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Abstract 
Solar activity (SA) has been hypothesized to be a trigger of earthquakes, al-
though it is not as intuitively associated as other potential triggers such as tid-
al stress, rainfall, and the building of artificial water reservoirs. Here, we inves-
tigate the relation between SA and global earthquake numbers (GEN) by using 
a deep learning method to test the hypothesis. We use the daily data of GEN 
and SA (1996/01/01-2019/12/31) to construct a temporal convolution network 
(TCN). From the computational results, we confirm that the TCN captures the 
relation between SA and earthquakes with magnitudes from 4.0 to 4.9. We also 
find that the TCN achieves better fitting and prediction performance compared 
with previous work. 
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1. Introduction 

The 11-year solar cycle contributes to events such as sunspots, coronal mass ejec-
tion, and solar wind. The mechanism of the sun-earth magnetosphere connection 
is a mystery in relation to earthquakes [1]. Several studies have proposed that solar 
activity (SA) might be linked to earthquakes [2] [3] [4]. Statistical methods are 
usually used to prove this hypothesis. Reference [5] suggests a correlation between 
SA and large earthquakes worldwide, and [6] investigates the correlation between 
long-range clustering of global seismicity and SA. Sunspot number is also consi-
dered to be an SA variable for predicting earthquakes [7]. Meanwhile, some me-
chanisms have been considered to improve the correlation between the SA and the 
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earthquakes. For example, induced current causes an increase in fault stress through 
piezoelectricity [8], and the eddy electric currents in faults reduce the shear strength 
[9].  

The previous studies mainly focused on investigating the significant correla-
tion between SA and earthquakes using non-parametric statistical methods. How- 
ever, parametric statistical models and machine learning models are also ne- 
cessary for earthquake forecasting, although they are far from applicable to 
this task. In our previous work [10], we attempted to predict Global Earthquake 
Numbers (GEN) by using variables associated with SA as inputs. The results 
in [10] show that the GEN of earthquakes with magnitude 4 - 4.9 is most pre-
dictable. 

With the development of sensing technologies, including GPS and InSAR [11], 
a massive amount of data on SA has been accumulated. Furthermore, the solar- 
earth coupling can be characterized as a non-linear dynamical system. For these 
two reasons, we decided to construct deep learning models to predict GEN with 
SA as the input for earthquakes of magnitude 4 - 4.9. In particular, we consi-
dered daily time series of GEN and SA in sequential format. The recurrent neur-
al network (RNN) and long-short-memory-term are two benchmark DL models 
for sequential data. However, feedback in the recurrent architecture can lead to 
higher computational complexity [12]. Recent studies [13] [14] indicate that cer-
tain convolutional neural network (CNN) architectures can reach state-of-the-art 
accuracy for sequential data. A CNN can ensure the causality of sequential data of 
any sequence length with no feedback. 

By considering the proven effectiveness of CNNs for sequencing data, we took 
all the observations in the time-series format and implemented the temporal con-
volutional network (TCN) [15]. We constructed TCN by using GEN data and SA 
data as input to predict GEN for earthquakes of magnitude 4 - 4.9.  

2. Dataset  

Daily data of GEN were downloaded from ComCat  
(https://earthquake.usgs.gov/earthquakes/search/). The data ranged from 01/01/ 
1996 to 12/31/2019, including the 23rd and 24th solar cycles, and are partly depicted 
in Table 1. EQi means earthquakes with magnitude i - i.9 for 3, 4,5,6,7i = . Note 
that earthquakes with M ≥ 8 rarely occurred, so we combined those into one 
column: EQ89. The data contain an earthquake M = 7.2 (04/05/2010) that oc-
curred in Estado de Baja California of Mexico and the Touhoku earthquake M = 
9.0 (03/11/2011) that occurred in the north-east of Japan. Because large earth-
quakes always cause aftershocks, the GEN itself was also used as an input of TCN. 
(Figure 1) 

The daily data of SA were downloaded from OMNIWeb  
(https://omniweb.gsfc.nasa.gov/). The SA variables used in this research are listed 
in Table 2. Part of the SA data are illustrated in Figure 2. Missing values in the 
original SA data were filled using the linear interpolation method. (Table 3) 
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Table 1. Daily data of GEN. 

Time EQ3 EQ4 EQ5 EQ6 EQ7 EQ89 

1996/1/1 69 54 10 2 1 0 

1996/1/2 50 32 5 0 0 0 

1996/1/3 25 32 4 0 0 0 

1996/1/4 28 41 5 0 0 0 

1996/1/5 14 21 1 0 0 0 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

2019/12/27 13 26 2 0 0 0 

2019/12/28 13 32 5 0 0 0 

2019/12/29 14 36 4 0 0 0 

2019/12/30 12 34 4 0 0 0 

2019/12/31 9 28 1 0 0 0 

Sum 144,258 258,140 36,766 3275 339 26 

 
Table 2. SA variables list. 

Notations SA variables units 

B IMF Magnitude nT 

T Proton temperature B 

D Proton density n/cc 

V Plasma (Flow) speed km/s 

P Flow pressure nPa 

EY Earth’s electric field east-west component mV/m 

SSN Sunspot number n 

DST Disturbance storm time index nT 

PCI Polar cap index  

 
Table 3. Daily data of SA variables. 

Time B T D V P Ey SSN DST PCI 

1996/1/1 4.9 72,020 7.9 403 2.39 −0.42 0 −2 0.2 

1996/1/2 4.9 77,660 8 398 2.45 0.23 14 −6 0.6 

1996/1/3 5.9 132,150 5.2 485 2.39 −0.26 22 −8 0.6 

1996/1/4 4.4 93,895 5.5 443 2.06 0.01 35 −5 0.3 

1996/1/5 3.9 50,191 10.2 416 3.12 0.08 56 −1 0.6 

... ... ... ... ... ... ... ... ... ... 

2019/12/27 3.9 53,858 5.9 371 1.41 −0.01 0 −2 0.3 

2019/12/28 3.4 38,546 6.4 345 1.33 −0.03 0 −1 0.1 

z2019/12/29 4.1 22,298 9.1 309 1.47 −0.01 0 −1 0.1 

2019/12/30 5.6 20,010 13.3 298 2.02 −0.35 0 5 0.1 

2019/12/31 4.3 25,823 13.7 306 2.23 0.38 0 1 0.4 

mean 5.76 93,432.44 6.22 428.96 2.01 0.02 65.38 −12.16 0.95 

std 2.56 72,500.54 3.89 96.86 1.21 0.76 63.92 17.56 0.85 
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Figure 1. Time series of earthquake numbers (1996/01/01-2019/12/31). 

 

 
Figure 2. Time series of SA variables (1996/01/01-2019/12/31). 

3. TCN Architecture  

According to our previous works [10], to model the earthquakes, GEN of EQ4 is 
taken as the outputs of TCN, denoted as ( )y k . Then, two types of inputs for 
TCN are included: the first type, denoted as ( )1 kx , takes GEN data up to k as 
the inputs of TCN; the second type, denoted as ( )2 kx , includes SA variables. 
Here, k means that the latest observations in ( )1 kx  and ( )2 kx  are obtained 
at time k. With respect to our previous results [10], the maximum time lag of 
each variable was set as 14 days in both ( )1 kx  and ( )2 kx . That is, 

( ) ( ) ( ) ( ) ( ) T
1 3 , , 3 13 , , 89 , , 89 13k EQ k EQ k EQ k EQ k≡ − −  x     

( ) ( ) ( ) ( ) ( ) T
2 , , 13 , , , , 13k B k B k PCI k PCI k≡ − −  x     

In this way, we construct a non-linear model  
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( ) ( ) ( )( ) ( )1 2,y k d g k k kε+ = +x x  

to couple the relation between GEN and SA by comparing these models, with 
( )kε  being an independently identically distributed Gaussian noise term. Here, 

d is the number of days later than day k and indicates the prediction steps. In 
this research, 1,2,3k =  is considered.  

This research uses TCN as ( )g ⋅ , whose architecture is shown by Figure 3. 
The TCN is mainly composed of convolutional blocks with 16, 32, 32, and 64 chan-
nels. In each block, a dilated convolutional operation is performed on a sequence 
input n∈u  :  

( ) ( )( ) ( )
1

0

m

d s d
i

F s u f s f i u
−

∗ −
=

= = ⋅∑  

with { }: 0,1, , 1f m − →   being a filter. 
Because the maximum time lag is relatively short, the convolutional kernels of 

size 1 × 2 are implemented in each block. To obtain the robust estimates, the Hu-
ber loss function is used as follows: 

 

 
Figure 3. Architecture of TCN. 
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where iy  is the observed GEN at time i, and ix  and ( )if x  are the correspon- 
ding input and output of TCN. The Adam optimizer [16] was used to chain TCN. 
The SA and GEN data in the 23rd solar cycle (01/01/1996-12/31/2007) were used 
as the training data. The SA and GEN data in the 24th solar cycle (01/01/2008- 
12/31/2019) were used as the test data. 

4. Prediction Results 

The whole dataset was divided into two parts. The SA and GEN data in the 23rd 
solar cycle (01/01/1996-12/31/2007) were used as the training data. The SA and 
GEN data in the 24th solar cycle (01/01/2008-12/31/2019) were used as the test 
data to verify the trained TCN. Pearson’s correlation coefficient R was used to 
evaluate the fitting and prediction performance of the TCN.  

4.1. TCN without/with SA Variables 

First, we constructed a TCN without SA variables. Figure 4 illustrates the loss 
curves of the training and test losses versus epoch number. The curves indicate 
that 100 epochs are enough to ensure convergence of the TCN training.  

We also constructed TCN with all of the SA variables. Figure 5 illustrates the 
training and test losses plotted against epoch number. The curves indicate that 
100 epochs are enough to ensure convergence of the TCN training.  

Table 4 lists the fitting and prediction performance of TCNs without SA va-
riables for 1- to 3-day-ahead predictions. Let Rf and Rp be the correlations be-
tween the real observations of EQ4 and the output of the TCN obtained from the 
training data and test data, respectively. Table 5 lists the fitting and prediction  
 

 
Figure 4. Dynamical curves of traning and test losses versus epoch number for TCN with-
out SA variables. 
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Figure 5. Dynamical curves of traning and test losses versus epoch number for TCN with 
SA variables. 
 
Table 4. Fitting and prediction performance of TCNs without SA variables. 

d Rf Rp decrease 

1 0.6702 0.6222 0.0480 

2 0.5115 0.4040 0.1075 

3 0.4856 0.3240 0.1616 

 
Table 5. Fitting and prediction performance of TCNs with SA variables. 

d Rf Rp decrease 

1 0.7131 0.6502 0.0629 

2 0.5324 0.4384 0.0940 

3 0.5088 0.3496 0.1592 

 
performance of TCNs with SA variables for 1- to 3-day-ahead predictions. As a 
reasonable result, Rf is Rp for all days ahead in Table 4 and Table 5. Thus, the 
“decrease” in Table 4 and Table 5 means the difference between Rf and Rp. 

The two tables indicate that the TCNs are of better fitting and prediction per-
formance than the support vector regression in our previous work [10]. By com-
paring Table 4 and Table 5, it can be seen that the SA variables improve both 
the fitting and prediction performance of TCNs. The gap between Rf and Rp is 
trivial in the 1-day-ahead prediction, which supposes a balance between the fit-
ting and prediction performance of TCNs with/without SA variables. However, 
Rp significantly decreases for the 2- and 3-day-ahead predictions.  

4.2. Impact of SA Variables on Prediction of Earthquakes 

To evaluate how the SA variables improve the prediction of earthquakes, we adopted 
the following forward stepwise procedure: 

https://doi.org/10.4236/ijg.2021.128040
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Table 6. Variables selected by forward stepwise procedure. 

Step Variable Rf Rp Ra 

1 EQ4 0.6352 0.6098 0.6225 

2 EQ5 0.6701 0.6296 0.6499 

3 V 0.6844 0.6390 0.6617 

4 EQ89 0.6798 0.6526 0.6662 

5 EQ6 0.6734 0.6500 0.6618 

6 SSN 0.6736 0.6485 0.6610 

7 Ey 0.6846 0.6447 0.6647 

8 EQ3 0.6905 0.6365 0.6635 

9 D 0.6833 0.6472 0.6653 

10 P 0.6962 0.6331 0.6646 

11 EQ7 0.6912 0.6461 0.6687 

12 T 0.7064 0.6445 0.6755 

13 PCI 0.6987 0.6425 0.6705 

14 DST 0.6931 0.6387 0.6659 

15 B 0.7131 0.6502 0.6816 

 
1) Let   denote the set of inputs of TCN, which is initially assumed to be 

the empty set. Let  

{ }3, 4, 5, 6, 7, 89, , , , , , , , ,yEQ EQ EQ EQ EQ EQ B T D V P E SSN DST PCI=  be the 
set of 15 input candidates of the TCN. 

2) Add one variable from   to   and construct a TCN. Define the corres-
ponding evaluation criterion ( ) 2a p fR R R= + . Add to   the variable from 
  that gives the biggest improvement in aR . 

3) Repeat (2) until   becomes empty and a total of 15 TCNs are obtained. 
Table 6 shows the sequentially selected variables according to Ra for the 1-day- 

ahead prediction. We can see that the plasma speed V improves Ra by almost 0.02 
based on EQ3 and EQ4 in step 3. The IMF Magnitude improves Ra by almost 
0.02 at the last step, jointly with other variables. These results suggest that all the 
SA variables should be used as the inputs of TCNs. 

5. Conclusions 

In this research, we investigate the relation between SA and GEN. We construct 
the deep learning model TCN to predict EQ4 for 1- to 3-day-ahead predictions. 
The numerical results show that: 

1) Compared with SVR in our previous works, TCN significantly enhances the 
fitting and prediction performance. This result confirms that there exists a strong 
nonlinear relation between GEN and SA.  

2) Because the fitting performance Rf is similar to Rp, we suppose that TCN is 
of potential capacity for the 1-day-ahead prediction for EQ4.   

https://doi.org/10.4236/ijg.2021.128040
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3) EQ4 in the past is the crucial input of TCN. Thus, TCN is essentially a non-
linear autoregressive model. However, SA variables can still improve the fitting 
and prediction performance of TCN. 

From the aforementioned results, we suppose that SA has the potential to af-
fect GEN. 

TCNs in this research are still far from being predictive. Table 6 shows that 
the TCN is continuously improved until all the SA variables are implemented. 
This result suggests that the prediction performance can be further improved by 
considering more variables other than the candidates selected in this research. Over 
the decades, lots of novel geophysics and space data have become available, thanks 
to improvements in sensing and measurement technologies. Although earthquakes 
remain not predictable for now, we will continue to reveal relations among earth-
quakes, the earth’s environment and SA on the basis of various statistical methods 
and machine/deep learning models. 
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