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Abstract 
The Plio-Quaternary deformation pattern of the northern Aegean and south 
Balkan regions is interpreted as an effect of the interaction between the Ana-
tolian-Aegean-Pelagonian system (Tethyan belt), undergoing westward ex-
trusion and strong deformation, and the surrounding plates (Nubia, Europe 
and Adriatic). Since the middle-late Miocene, the collision of the Tethyan belt 
with the continental Adriatic domain has caused strong E-W shortening in 
the outer Hellenides and Albanides, also involving the southward extrusion of 
the Peloponnesus wedge, at the expense of the Ionian oceanic domain. The 
roughly E-W extension recognized in the western South Balkan zones (Ma-
cedonia and eastern Albania) is related to the divergence between the Pelago-
nian belt (Albanides and Hellenides) and the Rhodope-Moesia domain. Stressed 
by the westward displacement of the central Anatolian plateau and by the 
southward bowing of the Cycladic Arc, the northern Aegean zone has con-
temporaneously undergone E-W compression and N-S extension, which has 
generated a series of dextral shear faults, delimiting a number of slats. The 
westward displacement and deformation of such slats can explain the mor-
phological features of the northern Aegean zone. During this phase, the push 
of the central Anatolian plateau also caused the separation of the Rhodope 
massif from the Moesian European domain, with the consequent formation of 
the upper Thrace basin. This hypothesis can explain the Plio-Quaternary com-
pressional deformations recognized in a sector of the North Anatolian fault 
system, the Ganos-Gelibolu zone. The proposed geodynamic/tectonic inter-
pretation may help to explain some features of the time-space distribution of 
major earthquakes in the study area. 
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1. Introduction 

The Plio-Quaternary evolution of the northern Aegean and south Balkan zones 
(Figure 1) has been characterized by a complex distribution of tensional and 
compressional stress regimes (e.g., [1]-[6]). The central South Balkan zones 
(Bulgaria, eastern Macedonia and northern Greece) have been affected by a 
roughly S-N extension, while the trend of this regime changes to about E-W in 
western Macedonia and inner Albania. Roughly E-W compression has domi-
nated in the outer sector of the Albanides and northern Hellenides (Epirus). The 
central part of Greece has undergone S-N extension, with the formation of E-W 
troughs in the Corinth, Ambracique and Thessaly zones. Roughly NE-SW exten-
sion formed the Upper Thrace graben, while SE-NW compression is recognized 
in the Ganos-Gelibolu sector of the North Anatolian fault system (NAF). A se-
ries of dextral E-W shear faults developed in the Northwestern Anatolian and 
northern Aegean zones, delimiting some westward sliding slats.  

Many attempts have been made to recognize the geodynamic framework re-
sponsible for such complex tectonics, but a widely accepted interpretation is not 
yet available. Some authors suggest a dominant role of slab-pull forces induced 
by the retreat of the Hellenic trench (e.g., [2] [6] [7]). Other hypotheses involve 
gravitational spreading of thickened crustal zones (e.g., [4] [8]). In this work we 
argue that plausible and coherent explanations of the observed deformation pat-
tern can be found by supposing that tectonics has been driven by the conver-
gence of the confining plates (Nubia, Adriatic, Arabia and Eurasia) and in par-
ticular by the displacement and deformation that such kinematic boundary con-
ditions have produced in the Anatolian-Aegean-Pelagonian system. 

Some considerations are then made about the possible connection between 
the proposed present tectonic context (Figure 2) and the spatio-temporal dis-
tribution of major earthquakes (1800-2023) in some zones. In particular, some 
comments are reported about the possible influence of post seismic relaxation 
on the seismicity patterns of the periAdriatic and Balkan zones.  

2. Late Cenozoic Evolution and Proposed Geodynamics  

Since the Miocene, the indentation of Arabia has caused the westward escape of 
the Anatolian-Aegean-Pelagonian system (AAP), a heterogeneous belt consti-
tuted by an inner metamorphic and crystalline core (Tethyan belt), flanked by 
accretionary chains of European and African affinity (Figure 3(a)). During the 
Miocene, the convergence between this system and the Adriatic promontory was 
accommodated by the consumption of the interposed thinned domains (mainly 
the Pindos zone, [20] and references therein). When the Aegean-Pelagonian 
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sector of AAP collided with the continental Adriatic domain (Figure 3(b)), around 
the late Miocene-Early Pliocene, the above consuming boundary sutured (e.g., [21] 
[22]). This caused a major reorganization of the tectonic setting in the central Me-
diterranean area [20] [23] [24] [25] [26] and a considerable increase of E-W com-
pression in the Anatolian-Aegean belt, which produced the formation of two main 
oroclinal bendings (the Cyprus and Hellenic Arcs), at the expense of the Levantine 
and Ionian oceanic domains respectively (Figure 4(a), Figure 4(b)). 

These bowings were accommodated in a ductile way by the inner metamor-
phic core, whereas in the more rigid external orogenic belts bending produced 
major breaks. The most evident example of the different responses of the above 
belts can be recognized in the Hellenic Arc (Figure 4(a), Figure 4(b)), where 
bending caused the break of the Hellenides belt, with the formation of two major 
fragments, the western Arc (Peloponnesus) and the eastern Arc (Crete-Rhodes). 
The separation of these fragments from each other and from the inner ductile 
core (Cycladic arc) generated the Western Cretan basin [9] [10] [20]. 

After the activation of the decoupling Scutari-Pec fault in the Middle-Late 
Miocene, the westward displacement of the Pelagonian belt lying south of that 
discontinuity accelerated (Figure 4). This caused a clockwise rotation (of about  

 

  
Figure 1. Tectonic scheme of the central and eastern Mediterranean area. 1) European 
continental domain 2) Nubia-Adriatic continental domain, 3) Ionian-Levantine oceanic 
domain, 4, 5) Outer and inner Tethyan belts 6) Orogenic belts 7) Calabrian and Mediter-
ranean ridges 8) Rhodope massif, 9) Black Sea thinned domain 10) Cenozoic basins 11, 
12, 13) Tensional, transcurrent and compressional features, 14) Outer fronts of the oro-
genic belts. Blue arrows indicate the Quaternary kinematics pattern with respect to Eu-
rope [9] [10] [11]. Al = Albanides; Am = Ambracique trough; An = Antalya peninsula, Bi 
= Biga peninsula, Ce = Cephalonia fault, Co = Corinth trough, CyA Cyclades Arc, EAF = 
Eastern Anatolian fault, ECB = Eastern Cretan Basin, Ed = Edremit fault, EHA = Eastern 
Hellenic Arc, Ga-Ge = Ganos-Gelibolu thrust fault, Hy = Hyblean block, Ma = Marmara 
trough, NAF = North Anatolian fault, NAT = North Aegean trough, NH = Northern 
Hellenides, Pe = Peloponnesus wedge, St = Struma fault zone, Sy = Syracuse fault, The = 
Thessaly, ThF = Thrace fault, UTG = Upper Thrace graben, Va = Vardar zone, Vu = 
Vulcano fault, WCB = Western Cretan basin, WHA = Western Hellenic Arc.  
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Figure 2. Major earthquakes (M ≥ 5) since 1000 A.D. in the central-eastern Me-
diterranean region [12]-[19]. The Nubia-Adriatic domain and Arabia are evi-
denced in yellow and brown respectively. Circles and triangles indicate hypocen-
tral depths lesser than and greater than 60 km respectively.  

 

 
Figure 3. (a) Middle Miocene paleogeographic setting, dominated by the westward extru-
sion and deformation of the Anatolian-Aegean-Pelagonian system. The average long-term 
kinematics pattern with respect to Europe [9] [10] [11] is indicated by blue arrows (scale 
in the legend). Present geographical contours (thin black lines) are reported for reference. 
1) Eurasian domain 2) Continental (a) and thinned (b) Nubia/Adriatic domain 3) Te-
thyan belt, constituted by ophiolitic and metamorphic units (a) and crystalline massifs (b) 
4) Other orogenic belts 5) Mesozoic oceanic domains 6) Zones affected by intense (a) or 
moderate (b) Neogenic crustal thinning, 7, 8, 9) Compressional, tensional and strike-slip 
features. Al = Albanides, DSF = Dead Sea fault system, NAF = North Anatolian fault sys-
tem, Pi = Pindos zone. (b) Late Miocene paleogeographic setting: the Aegean-Pelagonian 
system collided with the continental Adria domain. Cy = Cycladic Arc. 
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Figure 4. (a) Middle Pliocene tectonic setting. After the collision with Adria the deforma-
tion of the Anatolian-Aegean belt strengthened, forming the Hellenic and Cyprus Arcs. 
Am = Ambracique trough, Ce = Cephalonia fault, Co = Corinth trough, Cy = Cyprus; CyA 
= Cycladic Arc, EAF = East Anatolian fault system, Ed = Edremit fault, EHA=Eastern 
Hellenic Arc (Crete-Rhodes); Ep = Epirus, Ga-Ge = Ganos-Gelibolu fault, MR = Medi-
terranean Ridge, NAF = North Anatolian fault system, NAT = North Aegean trough, SP 
= Scutari-Pec fault, St = Struma fault system, VE = Vlora-Elbasan fault, WCB = Western Cre-
tan Basin, WHA = Western Hellenic Arc (Peloponnesus); VHM = Victor-Hensen-Medina 
fault. (b) Pleistocene paleogeographic setting. After the complete consumption of the 
surrounding thinned domains the Adria plate moves NNE wards in almost close connec-
tion with Nubia. The collision between the Libyan promontory of Nubia (LP) and the 
Crete-Rhodes sector causes the SE ward bending of this wedge, with the formation of the 
Eastern Cretan Basin (ECB). Al = Albanides, Ar = Argolides trough, ECA = External Ca-
labrian Arc, Ik = Ikaria basin, Ka = Karpathos trough, Ky = Kythira slice, Pl = Pliny fault, 
Sr = Strabo fault, The = Thessaly, UTG = Upper Thrace graben, Vu-Sy = Vulca-
no-Syracuse fault. Colours, symbols and other abbreviations as in Figure 1 and Figure 3. 
 
20˚ - 25˚) of the Albanides belt sector with respect to the southern Dinarides, 
accompanied by an NW-SE scissor-like extension (≤11 km) in the Scutari-Pec 
fault system [6] [27] [28]. The above tectonic process is also testified by the fact 
that the amount of post mid-Miocene shortening in the Albanides belt increases 
from 10 km, north to the Scutari-Pec, to about 120 km, south of the Vlo-
ra-Elbasan fault [6].  

The above evidence implies that a tear fault must have developed under the 
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Scutari-Pec faut system (as tentatively shown in Figure 5) to decouple the 
Adriatic margin underlying the Albanides from the Adriatic margin underlying 
the southern Dinarides. A decoupling tear may also be present under the Vlo-
ra-Elbasan fault, whose lateral displacement is estimated in about 28 km [6]. 

The extensional deformations observed in the inner part of the Albanides [28] 
[29] [30] may be an effect of the clockwise rotation of this belt. 

Since the late Miocene, the convergence between the AAP system and Adria 
caused the roughly southward escape of the Peloponnesus wedge, laterally 
guided by the Cephalonia transpressional fault. Some authors (e.g., [31]) suggest 
that in the late Miocene the Cephalonia fault did not exist and that the Helle-
nides belt sectors lying north and south of that feature were aligned. The S-N 
extensional deformation that developed in the wake of the Peloponnesus wedge 
formed some troughs, as the Corinth, Ambracique and Thessaly ones (Figure 4, 
e.g., [32] [33]). In the Thessaly zone, the occurrence of extensional deformation 
was also favoured by the clockwise bending of the Aegean-Pelagonian belt 
(Figure 4(b)). This deformation pattern may also explain the time evolution of 
extensional trends in the Thessaly troughs and the coeval occurrence of exten-
sion and uplift in that zone (Figure 6). 

Since the late Miocene, the consumption of the Ionian oceanic domain in 
front of the Peloponnesus escaping wedge led to the formation of the western 
Mediterranean ridge ([36] [37], Figure 4(b)). 

Driven by the westward push of the central Anatolian plateau and by the 
coeval southward bowing of the inner Aegean belt (Cycladic Arc), the north-
western Anatolian and northern Aegean zones underwent E-W shortening and 
S-N extension, with the formation of a series of dextral transpressional and 
transtensional faults (Figure 4(a), Figure 4(b)), delimiting a number of slats.  

 

 
Figure 5. Tentative perspective view of the subducted Adriatic margin under the Albanides 
and northern Hellenides, based on geophysical data (e.g., [34]) and cross-sections [6]. The red 
arrows indicate the Quaternary kinematic pattern with respect to Europe [9] [10] [11].  
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Figure 6. Trends of extension (white arrows) and vertical motions (+ and −) in 
two evolutionary phases of the Thessaly zone [35] (blue square in the insert). (a) 
Pliocene-Early Pleistocene (b) Middle Pleistocene-Holocene.  

 
The westward displacement of the northernmost slat, including the Biga penin-
sula, formed the pull-apart Marmara trough, where a SW-NE extension of about 
30 km and a considerable reduction of crustal thickness is recognized [1]. The 
convergence of the other slats with the Aegean-Pelagonian belt was accommo-
dated by northward bendings and fragmentation, as tentatively reconstructed in 
Figure 4(b) and evidenced in Figure 7. The divergence between the southern-
most slat (undergoing northward bending) and the Cycladic Arc (undergoing 
southward bending) may have caused the formation of the Ikaria basin (Figure 
7). 

The tectonic reconstruction proposed in Figure 4(b) for the northern Aegean 
zone is compatible with the present morphology of that area (Figure 7). In the 
late Pliocene, after the formation of the southern branch of the North Anatolian 
fault (the Edremit fault in Figure 1), the northern Marmara zone was characte-
rized by a pure E-W dextral strike slip motion and the previous pull-apart basin 
was affected by thrusting (e.g., [1]). 

Another major effect of the westward displacement and deformation of the 
Anatolian system was the separation of the Rhodope massif (undergoing a clock-
wise rotation) from the Moesian European domain, with the consequent forma-
tion of the Upper Thrace trough (e.g., [2] [38], Figure 4(a), Figure 4(b). The 
zone where the push of Anatolia was mainly exerted may be identified by consi-
dering the compressional deformation that since the late Miocene-Early Pliocene 
has developed in the Ganos-Gelibolu fault system (Figure 1 and Figure 4, e.g., 
[3] [39] [40]). Geological evidence indicates that the flower structure in that 
zone (Dardanelles) formed during an intense and rapid compressional phase in 
the Early Pliocene and was later shifted laterally by a 70 km right-lateral offset 
during the last 5 My [3] [5]. The timing of such tectonic event supports the hy-
pothesis that it was considerably influenced by the coeval collision of AAP with 
the continental Adria domain.  
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Figure 7. Marine and terrestrial morphological features in 
the study area (From [41]). The violet band indicates the 
inner Anatolian-Aegean-Pelagonian belt, constituted by 
crystalline massifs (see Figure 1, Figure 3 and Figure 4). 
Red lines delimitate the slats cited in the text. IK = Ikaria 
trough, Sk = Skiros trough, Sp = Sporades trough. 

 
The roughly E-W extension that since the Pliocene has affected the Macedo-

nia and eastern Albania zones ([2] [28] [42] [43] and references therein, [29] 
[30]) may be an effect of the divergence between the Pelagonian belt (moving 
westward as a part of the AAP system) and the Rhodope massif. 

3. Present Kinematics, Tectonic Setting and Seismic Activity 

At present, the Adriatic plate is moving roughly NE to NNE ward in almost close 
connection with Nubia, as suggested by geological and geodetic data [10] [11] 
[25]. For the Anatolian-Aegean wedge instead, the present kinematic pattern, 
inferred from geodetic data (Figure 8), may be significantly different from the 
long-term pattern indicated by the observed Plio-Quaternary deformation pat-
tern [10] [25] [26] [44]. This is because the present kinematics of the above 
wedge may be a transient accelerated phase, triggered by the series of strong de-
coupling earthquakes that occurred along the entire North Anatolian fault since 
1939 (e.g., [45]). The numerical modeling of the post-seismic relaxation [46] 
[47] induced by the above seismic sequence shows in fact that the expected 
present kinematic pattern of the Anatolian-Aegean system is compatible with 
the kinematics indicated by geodetic data. 

In the zones lying North of the NAF and NAT fault systems, the present mo-
tion rates are fairly low (some mm/y) and mainly oriented southward (Figure 
8). In the Albanides the rates are low as well, but the motion trends go from 
westward to NW ward, suggesting that the displacement of the outer zones is 
more influenced by the motion trend of the Adria plate. 
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Figure 8. Present kinematic pattern in the study area from geodetic data. 
Red vectors from [48] (modified). Blue vectors from [49]. Thin black 
lines indicate States boundaries. 

 
Since the south Balkan zones are decoupled from the Anatolian-Aegean sys-

tem by the NAF and NAT faults, it is reasonable to suppose that present kine-
matic pattern of the south Balkan zones has not been significantly influenced by 
the post 1939 Anatolian displacement (Figure 4(b)).  

In the region here considered some major seismogenic zones can be identi-
fied: the Cephalonia transpressional fault, the central Greece troughs (Corinth, 
Ambracique and Thessaly), the Epirus thrust zone, the outer Albanides thrust 
front, the Vlora-Elbasan and Scutari-Pec faults, the inner Albanides extensional 
zone, the southern Dinarides, the Rhodope zone, the upper Thrace graben, the 
northern Aegean fault systems.  

3.1. Cephalonia Fault 

Major earthquakes in this dextral transpressional fault relate to the overthrusting 
of the Peloponnesus wedge on the Adria plate (Figure 9, e.g., [9] [20] [50] [51] 
and references therein, [52]). This transversal discontinuity marks the transition 
from the continental collision at the Epirus thrust front to the oceanic subduc-
tion under the western Hellenic Arc (e.g., [53]). Some authors (e.g., [54]) in-
terpret this fault system as the surface expression of a slab tear between the Hel-
lenic subduction zone and the roughly vertical Epirus lithospheric fragment, de-
tached from the deeper slab. Several strong earthquakes, with magnitudes up to 
7.2 (e.g., [16] [18] [20] and references therein, [9] [53]), took place in this zone. 
The most recent occurred in 2003 (M = 6.2), 2014 (M = 6.0), 2015 (M = 6.4) and 
2018 (M = 6.8). Earthquake focal mechanisms and geological evidence reveal a 
dextral strike-slip, associated with a significant thrust component and uplift 
(e.g., [55] [56] [57]).  

https://doi.org/10.4236/ijg.2023.145026


E. Mantovani et al. 
 

 

DOI: 10.4236/ijg.2023.145026 489 International Journal of Geosciences 
 

 
Figure 9. Sketch of the extrusion process recognized in this zone (from 
[50], modified). The big black arrows show the motion of the extruded 
wedges. The pink band indicates the inner Aegean-Pelagonian belt 
(Figure 7). The convergence between this belt and the Adriatic domain 
(big white arrows) is responsible for the strong E-W compression in 
Greece. Am = Ambracique trough, Co = Corinth trough, Ev = Evia Gulf, 
NAT = North Aegean trough, WHA = Western Hellenic Arc.  

3.2. Central Greece 

Seismic activity affects the Corinth, Ambracique and Thessaly fault systems. 
Geological, geodetic and seismicity data suggest a mostly S-N oriented exten-
sional regime (Figure 9, e.g., [33] [58] [59]), with rates up to about 15 mm/y 
(e.g., [51] [60] [61]). The high potentiality of these seismic sources is indicated 
by the occurrence of several shocks with M > 7 (e.g., [62] [63]). Active tectonics 
in northern Thessaly and Evia zones is dominated by NE-SW to N-S extension 
(e.g., [35] [64]). Strong earthquakes (M > 6) occurred in 1781 and 1941. The 
southern Thessaly zone was affected by a strong event (M = 6.8) in 1733 [18] 
and by intense seismicity from 1954 to 1980 (e.g., [16] [65] [66]). In the Evia 
zone the analysis of the 2001 Skyros earthquake (M = 6.4, e.g., [67]) shows that 
significant strain is accommodated by slip along NW-SE left lateral faults 
(Figure 9). Three strong earthquakes (Mw = 6.3, 6.2, 5.7) occurred in 2021, in 
northern Thessaly, activating blind normal faults which form a graben-like 
structure oriented roughly NW-SE [66]. 

3.3. Epirus Thrust Front 

Quaternary deformation and seismicity data (e.g., [68] [69]) indicate E-W compres-
sion in the outer belt, where major shocks allow the chain to overthrust the Adria 
domain. Some tectonic models (e.g., [70]) suggest the presence of a trench-parallel 
tear in the underlying Adriatic lithosphere, which could explain the lack of in-
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termediate earthquakes in this zone. [54] suggests that the semi-horizontal slab 
detachment cited above started developing around the middle Pliocene. A con-
tinuous slab is instead recognized under the western Hellenic Arc, where earth-
quakes occur up to a depth of 160 - 185 km (e.g., [71] [72]).  

3.4. Albanides 

This belt sector involves various seismic sources: the outer thrust front, affected 
by roughly SW-NE to E-W compression, the inner zone, undergoing a roughly 
perpendicular extension, and the Scutari-Pec and Vlora-Elbasan strike-slip 
faults, (Figure 1). This last fault was hit by major events in 1833 (6.2), 1843 (6.2), 
1848 (6.4), 1851 (6.8, 6.6, 6.4, 6.1), 1859 (6.2), 1860 (6.2), 1862 (6.2), 1865 (6.3), 
1866 (6.6, 6.2, 6.1, 6.1), 1869 (6.0), 1896 (6.2), 1920 (6.0), 1942 (6.1), 1959 (6.3), 
1962 (6.1) and 1967 (6.7). At the Scutari-Pec, major shocks occurred in 1852 
(6.2), 1855, M = 6.8, 1869 (6.2), 1870 (6.5), 1905 (6.7, 6.1, 6.0), 1926 (6.3), 2019 
(6.2). These events could be associated with the tear faults that decouple the 
subducted Adriatic margin under the Albanides from the margin underlying the 
southern Dinarides (Figure 5). The source geometry of the last Durres earth-
quake (2019, 6.4, [29] [73] [74]) is consistent with a low angle thrust fault dip-
ping towards east, which can be related to the outer compressional front of the 
Albanides. The complex strain pattern in this zone (Figure 10(a)), inferred from 
focal mechanisms (Figure 10(b)) and GPS data (Figure 10(c)), may be ex-
plained by the proposed geodynamic/tectonic setting: the outer Albanides tend 
to move roughly Northward, in connection with the Adria plate, while the mo-
tion of the inner zones is mainly driven by the southward bowing of the Hellenic 
Arc. The relative motion between the above zones induces the extensional de-
formation recognized in the eastern Albanides (e.g., [28] [29]).  
 

 
Figure 10. Strain field (a), Focal mechanisms (b) and GPS data (c) in the Albanides (from 
[49] modified). 
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3.5. Southern Dinarides 

This thrust zone marks the collisional boundary between Adria and the Pelago-
nian-Dinarides belt. E-W shortening in this zone is evidenced by geological and 
geophysical evidence (e.g., [75] [76] [77]). Major evidence on the very strong 
E-W compression that affected the southern Adriatic plate is also provided by 
the considerable upward flexure of the Apulian carbonatic platform (Figure 11). 
The last major earthquake that hit this zone (Montenegro) occurred in April 
1979 (M = 7.1). This event may have released the shortening accumulated at the 
collisional boundary between the Adria plate and the Pelagonian-Dinarides belt, 
triggering the propagation of post seismic relaxation through the Adriatic do-
main. The extensional character of this migrating stress perturbation is supposed 
to have favored the 1980 shock (23 November, M = 6.8) in the southern Apen-
nines [78] [79]. The possibility that this tectonic connection systematically in-
fluences the time pattern of major earthquakes in the southern Apennines is 
based on the comparison of the seismic histories of the Southern Dinarides and 
Southern Apennines zones (e.g., [80]).  

3.6. Rhodope Zone 

Plio-Quaternary tectonic activity in this zone is mainly associated with NE-SW 
extensional deformation (e.g., [2] [42] [82]). Major earthquakes occurred in 
1904 (M = 7.8), in the northern sector (SW Bulgaria), and in 1932 (M = 7) and 
1978 (M = 6.5) in the southern sector, near the Thessaloniki zone (NE Greece). 
Some authors (e.g., [42] [83]) suggest that the Strymon fault system has been 
generated by N-S extension and is characterised by dip-slip movement on E-W 
trending normal faults, while other authors consider it as a NW-SE left-lateral 
strike-slip or transtensional fault system, on the basis of geothermal fields, bo-
rehole data, focal mechanisms of microearthquakes and GPS data (e.g. [43] and 
references therein, [84]). 

 

 
Figure 11. Section across the southern Adriatic domain (From [81], modified). The upward flexure of the Apu-
lian carbonate platform testifies a very intense E-W compression.  
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3.7. Upper Thrace Graben 

Two destructive earthquakes occurred in 1928 (M = 6.8, 7.1), in a roughly E-W 
graben located along a preexisting transcurrent fault system (Maritsa, e.g., [2]). 
The available focal mechanism for the strongest event indicates WNW-ESE ex-
tension with a significant dextral component. Geological, geophysical and pa-
leoseismological investigations suggest that normal faulting was active through-
out the Pleistocene and Holocene ([85] and references therein). GPS data and 
long-term slip rates of the active faults in this region suggest a roughly N-S to 
NE-SW extension at rates running from 1 to 3 - 5 mm/y ([38] and references 
therein). 

3.8. Northern Aegean Fault Systems 

This zone is characterized by dextral strike-slip faults, evidenced by seismologi-
cal and geodetic data [59] [86] [87]. Some of them are the boundaries of mor-
phological depressions (as the Sporades, Skiros and Ikaria basins, see, e.g., Fig-
ure 7). This complex structural setting could result from the differentiated ex-
trusion and arching of the crustal slats that lie north of the Cyclades Arc. In the 
last three centuries, this zone experienced several strong earthquakes (1719 6.7, 
1860 6.2, 1893 6.8, 1905 7.5, 1968 7.1, 1975 6.6, 1982 6.6, 1983 6.8, 2014 6.9, e.g., 
[65] [87]). The above fault system is connected with the North Anatolian fault, 
through the Ganos transpressional lineament and the Marmara pull-apart region 
(e.g., [1] [5] [88]). The most recent strong earthquakes in these zones involved 
the Ganos (1912, M = 7.3) and Izmit (1999, M = 7.4) fault sectors, both charac-
terized by dextral strike slip focal mechanisms (e.g., [89] [90] [91]).  

4. Possible Tectonic Connections between Main Seismic  
Sources and Space-Time Distribution of Major  
Earthquakes 

The geodynamic/tectonic context proposed in this work may help to explain 
some features of the spatio-temporal distribution of major earthquakes. For this 
purpose, it may be useful to consider the period 1850-1935, when seismic activi-
ty in the study area was quite strong. The data reported in Figure 12 indicate 
that the collision zone between the Adria plate and the Aegean-Pelagonian belt  

(Cephalonia fault, Epirus and Albanides thrust fronts, Vlora-Elbasan and 
Scutari-Pec faults) was affected by strong shocks in the time intervals 1850-1870 
(Figure 12(a)), 1889-1907, 1890-1907 (Figure 12(e), Figure 12(f)) and 1920-1930 
(Figure 12(h)), while the Rhodope zone was hit by major earthquakes in the 
time intervals 1858-1867 (Figure 12(a), Figure 12(b)), 1900-1906 (Figure 12(f)) 
and 1931-1933 (Figure 12(h)). The fact that the main crises in the second zone 
show a significant overlapping on the ones in the first zone might suggest that 
the perturbation triggered by major shocks in the periAdriatic zones may in-
crease stress and thus the probability of earthquakes in the Rhodope zone, after 
periods controlled by the rheological properties of the zones involved. The role 
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of post-seismic relaxation in seismicity patterns of tectonic zones is described for 
other regions of the World (e.g., [78] [80] [92] [93] [94] [95]). 

A more complete data set about the possible time correlation discussed above 
is provided by the seismic histories of the two zones involved in the last two 
centuries (Figure 13). The comparison of these seismicity patterns points out 
some interesting features, which could be not merely casual. In particular, the 
fact that the most intense seismic phases in the second zone are coeval with or 
just follow the main seismic periods in the first zone. The correspondence be-
tween the periods of minor seismicity in the two zones is particularly evident in 
the latest period, when the almost complete cessation of seismic activity in the 
Epirus-Albanides was followed by very low activity in the Rhodope zone. 

 

 
Figure 12. Distribution of major earthquakes in the period 1850-1935 (Seismicity data as in 
Figure 2). In each decade the year is indicated by the number close to each symbol (circle). 
Magnitude scale at the bottom of the figure. 
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Figure 13. The map reports the location of major earthquakes (circles) in the study 
area (Seismicity data as in Figure 2) and the geometries of the presumably con-
nected seismic zones Epirus-Albania (a) and Rhodope (b). Seismicity time patterns 
in the two zones are shown at the bottom. See text for comments. 

 
The evidence given in Figure 12 and the tectonic context we propose for the 

study area, might suggest that major earthquakes in the Scutari-Pec and Vlo-
ra-Elbasan fault systems can favour thrusting activity in the Albanides and Epi-
rus. This tentative hypothesis is based on the following consideration. The 
westward displacement of the Aegean-Pelagonian belt (Figure 1) is accommo-
dated by the overthrusting of the Albanides and Hellenides on the southern 
Adria domain and by the consequent sinking of this domain. However, this re-
treat cannot occur without the decoupling of the subducting margin from the 
Adriatic domain underlying the southern Dinarides. Since such decoupling is al-
lowed by the activation of the Scutari-Pec and Vlora-Elbasan tear faults, one can 
suppose that after major earthquakes at those faults the probability of strong 
shocks in the Albanides-Epirus thrust front may increase. For instance, this hypo-
thesis could explain why the 1850-70 seismic phase in the Albanides-Hellenides 
zones (Figures 12(a)-(c)) was preceded by the strong events that occurred in the 
Vlora-Elbasan fault in 1851 (6.8, 6.6, 6.4, 6.1) and in the Scutari-Pec fault in 1855 
(6.8). Other strong events hit the Vlora-Elbasan fault in 1865 (6.3) and 1866 (6.6, 
6.2, 6.1, 6.1). Another major example of the presumed connection may be given 
by the fact that the strong 1905 (M = 6.7, 6.1, 6.0) earthquakes in the Scutari-Pec 
fault and the 1906-07 (M = 6.4, 6.2) events in the Vlora-Elbasan fault preceded a 
major seismic phase in the Albanides-Epirus thrust front: 1920 (6.5), 1926 (6.3), 
1930 (6.2) (Figure 12(h)). 

5. Conclusions and Discussion 

The Plio-Quaternary evolution of the south Balkan, northern Aegean and Helle-
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nides-Albanides zones is explained as an effect of the westward displacement 
and deformation of the Anatolian-Aegean-Pelagonian belt, driven by the inden-
tation of Arabia. The convergence between this system and Adria was accom-
modated by thrusting and uplift in the Hellenides and Albanides and by south-
ward escape of the Peloponnesus wedge, at the expense of the Ionian domain. 
The S-N extension that occurred in the wake of that wedge generated E-W 
troughs in central Greece (Corinth, Ambracique and Thessaly). The lateral de-
coupling of the Peloponnesus wedge from Adria has been allowed by dextral 
transpression at the Cephalonia fault. The divergence between the Pelago-
nian-Aegean belt sector and the Rhodope massif has induced NE-SW to N-S ex-
tension in the south Balkan zones. The extension in the inner part of the Alba-
nides has been induced by the clockwise rotation of this belt sector. Tectonic ac-
tivity in the northern Aegean zone has been controlled by E-W compression, 
driven by the westward displacement of the Central Anatolian plateau, and by 
S-N extension, induced by the southward bowing of the Cycladic Arc (Figure 4). 
This regime generated a system of dextral transpressional faults which have al-
lowed the westward sliding and escape of slats. The westward motion of nor-
thernmost slat caused the formation of the Marmara trough by a pull-apart me-
chanism. The other slats underwent various bendings, due to their convergence 
with the Pelagonian belt sector (Thessaly), as evidenced by morphological fea-
tures in the northern Aegean zone (Figure 7). The roughly NW push of Anatolia 
(Biga peninsula) on the Rhodope massif, evidenced by the deformations and up-
lift observed in the Ganos-Gelibolu fault zone, caused the clockwise rotation and 
NW ward displacement of the above massif. The consequent separation of this 
block from the European domain (Moesia) caused the formation of the upper 
Thrace graben.  

Any attempt at identifying the geodynamic context in a given zone should also 
explain why the proposed solution can better explain the observed deformation 
pattern with respect to the alternative interpretations. In this work, we mainly 
discuss the most cited geodynamic solution, which suggests a dominant role of 
slab-pull driving forces. This kind of interpretation mainly concerns the gravita-
tional sinking of the Hellenic slab under the Hellenic trench (e.g., [2] [6] [7] 
[77]). As discussed in previous papers [9] [10] [20] [26], we suggest that the im-
plications of this driving mechanism can hardly account for the observed 
Plio-Quaternary deformation pattern in the study area. Further considerations 
about this problem are reported in the following: 

- The E-W compressional regime and the strong uplift observed in the outer 
Hellenides and the Albanides is not compatible with the South to SW ward pull 
presumably induced by the retreat of the Ionian slab. The importance of this ar-
gument is supported by the fact that the outer Hellenides are affected by the 
most intense shortening and seismicity in the Mediterranean area.  

- The southward pull of the Hellenic slab can hardly explain why the southern 
Balkan zones lying between the Pelagonian and Rhodope belts have been af-
fected by roughly E-W extension.  
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- The retreat of the Hellenic slab evidenced by subcrustal earthquakes cannot 
easily explain the oroclinal bending of the Aegean Arc and the very complex 
time space evolution of the western and eastern Cretan basins. 

- Since the Anatolian-Aegean belt does not show any significant structural in-
terruption (Figure 1, Figure 6, Figure 7), one should suppose that the presumed 
slab-pull mechanism did not only cause the southward displacement of the Ae-
gean Arc, it must have also dragged the Anatolian wedge.  

- The separation between the Rhodope massif and the European domain 
(Moesia), with the generation of the Upper Thrace graben, can hardly be ex-
plained as an effect of southward pull in the Hellenic Arc, especially if one con-
siders that the Ganos-Gelibolu zone, lying south of the Rhodope massif, has 
been affected by roughly NW ward compression since the late Miocene [3] [40].  

- The formation of a series of dextral mainly transcurrent faults in the north-
ern Aegean zone (Figure 4), can hardly be interpreted as an effect of the Hellen-
ic southward pull, since it clearly requires the contribution of E-W compression, 
as suggested in this work. Furthermore, the hypothesis that the S-N pull is in-
duced by the retreat of the Hellenic slab during the Pliocene is not compatible 
with the present dimensions and the amphitheater shape of the subducted li-
thosphere indicated by the distribution of subcrustal earthquakes. In this regard, 
some authors suggest that the Hellenic subduction started not before the mid-
dle-late Miocene, and that the Hellenic boundary at that time was rectilinear, 
while, afterwards, it underwent a strong curvature, also in the deep sectors of the 
slab (e.g., [71] [96]). 

Some authors even suggest that slab-pull forces may be induced by the retreat 
of the subducted Adriatic lithosphere under the Hellenides-Albanides belt (e.g., 
[6]). However, the available evidence (in particular the lack of intermediate-deep 
seismicity under the Epirus-Albanides region and the evidence suggesting a slab 
detachment since about 4 My, e.g., [54] [70]) cannot easily be reconciled with 
the presence of a well developed rigid slab under that zone, such context is only 
envisaged on the basis of tomographic investigations (e.g., [6]). However, one 
should explain why subcrustal earthquakes under the Calabrian Arc (where the 
subducting lithosphere is the same that sinks below the Hellenic Arc) occur up 
to depths of about 500 km, whereas under the Hellenic Arc (where a long slab is 
supposed to exist) such seismicity stops at a depth of about 150 km. 

In our opinion, what has led many authors to neglect the difficulties pointed 
out above is the fact that they assume the present kinematic pattern inferred 
from geodetic data (Figure 8), indicating a faster motion of the Aegean zone (30 
- 40 mm/y) with respect to the Anatolian wedge (15 - 20 mm/y), as representa-
tive of the long-term kinematic behaviour. In this view, the retreat of the Hel-
lenic slab is considered the only driving force compatible with the above kine-
matic field in the Aegean and Anatolian regions. However, this interpretation 
does not consider that the present geodetic kinematics can be a transient pattern, 
triggered by the seismic activation of the entire North Anatolian fault since 1939, 
as provided by numerical modellings [46] [47]. This possibility would allow to 
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explain the present kinematics in the Anatolian-Aegean area without invoking 
slab-pull forces. 

Some support to the reliability of the geodynamic/tectonic setting here pro-
posed may be provided by the spatio-temporal distribution of major earthquakes 
in the study area. In particular, by the fact that in the last two centuries the main 
seismic crises in the Epirus-Albanides collision zone were followed by the main 
seismic periods in the western Rhodope area. This evidence could support the 
hypothesis that the extensional deformation in the south Balkan region mainly 
develops in the wake of the Pelagonian belt sector, once the westward accelera-
tion of this structure is triggered by major earthquakes in the Epirus-Albanides 
thrust front. We also advance the speculative hypothesis (mainly based on tec-
tonic considerations) that seismic activity in the Albanides and Epirus thrust 
fronts is favoured by strong decoupling earthquakes in the Scutari-Pec and Vlo-
ra-Elbasan transpressional faults (Figure 5). Since the seismic activation of the 
underthrusting fault system under the Epirus-Albanides is also expected to trig-
ger the NEward acceleration of the southern Adriatic domain one can expect 
significant consequences in the seismic hazard of the southern Italian zones 
(southern Apennines and Calabria). This hypothesis could explain the time-space 
distribution of major earthquakes in these two zones [80] [97].  
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