50, 
mkq, zk11, zk12 and zk13 (k = 1 to 8) for the case illustrated in Figure 11. 

 

 

Figure 11. Example of (a) “well-behaved” 
and (b) known cone bearing profiles. 
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2) Calculate the Scalar Cost Function (SCF) for each vertex of the initial ver-
tices. The SCF is defined as the Root Mean Square (RMS) difference between the 
simulated cone bearing values and the measured values for each cone profile 
under analysis. When initializing the simplex, it is recommend that minimum 
and maximum values are utilized and/or drawing initial estimates of the un-
known parameters from a Monte Carlo technique.  

The scalar cost functions are obtained by implementing Equations (1) and (2) 
for each cone profile under analysis. For the case illustrated in Figure 11 there 
are two cone profiles (L = 2) under analysis. For each vertex and cone profile the 
true cone bearing value qkv(z) is a function of the known cone bearing values 
and the unknown transition depths. For the case of the “well-behaved” cone 
profile qkv (z, qij, zkij) (e.g, q1kv (z, qij, zkij) in Figure 11. For the case of the 
known cone profile qkv (z, qij) (e.g, q2kv (z, qij) in Figure 11. The equations for 
the simulated cone bearing measurements (qlkc), cone bear smoothing function 
(wkc) and SCFk are outlined below.  

( ) ( ) ( )

( )

1

,
2

cd
N

c c v qc
j

c
qc wc wc

qlk z wk j qlk j

d
z N

 × ∆ 

=

= × ∆ +

 ∆ = − ∆ ∆ = × ∆ 

∑
               (3a) 

where l denotes the cone profile under analysis. 
N is set to the largest assumed value (i.e., N = 40) where wc goes to zero as 

previously outlined. 
wkc is obtained from Equation (2) for 50,refzk ′ , mkz, mk50, mkq 

( ) ( )( )2

1 0

L D

m c
l z

SCFk ql z qlk z

SCFk SCFk
= =

= −

=

∑∑                  (3b) 

where qlm is the measured cone bearing for profile l, D is the maximum depth 
and L is the total number of cone profiles under analysis (i.e., l = 1 to L). 

3) compare the cost function for each vertex and determine the lowest error 
“best” and highest error “worst” vertices; 

4) sequentially locating first the reflected, then if necessary, the expanded, and 
then if necessary, the contracted vertices, and calculating for each the corres-
ponding cost function and comparing it to the worst vertex; if at any step the 
cost function of the new trial point is less than the value at the worst vertex; then 
this vertex is substituted as a vertex in place of the current worst vertex; 

5) if the process in step 4 does not yield a lower error value than the previous 
worst, then the other vertices are shrunken towards the best vertex; 

6) at each stage of shrinking, the distances between vertices are calculated and 
compared to a set tolerance value to check if the simplex has become sufficiently 
small for termination of the estimation; when the test criterion is reached, the 
previous best vertex becomes the solution; 

7) at each stage of shrinking, the cost function values at the vertices is com-
pared to a set minimum value to check if the error residual has become suffi-
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ciently small for termination of the estimation; when the test criterion is 
reached, the previous best vertex becomes the solution.  

CPSPE Test Bed Example 

The performance of the CPSPE algorithm was evaluated by processing a chal-
lenging test bed simulation where a single cone bearing profile having both 
known and “well-behaved” interfaces is processed. Figure 12 illustrates three 
cone bearing profiles. The red trace in Figure 12 is the true cone bearing profile 
qv which has qv values of 0.5 MPa (0 m to 3 m), 50 MPa (3 m to 12 m), 20 MPa 
(12 m to 18 m), 10 MPa (18 m to 23 m), and 40 MPa (23 m to 40 m). The black 
and blue trace are measured cone bearing profiles where Equations (1) and (2) 
are implemented with the true red cone bearing trace inputted.  

A relatively large 40 cm2 cone was specified in this simulation (less susceptible 
to the previously outlined anomalous peaks and troughs but are more suscepti-
ble to the smoothing of the cone tip measurements). The blue trace in Figure 12 
had the CBWF parameters set to the baseline values ( 50, 4refz′ = , mz = 3, m50 = 
0.5, and mq = 2). The black trace in Figure 12 had the CBWF parameters set to 

50, 6refz′ = , mz = 1.5, m50 = 1.0, and mq = 3. The known interfaces are located at 3 
m and 23 m. The “well-behaved” interfaces are located at 12 m and 18 m (identi-
fied by light grey transparent rectangles).  

The CPSPE algorithm is applied on the black trace of Figure 12 where it is in-
itially assumed that the baseline values are valid. In this test bed simulation there 
are 6 unknowns ( 50,refz′ , mz, m50, mq, and interfaces at 12 m and 18 m). Table 1 

 

 

Figure 12. Test bed simulation red trace is the true cone bearing 
profile, blue trace is the measured cone bearing profile where the 
CBWF parameters are set to the baseline values and black trace is 
the measured cone bearing profile where the CBWF parameters set 
to 50,refz′  = 6, mz = 1.5, m50 = 1.0, and mq = 3. 
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Table 1. CPSPE algorithm settings and optimal estimates.  

 ′ refz50,  mz m50 mq 
Unknown  

Depth1 [m] 
Unknown 

Depth2 [m] 

Minimum 2 0.1 0.01 0.1   

Maximum 9 6 3 6   

Interface Transition Range     9 to13 16 to 19 

True Values 6.0 1.50 1.0 3.0 12.0 18.0 
CPSPE 

Estimates 
6.0 1.50 1.0 3.0 12.0 18.0 

 
outlines the parameters set as input into the CPSPE algorithm. In Table 1 the 
minimum and maximum values of CBWF parameters are specified. These limits 
are applied within the IFM portion of the CPSPE algorithm. Table 1 also out-
lines the uncertainty of the interface transitions (gray areas in Figure 12) for in-
terfaces located at 12 m (9 m to 13 m) and 18 m (16 m to 19 m). In the CPSPE 
algorithm a Monte Carlo technique is utilized where the initial simplex within 
the IFM portion of the algorithm is initialized with CBWF parameters within the 
minimum and maximum ranges specified in Table 1. The CPSPE algorithm is 
implemented eighty times (eighty simplex initializations). The CPSPE estimates 
are defined as the CPSPE algorithm output which results in the lowest SCF (Eq-
uation (3b)). Table 1 outlines the CPSPE optimal estimates which are identical 
to the true values.  

4. Conclusion 

The cone penetrometer test (CPT) consists of pushing at a constant rate an elec-
tronic penetrometer into penetrable soils and recording cone bearing (qc), sleeve 
friction (fc) and dynamic pore pressure (u) with depth. The measured qc, fs and u 
values are utilized to estimate soil type and associated soil properties. Cone 
bearing measurements at a specific depth are blurred or averaged due to qc val-
ues being strongly influenced by soils within 10 to 40 cone diameters from the 
cone tip. The blurring of the cone tip measurements is mathematically described 
as the multiplication of a Cone Bearing Weighting Function (CBWF) with the 
true cone bearing values. This paper has outlined an algorithm (so called CPSPE 
algorithm) which obtains optimal estimates of the parameters defining the 
CBWF. The CPSPE algorithm is applied on real qc data sets which are known or 
“well-behaved”. A challenging test bed simulation has demonstrated that the 
CPSPE algorithm can derive accurate estimates of the parameters defining the 
CBWF. This would allow for the calibration of cones of varying sizes based on 
real qc data sets.  
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