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Abstract 
Our Solar System contains eight planets and their respective natural satellites 
excepting the inner two planets Mercury and Venus. A satellite hosted by a 
given Planet is well protected by the gravitational pertubation of much heavi-
er planets such as Jupiter and Saturn if the natural satellite lies deep inside the 
respective host Planet Hill sphere. Each planet has a Hill radius Ha  and 
planet mean radius PR  and the ratio 1 P HR R a= . Under very low 1R  (less 
than 0.006) the approximation of CRTBP (centrally restricted three-body 
problem) to two-body problem is valid and planet has spacious Hill lobe to 
capture a satellite and retain it. This ensures a high probability of capture of 
natural satellite by the given planet and Sun’s perturbation on Planet-Satellite 
binary can be neglected. This is the case with Earth, Mars, Jupiter, Saturn, 
Neptune and Uranus. But Mercury and Venus has 1 0.01P HR R a= =  and 
5.9862 × 10−3 respectively hence they have no satellites. There is a limit to the 
dimension of the captured body. It must be a much smaller body both di-
mensionally as well masswise. The qantitative limit is a subject of an inde-
pendent study. 
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1. General Three-Body Problem (TBP) and Its Current Status 

Isaac Newton (1643-1727) with his publication of Philosophiae Naturalis Princi-
pia Mathematica (Mathematical Principles of Natural Philosophy) in 1687 [1], 
opened the door to the investigation of Three-Body Problem (TBP). Two-Body 
Problem was first formulated by Johannes Kepler [2] (Kepler 1609) and solved 
by Newton in 1687 [1]. Gottfried Leibiz further elucidated and published Kep-
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ler’s Law in 1690 [3]. Newton took the first step in defining and analyzing the 
movement of three massive bodies subject to their mutually gravitational attrac-
tions formally. He examined the perturbation of Moon’s orbit under the gravita-
tional influence of Earth and Sun. This formally laid the ground work for TBP 
but with approximations and its exact solution preoccupied and eluded the Ma-
thematicians and Scientists from mid 1700 to the early 1900s. 

AmerigoVespucci (1454-1512) (Room 2004, Encyclopædia Britannica Online, 
Amerigo Vespucci ) addressed the physical problem of TBP in connection with 
determining the longitude while conducting the sea voyages to Brazil as the chief 
navigator of Spain and boldly conjectured the existence of the New World which 
was named Americas after his first name. Vespucci used the Moon path as a 
guidance during his exploratory voyages to South America and John Harrison 
(1693-1776) [4] invented the marine Chronometer for determining the longi-
tude during long Sea Voyages. 

Moon’s orbit is perturbed by the strong gravitational field of Sun, Venus and 
Jupiter on different time scales [5]: 

1) Moon orbital parameters repeat over synodic month of 29.53 days. 
2) Strong signals in the time series of Moon’s orbital parameters. These have a 

frequency of 6 months. This corresponds to the bi-annual impact of Earth’s orbit 
about the Sun. 

3) Orientation of Moon’s orbit to the Sun cycles over the course of the year as 
well as the distance variation to the sun due to ellipticity of the orbit has a direct 
effect on Moon’s orbit. 

4) In addition to the solar perturbation, Venus and Jupiter also perturbs the 
Lunar Orbit. 

5) Earth’s asymmetric gravitational field also perturbs the Lunar’s orbit. 
All these had to be accounted for while designing the Marine Chronometer 

and this is precisely why TBP became a chief concern in mercantile trade era. 
Various exact results were obtained, notably the existence of stable equilateral 

triangle configurations corresponding to so-called Lagrange points but in re-
stricted framework. Heinrich Burns had shown in 1887 [6] and Henri Poincare 
had concluded in 1890 [7] that no analytical solution could be obtained for ge-
neralized TBP. Hence approximations were made which is known as Circular 
Restricted Three-Body Problem (CRTBP) approach. But even CRTBP remained 
insoluble except for some special cases. 

From 1890 to 1930, George Darwin [8] [9], George Hill [10], Henry Plummer 
[11], Forest Moulton [12], Elis Stromgren [13] and their colleagues contributed 
to the discovery of the first known periodic orbits in CRTBP. In next 40 years 
from 1930 to 1970, 150 periodic orbits were computed [14]. In 1968 Roger 
Bourcke published a large catalog of families of planar periodic orbits that exist 
in CRTBP with Earth-Moon masses [14]. 

1960 onward Digital computers were used for numerical calculations and 
analysis which generated 3-D periodic orbits [15]-[24]. Halo and quasi Halo or-
bits were discovered [25] [26] [27] [28]. After 1975 a significant number of pe-
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riodic orbits were discovered which can be classified in three distinct families of 
periodic orbits namely: 

1) Lagrange-Euler Solution in 18th century which led to the discovery of li-
brating points in CRTBP system. This was supplemented by Moore (1993) [29]; 

2) The Broucke-Henon-Hadjidemetrion family of periodic orbits in mid 1970s 
[30] [31] [32] [33] [34]; 

3) Figure 8 Family of orbits [29] [35]-[40] http://suki.ipb.ac.rs/3body. 
In 1980, David Richardson generated halo orbits around the three collinear 

Lagrange points L1, L2 and L3 [41]. Towards the end of 20th century Lissajous 
and other quasi-halo orbits were generated [26] [42] [43] [44]. Libration orbits 
have been used for practical spacecraft missions and scientific missions such as 
WMAP, SOHO, communication relays [45] [46] [47] [48], as transportation 
nodes [49] [50] and navigation services [51]-[56]. 

Through numerical search for periodic collisionless, planar solutions with ze-
ro-angular momentum in a two parameter sub-space of (the full four-dimension 
space of) scaled zero angular momentum initial conditions Šuvakov, M. and 
Dmitrašinović, V. (2013) [40] have discovered 13 new distinct equal mass zero- 
angular momentum planar, collisionless periodic 3-body orbits that can be clas-
sified as three new classes of orbits in addition to the existing class in 1975. The 
classes are sorted out on algebraic and geometric symmetry basis. No three-body 
system with equal masses and zero angular momentum have been observed by 
Astronomers hence these new solutions cannot be physically verified. Most of 
the observed TBP belong to Euler-Lagrange Class and to quasi Keplerian 
Broucke-Henon-Hadjidemetrion class of solutions. 

2. Fixed Point Solutions of Circular Restricted Three-Body 
Problem 

TBP had stymied the Scientists through out the 18th century so Joseph-Louis 
(Comte-de) Lagrange (1736-1813) reduced TBP to CRTBP and was the first to 
carry out the Fixed point solution of CRTBP and predicted two librating points 
L4 and L5 (Lagrange 1867-92) [57]. Leonhard Euler (a Swiss Mathematician 
1707-1783) discovered L1, L2 and L3 subsequently [58]. Lagrange finally gave a 
comprehensive analysis of all the five points in his seminal paper “Essai sur le 
problem des trois corps” published in Euvres completes, tome 6, 229-331, Prix de l’ 
Academie royale des sciences de Paris, tome IX, 1772. These five Librating points 
also known as Lagrange Points are stationary with respect to the synodic frame-
work and they are stationary indefinitely. Hence they are known as Fixed-point 
solution. There are periodic orbit solutions also such as Lyapunov Orbits around 
LL1, LL2, LL3 (LL refers to the Lagrange points in Earth-Moon-Test particle 
system), Direct Prograde Orbits which fit between LL1 and LL2 are Lyapunov 
Orbits, Direct Retrograde Orbits, Halo Orbits, Vertical Lyapunov Orbits and 
Resonant Orbits. 

CRTBP is a dynamical model used to describe the motion of a test particle in 
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the presence of massive orbiting bodies such as Sun-Earth or Earth-Moon. It is 
convenient to describe the motion of the TBP in a synodic framework that ro-
tates at the same rate as the two primaries around the barycenter of the binary. 
In effect the Frame of Reference is centered at the barycenter or center of mass 
(COM). The origin is at COM and X-axis is directed from COM to the smaller 
Primary. Z-axis extends perpendicular to the orbital plane and Y-axis completes 
the right handed coordinate fame-work. With respect to the synodic framework 
two primaries are stationary and test particle moves about in non-Keplerian mo-
tion. In case of Fixed Point Solution the Lagrange Points are stationary with re-
spect to the two primaries and maintain the same relative position with respect 
to the two Primaries hence they are Fixed-Point Solution. 

Roche Lobe or Hill Sphere of the primary and secondary meet at L1. Drop-let 
shaped figures in equi-potential plot define the boundaries of Roche’s Lobe as 
shown in Figure 1. A critical equi-potential plot intersects itself at L1 forming a 
two-lobe figure of eight. One of the two components is at the center of each lobe. 
As the host fills up its respective Roche’s lobe mass transfer takes place from via 
L1 to the second lobe. This is known as Roche’s Lobe overflow. As shown in 
Figure 1, L1, L2 and L3 are saddle points (minima points) of potential and L4  

 

 
Figure 1. A contour plot of effective potential of sun-earth along with the five Lagrange 
points (curtsey: https://map.gsfc.nasa.gov/mission/observatory_l2.html). 
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and L5 are the hill top(maxima point) of the potential. At these points forces are 
in equilibrium. The gravitational pull on the test particle is exactly balanced by 
the outward centrifugal force on the test particle. If m/M is less than 1/25 where 
m = mass of the secondary and M = mass of the primary then L4 and L5 become 
stable otherwise these equilibrium points are unstable [59]. 

In case of instability Coriolis force helps restore stability to satellites drifting at 
L4 and L5. 

Asteroids at L4 (leading the secondary) and L5 (lagging the secondary) were 
first discovered in Sun-Jupiter System in early 20th century. These were called 
Trojan Asteroids named after Greek heroes who were victorious in capturing 
Troy and liberating their queen Helen. These Trojan asteroids were leading and 
lagging Jupiter in Jupiter’s orbit itself. There are dozens of Trojan Asteroids 
trailing or heading Jupiter in its own orbit. Trojan Asteroids lie in Mars orbit 
also. 

Tethys is a natural satellite of Saturn and Calypso is trailing Tethys and 
Telesto is leading Tethys in Tethys orbit. All three moons of Saturn are 
co-orbital with identical orbital period of 1.887802d and all are in synchronous 
orbit. That is all three are showing the same face to Saturn all the time [60]. 

In 1958, Polish astronomer Kazimierz Kordylewski discovered dust clouds at 
L4 and L5 librating points of Earth-Moon’s system [61]. In 2010 NASA’s WISE 
telescope (Wide Field Infra-Red Survey Explorer) after much speculation and 
doubts confirmed the first Trojan asteroid in Earth’s Orbit at L4 [62]. Through 
archival search of infra-red data, Earth Trojan 2010TK7 was discovered librating 
around the leading Lagrange point L4 of Sun-Earth System. Lifetime is 10,000 
years before it destabilizes. Table 1 tabulates the list of probes and telescopes 
which existed or are planned to be placed at Lagrange points of Sun-Earth Sys-
tem and of Earth-Moon System. 

2.1. Analysis and Calculation of Lagrange Points L4 and L5 in 
Sun-Earth-Test Particle and in Earth-Moon-Test Particle  
Systems Is a Text Book Exercise in CRTBP 

Figure 2 gives the layout of the five Lagrange points in a synodic framework. 
Figure 2 is not drawn to the scale. Synodic Framework is centered at COM and 
rotating anticlockwise at orbital rotation angular frequency of Ω radians per 
second. The dark dashed orbit is the orbit of the smaller primary and light gray 
dashed orbit is the orbit of the larger primary. D is the distance between the two 
primaries. 

In case of Sun-Earth-Test particle: 

21 AU and
365.25

D
d

π
= Ω =                    (1) 

In case of Earth-Moon-Test particle: 

2384400 km and
27.32

D
d

π
= Ω =                  (2) 
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Table 1. List of Astronomical probes placed or planned to be placed at the five Lagrange Points. 

Sun-Earth System 

L1 L2 (Ideal for Obs.) L3 L4 L5 

SOHO* WMAP† None Asteroid 2010TK7 Asteroid2010SO16***** 

 PLANCK‡    

 WEBB Tel.††    

 Chang’e 2(2011-12)**    

 
Herschal Space Obs. 

(ESA2013)*** 
   

 Gaia Probe‡‡    

 PLATO†††    

 L1SA‡‡‡    

Earth-Moon System 

L1 L2 L3 L4 L5 

 ARTEMIS††††  Kordylewski Cloud Proposed Space Colony 

 Chang’e 5-T1****  
Future location of TDRS style Communication 

satellite to support L2 satellites 
A low energy trajectory for Lunar 

Orbit. 

   Exploratory Gateway Platform  

†WMAP—Wilkinson Microwave Anisotropy Probe. ††Webb-James Webb Space Telescope to be launched in October 2018. It has 
6.5 m mirror. Hubble has 2.4 m mirror. †††PLATO—Planetary Transits and Oscillations of Stars—it will search Earth-like rocky 
planets. ††††ARTEMIS—It is Berkeley Mission. It will launch a space craft on Liossajous orbit around Moon. ‡PLANCK—an 
advanced version of WMAP. ‡‡GAIA—It will generate 3D map of our galaxy. ‡‡‡LISA—LASER Interferometer Space Antenna for 
Gravitational Wave detection. To be launched in 2034. *SOHO—Solar and Heliospheric Observatory Satellite. **Chang’e 2-Chinese 
Lunar Unmanned Probe (2011-12). ***Herschal Space Observatory-2013 It was lauched by ESA and has 3.5 m mirror. ****Chang’e 
5T1-Experimental Chinese unmanned Lunar Probe. *****Asteroid 2010SO16-Horse shoe companion of Earth in Sun-Earth System 

 
Figure 3 gives the geometrical configuration of L4, L5 and the two primaries 

for calculation of the location of L4 and L5. 
From Figure 3 we obtain the following: 

( ) 1and where
1 1

q mx D D x D q
q q M

= − = =
+ +

           (3) 

The centrifugal force on the test particle is exactly balanced by the centripetal 
force provided by the gravitational forces on test particle due to Primary and 
smaller Primary. This is true in all five cases hence the five points are equilib-
rium points but unstable. In case of L4 and L5 if m/M is less than 1/25 then the 
two points become stable. 

2
tangentialCentrifugal force on the test particle

distance from COM
v

µ= ×       (4) 

Let distance of the test particle from COM = d. 
Then trigonometry of Figure 3 leads to: 
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Figure 2. Lay-out of fixed point solution of CRTBP. 

 

 

Figure 3. Geometry of TBP from which the equilibrium of forces will be calculated and 
position of L4 and L5 located. 

 
2

2 2 2
2

2 2

1
1 2

where 1 and 1 2 or 1

q q Ad D D
Bq q

A q q B q q B q

 + +
= = × + + 

= + + = + + = +

        (5) 

From equilibrium of forces at Lagrangian Point L4 marked by star, angular 
velocity of rotation is calculated to be: 

2
3

1 3 1 3 11
2 4 4

GM B q
A AD A

    Ω = + − × + ×         
           (6) 

From (6) Ω is calculate and hence T (orbital period is calculated). 
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In Sun-Earth-Test particle system: 
6 71 AU, 3 10 , 1, 1.0001, 1.99054 10 radians sD q A B− −= = × = = Ω = ×  

Therefore T = 1.00027 solar year 
Therefore L4 and L5 lie at 1 AU on Earth’s orbit from Earth leading as well as 

lagging. 
In Earth-Moon-Test particle system: 

6

384400000 m, 1 81, 6643 6561, 6724 6561,

2.66457 10 radians s

D q A B
−

= = = =

Ω = ×  
Therefore T = 27.3d. 
Therefore L4 and L5 lie at 384,400,000 m on Moon’s orbit from Moon leading 

as well as lagging. 

2.2. Analysis and Calculation of L1, L2 and L3 in Sun-Earth and 
Earth-Moon Systems 

Figure 4 gives the geometrical layout of L1, L2 and L3 for any TBS (Sun-Earth-test 
particle or Earth-Moon-test particle). 

The Lagrange’s Points lie on a rotating frame of reference of rotation angular 
velocity Ω. Bigger primary is M, smaller primary is m and test particle is of mass 
μ. All three bodies are orbiting Center of Mass (COM) at orbital angular fre-
quency = ω. 

Lagrange’s points L1, L2 and L3 are co-linear and orbiting around COM with 
orbital angular velocity = ω. Distance of separation between M and m is D. Dis-
tance of Lagrange point is L from m in case of OL1 and OL2 and L is the dis-
tance of L3 from M while calculating OL3. 

The calculations have been taken from Merlyn Home Page, Astronomy & As-
trophysics-Gravity4-lagrange points. System parameters have also been taken 
from Merlyn Home Page. 

 

 
Figure 4. Geometrical layout of L1, L2, L3, L4 and L5 for a generalized CRTBP not to the 
scale. 
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http://www.merlyn.demon.co.uk/.  
For L1: 

( )
( )

2
2 2

M mD L G
LD L

µω µ
 
 − = × −
 − 

                (7) 

Equation (7) is an approximation since test particle is also orbiting COM 
hence radius of rotation is not (D-L) but infact it is (D-L-x) but for ease of cal-
culation it has been taken as (D-L) which for practical cases quite valid. 

Solving (7) for D = 1, m = 1, M = 81 for Earth-Moon-test particle gives: 
L = 0.151272 which gives LL1 from Moon 58,149 Km for D = 384,400 Km 

(Earth Moon separation) 
For Sun-Earth-Test particle: D = 1, m = 1, M = 331,772.5755 since Sun mass = 

1.984 × 1030 Kg and Earth mass = 5.98 × 1024 Kg and D = 1AU = 149.46 × 106 
Km we get L = 0.009982. 

Hence EL1 from Earth is EL1 = 1,491,909 Km (1/100AU) 
For L2: 

( )
( )

2
2 2

M mD L G
LD L

µω µ
 
 + = × +
 + 

               (8) 

Solving (8) for D = 1, m = 1, M = 81 for Earth-Moon-test particle gives: 
L = 0.168327 which gives LL2 from Moon 64,705 Km for D = 384,400 Km. 
For Sun-Earth-Test particle: D = 1, m = 1, M = 331,772.5755 since Sun mass = 

1.984 × 1030 Kg and Earth mass = 5.98 × 1024 Kg and D = 1AU = 149.46 × 106 
Km we get L = 0.010049. 

Hence EL2 from Earth is EL2 = 1,501,921 Km (1/100AU) 
For L3: 

( )
( )

2
2 2

M mL G
L L D

µω µ
 
 = × +
 + 

                 (9) 

Solving (9) for D = 1, m = 1, M = 81 for Earth-Moon-test particle gives: 
L = 1.001029 which gives LL3 from Earth 384,795.5 Km for D = 384,400 Km. 
For Sun-Earth-Test particle: D = 1, m = 1, M = 331,772.5755 since Sun mass = 

1.984 × 1030 Kg and Earth mass = 5.98 × 1024 Kg and D = 1AU = 149.46 × 106 
Km we get L = 1.000. 

Hence EL3 from Sun is 149,460,000 Km = 1AU. 
Table 2 tabulates the Lagranges points for Sun-Earth-test particle and for 

Earth-Moon-test particle systems. Lagranges points have an intimate connection 
with Hill Radius discussed in next section. Hill Radius decides the gravitational 
sphere of influence of the given astronomical object. 

From the Table 2, a very simple picture emerges about L1, L2 and L3. 
Figure 5 gives the layout of L1, L2 and L3 in Earth-Moon system and, as 

shown in Figure 5, L1 is the Roches Overflow point. When Primary body sur-
face in Primary Roches Lobe extends out beyond its respective Roche’s Lobe 
then the material outside the Primary Roche’s Lobe falls into the Roches Lobe of  
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Table 2. Lagranges point (L1, L2 and L3) in CRTBP framework. 

 Sun-Earth-Test particle Earth-Moon-Test particle 

L1 from the smaller 
primary as in Figure 4 

1,491,926 Km(~1/100AU) = Hill’s 
Radius of Earth 

58,149 Km~Hill’s Radius of 
Moon 

L2 from the smaller 
primary as in Figure 4 

1,501,921 Km(~1/100AU) = Hill’s 
Radius of Earth 

64,705 Km~Hill’s Radius of 
Moon 

L3 from the bigger 
primary as in Figure 4 

149,460,000 Km (1AU) = Earth’s 
orbital Radius around Sun 

384,795.5 Km~ Lunar 
Orbital Radius 

 

 
Figure 5. Earth’s Orbital Radius = 1AU and Earth’s Hill Radius = (0.01AU) decide EL1, EL2 and EL3. 

 
the secondary. 

In Table 3, the Cartesian coordinates of the Five Lagrange’s Points in Sun- 
Earth-Test particle CRTBP system and in Earth-Moon-Test particle system. 
(Here the Cartesian coordinate system is a synodic framework with COM cen-
tered at the origin of the synodic framework. L1, L2, L3 lie on X-axis and L4 and 
L5 lie on the vertices of equilateral triangle co-planar with XY plane.) and 
co-orbital with the smaller primary-L1 heading the smaller primary and L5 
trailing the smaller primary. 

3. Circular Restricted Three-Body Problem (CRTBP) and Its 
Approximation as Two-Body Problem for Planetary 
Satellites [63] (Kokubo et al. 2000) 

Traditionally CRTBP is used for the study of Planetary Satellites. The Hill ap-
proximation describes the motion of two bodies orbiting a much more massive 
central body using a rotating coordinate system. The Hill coordinate system is 
defined so that the x axis points radially outward, the y axis is tangent to a circu-
lar orbit, and the z axis is normal to the orbital plane. The angular velocity of the 
coordinate system is just the Keplerian orbital frequency, ( )3

0 1 2CGM aΩ = , 
where a0 is the reference orbital radius and MC is the mass of the central body.  
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Table 3. Cartesian coordinates of five Lagrange’s points in sun-earth and earth-moon 
systems ([5] Appendix Parker & Anderson 2013). 

  X(km) Y(Km) Z(Km) 

  Sun-Earth-Test Particle System 

L1 EL1 148,099,795  0 

L2 EL2 151,105,019.2  0 

L3 EL3 −149,598,060.2  0 

L4 EL4 74,798,480.5 129,555,556.4 0 

L5 EL5 74,798,480.5 −129,555,556.4 0 

  Earth−Moon−Test Particle System 

L1 LL1 321,710.177  0 

L2 LL2 444,244.222  0 

L3 LL3 −386,346.081  0 

L4 LL4 187,529.315 332,900.165 0 

L5 LL5 187,529.315 −332,900.165 0 

 

 
Figure 6. Sun-Earth-Moon in planar circular restricted three-body problem (CRTBP) 
framework. 

 
The Hill coordinate system is shown in Figure 6. 

Two important parameters are required namely Roche Limit (aR) [63] and Hill 
Sphere with radius (aH) in CRTBP approach. Roche Limit (aR) sets the limit for 
accretion of dust particles near a celestial object. Within this limit dust particles 
cannot accrete to form a solid body and if a solid body does enter this limit it 
will be pulverized. Hydrodynamic static equilibrium spherical state can be 
achieved only beyond this limit. This limit is given as follows: 

1 3

Roche s Limit 16 E
R E

M

a Rρ
ρ

 
= =  


⋅


’                (10) 

Equation (10) is applicable to Earth-Moon system where ρE and ρM are the 
mean densities of Earth and Moon and RE is the globe radius of the Earth. 

An astronomical body's Hill sphere is the region in which it dominates the at-
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traction of satellites. The outer shell of that region constitutes a zero-velocity 
surface. To be retained by a planet, a moon must have an orbit that lies within 
the planet’s Hill sphere. 

Hill Sphere defines the gravitational sphere of influence of the given astro-
nomical body and it shields the captured satellites from the perturbative action 
of the central massive primary namely Sun in our case. Calculation of the Hill 
Sphere referring to Figure 6: 

1 3

3H
ma a
M

 =  
 

                       (11) 

Equation (11) gives the Hill Radius of the Earth in presence of Sun and “a” is 
the semi-major axis of the Earth, m is mass of Earth and M is the mass of Sun. 

From Table 4, gravitational sphere of influence of Sun is 2.87ly = 181,501 AU. 
Hence Heliosphere extends up to 181,501 AU which is the extent of Oort’s 

cloud which lies from 50,000 AU to 100,000 AU. 
Gravitational extent of Earth is 0.01 AU = 1,496,280 Km. Moon Orbital Ra-

dius is 384,400 Km which is well within Earth’s Hill radius hence Moon is held 
captive by Earth. 

It is shown in Kokubo et al. (2000) [63] that: 

0.579 R E SE

H EARTH E

aR
a a

− −

−

= ×                    (12) 

For aE ~ aR, RE (physical size of Earth) becomes comparable to the Hill Sphere 
Radius of Earth. Under such circumstances Earth’s Hill Sphere is occupied by 
the physical size of Earth and Earth cannot accommodate a satellite. If there is a 
satellite then it will have to be studied in a framework of Circular Restricted 
Three-Body Problem (CRTBP) as given in Figure 6. 

For E Ra a , RE becomes insignificant as compared to Hill Sphere Radius of 
Earth hence Earth has a spacious Hill Sphere in which it can accommodate a sa-
tellite with high probability which it does as our Moon proves and Earth-Moon 
can be treated as 2-Body Problem. Hence CRTBP reduces to 2-Body Problem 
and perturbing effect of Sun on E-M system can be ignored. 

We derive the ratio (Planet globe radius/Hill radius of the Planet) and see if 
Hill Sphere of the Planet is spacious enough to capture and accommodate a natural  

 
Table 4. Calculation of hill radius of sun and P. centauri in sun-proxima centauri system and hill radius of earth in sun-earth sys-
tem. 

Celestial Body Mass (Kg) 
Orbital radius  

of the secondary 
Hill Radius 

Radius of the Gravitational Sphere of 
influence of the celestial object 

Sun 1.9930 4.37ly Of Sun w.r.t. P.Centauri is 2.87 ly 2.87 ly 

Proxima Centauri 2.44629 4.37ly Of P.Centauri w.r.t. Sun is 1.5 ly 1.5 ly 

Earth 5.973624 1AU 
Of Earth w.r.t. Sun 0.01 AU = 

1,496,280 Km 

Earth’s gravitational extent is 0.01 AU 
hence Moon is within Earth’s 

gravitational influence. 
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satellite. We carry this exercise for the terrestrial planets, Jupiter and satellites 
and tabulate them in Table 5 and Table 6. 

For the calculation of the ratio R1/R2, all the system parameters are given in 
Appendix I.From the Table 6 it is evident that parameter R1 = Planet Ra-
dius/Hill Radius is highly correlated with probability of natural satellite capture. 
Once satellite capture has taken place it qualifies for two-Body Problem analysis. 

Satellite capture implies that host has a spacious Hill sphere and once a satellite is 
hosted it is gravitationally shielded from the perturbative effect of Sun, Jupiter 

 
Table 5. Roche’s limit of the sun-planet system or planet-satellite system as the case may 
be, hill radius of the planet/satellite, planet/satellite globe radius. 

 
Roche’s limit  
(aR) × 106 Km 

Hill Radius × 106 Km aP (×106Km) Rp (Km) 

Sun-Mercury 1.11809 220,559 Km 57.9 2448.5 

Sun-Venus 1.13102 1.01099 108.2 6052 

Sun-Earth 1.11218 1.496 149.6 6378 

Sun-Mars 1.24477 982,465 Km 206.6 3396 

Sun-Jupiter 1.78847 53.1397 778.57 71,492 

Earth-Moon 18,973.8 Km Of Moon-61,403.4 Km 384,400 Km 1737.5 

Mars-Phobos 10,905 Km Of Phobos-165,574 Km 9378 Km 11 

Mars-Deimos 11,209 Km Of Deimos-2,524,142 Km 23,459 Km 6.892 

Sun-P.Centauri  Of P.Centauri-94,861 AU 4.37 ly 100,900 

Sun-P.Centauri  Of Sun-181,501 AU 4.37 ly 695,700 

 
Table 6. (Planet Radius/Hill Radius) ratio = R1 and (aR(Sun-Planet)/aP) ratio = R2, R1/R2 
and comment on Planet’s acceptability of natural satellite or on satellite’s acceptability of 
a sub-satellite. 

 R1 R2 R1/R2 Comment 

Sun-Mercury 0.01 0.0193 0.5181 
Mercury can accept satellites 

with low probability 

Sun-Venus 5.9862 × 10−3 0.01045 0.5728 
Venus can accept satellites 

with low probability 

Sun-Earth 4.26 × 10−3 7.434 × 10−3 0.57 Earth has a satellite 

Sun-Mars 3.4566 × 10−3 6.025 × 10−3 0.5737 Mars has two satellites 

Sun-Jupiter 1.345 × 10−3 2.297 × 10−3 0.5855 
Much higher probability of satellites 

It has 67 natural satellites 

Earth-Moon 0.0283 0.04936 0.5733 Moon cannot accept a sub-satellite 

Mars-Phobos 0.66 1.16 0.5689 
Phobos cannot accept 

sub-satellite 

Mars-Deimos 0.2735 0.477815 0.5723 
Deimos cannot accept a 

sub-satellite 

https://doi.org/10.4236/ijaa.2024.141001


B. K. Sharma 
 

 

DOI: 10.4236/ijaa.2024.141001 14 International Journal of Astronomy and Astrophysics 
 

and Saturn. Once the shielding has taken place two-body problem analysis can 
be done. So in nutshell parameter R1 decides the approximation of TBP to 
2-body problem 

Ratio R1 comprehensively explains why Mercury and Venus lack a moon. The 
reason is simple. Mercury and Venus do not have a spacious enough Hill Sphere 
to capture and retain natural satellites. Ratio R1 must be less than 0.006 in order 
to qualify as a natural satellite host. 

4. Discussion 

This study has looked into three-body problems and its reduction to Circular- 
restricted-three-body problem. The derivation of Five Lagrange’s Points is a text 
book exercise in Circular Restricted Three-Body Problem (CRTBP). In case of 
Sun-Earth System we treat Sun-Earth-Test Particle as the CRTBP and in case of 
Earth-Moon System we consider Earth-Moon-Test Particle as CRTBP. 

Whenever the third body is deep in the Hill Sphere of the second body, the 
third body is gravitationally shielded due to the gravitational sphere of influence 
of the second primary from the gravitational perturbative effects of the most 
massive first primary then such three-body problems can be approximated as 
two-body problem containing the second primary and the secondary. This is the 
case with Sun-Earth-Moon as well as with Sun-Mars-Phobos. Hence these general 
three-body problems can be approximated as Earth-Moon and Mars-Phobos or 
Mars-Deimos two-body problem without any loss of generality or accuracy. 

This study has also established that in three-body problem whenever the Hill 
Sphere of the second primary is spacious enough that is (Second Primary Ra-
dius/Hill Radius) < 0.006, the second primary is receptive to a natural satellite. 
Mercury and Venus do not have a spacious enough Hill Sphere hence they do-
not host a natural satellite. 

There is a limit to the dimension of the captured body. It must be a much 
smaller body both dimensionally as well masswise. The qantitative limit is a sub-
ject of an independent study. 

5. Conclusion 

This paper gives the theoretical justification for treating S-E-M as E-M system 
and S-Mars-Phobos or S-Mars-Deimos as Mars-Phobos or Mars-Deimos 2-body 
problem. Just as we have electro-magnetic shielding (metallic shielding) of elec-
trical system and protection of electrical system from powerful electromagnetic 
waves in exactly the same manner the celestial bodies are protected from gravi-
tational perturbations by the Hill’s sphere. The Hill’s sphere acts as the gravita-
tional sphere of influence. Earth’s Hill’s sphere protects our Moon from gravita-
tional perturbations of much heavier bodies such as Sun, Jupiter and Saturn. 
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Appendix I.  
Fact Sheet of Earth-Moon: http://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html 

parameters Earth Moon 

Mass (Kg) 5.9726 × 1024 0.07342 × 1024 

GM (Km3/s2) 0.3986 × 106 0.0049 × 106 

Volumetric Mean Radius 
Or Median Radius (×103 m) 

6371 1737 

Flattening(ellipticity) 0.00335 0.0012 

Mean Density (Kg/m3) 5514 3344 

Moment of Inertia (I/(MR2)) 0.33086 0.394 

Sidereal Spin period 23.9344 h 27.322d 

Sidereal Orbital period (d) - 655.7208 h (27.3217d) 

a* (semi-major axis) (×108 m) - 3.84400 

Lunar Orbit eccentricity - 0.0549 

Lunar Orbital inclination w.r.t. Ecliptic - 5.145 degrees 

( )B G M m= +  (m3/2/s)  2.00873 × 107 

*Mean Orbital Distance from the center of Earth. 
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