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Abstract 
The present paper studies the use of genetic algorithm to optimize the tuning 
of the Proportional, Integral and Derivative (PID) controller. Two control cri-
teria were considered, the integral of the time multiplied by the absolute error 
(ITAE), and the integral of the time multiplied by the absolute output (ITAY). 
The time variant plant tested is a first-order plant with time delay. We aim at 
a real time implementation inside a digital board, so, the previous continuous 
approach was discretized and tested; the corresponding control algorithm is 
presented in this paper. The genetic algorithms and the PID controller are ex-
ecuted using the soft processor NIOS II in the Field Programmable Gate Ar-
ray (FPGA). The computational results show the robustness and versatility of 
this technology. 
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1. Introduction and Related Works 

Despite the PID controllers being used a long time ago, nowadays, these simple 
controllers are still one of the most common solutions to practical control prob-
lems. The popularity of this controller comes from its simple structure, only 
three terms to tune, and robust performance over a wide range of operation 
conditions.  

In the beginning of the 20th century, when windmills and steam engines were 
the dominant technologies, controllers with proportional and integral action (PI) 
were used. The current form, PID controller, emerged in the 30s with the pneu-
matic controllers [1].  

The early 21st century has seen a renewed interest in research in PID control. 
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The book “PID Control in the Third Millennium” [2] provides an overview of 
the advances in this technology field. This publication is of interest both for 
academics requiring a reference for the current state of PID research or industri-
al practitioners and manufacturers of control systems with application to prob-
lems with PID, which can find on this book a practical source of appropriate and 
advanced solutions. 

Due to its universal and multipurpose use, several states of the arts have been 
written; in 2016, a very complete overview and analysis of patents, software, and 
hardware for PID control were published [3].  

Over the years, the great popularity of PID controllers has led to the develop-
ment of several tuning methods, which are simultaneously simple to use and fast 
to run. Due to changes on operation conditions and plant components aging, 
tuning a controller is a dynamic procedure, this means that any control loop needs, 
in general, to be returned during its normal running.  

Since 1942 with the establishment of empirical tuning rules by Ziegler and 
Nichols [4] until now, people coming from academia as the industrial field 
have dedicated a significant effort in developing a huge range of PID tuning 
technics.  

In 2008 it was presented by Kocijan an accurate survey of the methods for PID 
auto-tuning was proposed as patents [5]. According to this survey, the main groups 
for the patents are relay tuning, multiple controllers for nonlinear processes, me-
thods and systems based on model-based tuning with non-parametric and para-
metric models. We realize that the majority of PID control approaches are either 
characterized by the use of semi-empirical rules or derived from model-based 
methods employing low-order data-based models [6]. We can conclude that strong 
guarantees on the real system are difficult to obtain, so only suitable tuning for 
the application at hand is provided where a generalization is a difficult task. To 
overcome these problems, the researchers have investigated data-based control-
ler tuning techniques to design suitable feedback controllers directly from data 
without the need to identify a system model. Based on this new paradigm, sever-
al methods have been developed since the early 21st century, such as the Virtual 
Reference Feedback Tuning VRFT method [7] [8] [9] and the Correlation-based 
Tuning method [10]. 

Artificial intelligence has played an increasing role in the control systems lead-
ing to intelligent control since the beginning of 21st century. According to this 
approach, classical control algorithms can be combined with soft computing tech-
niques as artificial neural networks, genetic algorithms [11], or fuzzy logic. How-
ever, some drawbacks are founded by using these technologies. The artificial neur-
al networks suffer from the convergence time and the excessive length required 
for the training set, the fuzzy logic systems depend on the experience of the de-
signer in tuning the membership functions, and genetic algorithms could spend 
a hard computing effort if we deal with a big population or a complex objective 
function. 

https://doi.org/10.4236/iim.2022.145012


N. Rosa et al. 
 

 

DOI: 10.4236/iim.2022.145012 167 Intelligent Information Management 

 

One example of the solution obtained by joint use of different techniques can 
be found in [11], where neural networks trained off-line were used for supplying 
on-line PID parameters optimized for arbitrary control criteria. The NN was used 
in such an approach for modeling and the classical GA for optimization purposes. 
It was evident that GA requires a great computational effort which is incompati-
ble to run the control system in real-time. Classical optimization algorithms, based 
on gradient and aiming to minimize the objective function, often get trapped in 
the local minima. This can be overcome by stochastic algorithms like GA by 
combining GA with PID controller for auto-tuning optimization. This approach 
leads to an adaptive PID control which is widely used in applications for a huge 
range of practical problems. For instance, a multi-objective genetic algorithm, 
combined with the Taguchi method, was used for the optimum PID controller 
design applied to an automatic voltage regulator [12].  

Therefore, an improvement was performed [13] by using a multi-population 
genetic algorithm MPGA. According to this approach, three populations evolve 
separately following the evolutionary model of islands [14]; the individuals are 
hierarchically structured in trees inside each population. As expected, this ap-
proach [13] overcomes the former [11] in terms of optimizing GA efficiency, 
which is a relevant contribution to real-time implementation. There are several 
examples where MPGA was used successfully, such as [15], where a solution for 
the asymmetric traveling salesman problem was proposed. A similar MPGA ap-
proach is used in [16] to solve the Gene Ordering Problem. In [17] and [18], this 
kind of GA is used to solve planning problems for two independent production 
scenarios. 

The revision of the literature shows us that, no matter the approach applied, 
most PID controller design was implemented in software. This work uses the 
MPGA with NN to support the PID autotuning using the soft-processor NIOS II 
inside an FPGA board as a platform. This approach presents the advantage of the 
possibility of the designer of embedded systems defining a specific core inside the 
NIOS II for her/his specific needs [19]. The low power consumption when we use 
an FPGA board [20] compared to the PC power is indubitably another advantage. 
Despite MPGA running more efficiently in high-performance processors in-
stalled in a PC than in an FPGA board, the high demanded power required by a 
PC makes some applications using embedded systems unfeasible. Therefore, the 
current step of our research justifies this paper because previous tests performed 
in a MATLAB environment now are transposed and tested into digital hardware. 
A former approach of VRFT considers a stochastic setup where the involved 
processes are stationary and evolve in discrete time. This method was reformu-
lated to better fit into the framework of PID control design for industrial use 
[21], specifically, the signals are treated as deterministic in continuous time.  

During an adaptive control procedure, the system identification of problems 
is one of the main issues that should be considered. An adaptive PID controller 
should deal with systems linear or nonlinear, time-invariant or time-variant, in-
teger or fractional-order. This last kind of system is modeled by fractional diffe-

https://doi.org/10.4236/iim.2022.145012


N. Rosa et al. 
 

 

DOI: 10.4236/iim.2022.145012 168 Intelligent Information Management 

 

rential equations containing derivatives of non-integer order, which leads to a 
non-rational transfer function. Fractional-order model often provides a more re-
liable description for some dynamic processes when compared with integer-order 
models. The fractional-order models are particularly suitable for systems such as 
heating furnaces [22], flexible structures [23], and materials with memory and 
hereditary effects [24]. They are also suitable for some electrical circuit with pas-
sive elements named fractance [25] that implements a fractional-order behavior. 
This kind of electronic device is built into blocks for synthesizing fractional or-
der controllers, and it is characterized by impedance, ( ) ( )Z j j αω ω= ,  

1 1α− ≤ ≤ , which ω  is the angular frequency. A Titanium billet heating 
process was given in [26] to illustrate the identification and PID control of a de-
lay fractional-order system. In this example, the optimal PID controller was ob-
tained by minimizing the integral of time multiplied by absolute error (ITAE).  

The adaptive PID control to assist mobile robots has been widely used in many 
scenarios. In the field of agriculture and forestry, the use of adaptive PID control 
to regulate the trajectory of a spray robot inside a greenhouse was investigated in 
[27]. According to this approach, a parallel PID controller is used in a negative 
feedback control loop. The robot trajectory control is affected by many uncertain 
factors inside a greenhouse, and using an adaptive algorithm such as adaptive 
PID is compulsory. The experiments using an adaptive PID controller and GA in 
[27] achieve a slow response which could be a problem for emergency obstacle 
avoidance. Thus, a specific architecture implemented in hardware would accele-
rate the whole procedure and could overcome this problem. The work in [28] 
introduces PID controllers with C-Mantec algorithm, which is validated in can-
cer detection where satisfactory results are reported. The hardware viability of 
the method was also evaluated by synthesizing its code. 

As already mentioned, a multi-population genetic algorithm MPGA improved 
results for PID controller as reported in [13]. The MPGA employs a model of an 
island for evolving solutions that have been applied in different problems such as 
the asymmetric traveling salesman in [15], the Gene Ordering Problem in [16], 
and production planning problems in [17] and [18]. The performance of MPGA 
with individuals hierarchically structured in trees was also compared against 
other optimization methods in [29]. The authors report superior results using 
MPGA when finding solutions for benchmark multi-modal functions. Besides 
using an MPGA as an optimization technique, the present paper will advance by 
proposing algorithms to execute the PID control in real time, which means an 
adaptive control as described in [12] and [27].  

This paper has the following outline: the control loop and the tuning module 
are presented in section 2. Our system is implemented in FPGA. Thus, a discrete 
version is needed, so this section is devoted to the discretization of the plant and 
the controller, after that, the algorithm for FPGA implementation is deducted. 
Section 3 is devoted to GA, where two approaches are pointed out. In the first 
one, GA is combined with NN to estimate the fitness function; in the second ap-
proach, the GA estimates the fitness function without the need for NN. As ex-
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plained before, NN is used for modeling purposes, and the optimization tech-
nique adopted can use either these models to evaluate the fitness function (first 
approach), or directly the signals produced in runtime by the control loop (second 
approach). For both approaches, FPGA implementations are described. Section 
4 presents some computational results, first from MATLAB environment and af-
ter from the FPGA implementation. Section 5 points out some conclusions and 
suggestions for future work. 

2. PID Controller Tuning Problem 

The control architecture was detailed in [29], where only continuous time was 
considered, for convenience purposes such architecture is repeated (Figure 1). 

Where 

( ) 11c
i

PI s k
st

 
= + 

 
 and ( ) 1

,
1 10

d d
f

f

st t
D s t

st
+

= =
+

           (1) 

The PID auto-tuning consists of evaluating and delivering online accurate PID 
parameters optimized for control criteria. As shown in Figure 1, it should be 
considered a simple control loop (the block control system), in connection with 
the tuning block composed of the modeling and optimizer blocks, as explained 
in [29]. 

The same two objectives will be considered as in the previous approach: 
1) reference tracking, 
2) output disturbance rejection. 
These objectives are respectively achieved by minimizing: 
1) The integral of the time multiplied by the absolute error: ( ) dITAE t e t t= ∫ , 
( ) ( ) ( )e t y t r t= − , with a unit step as input ( ( ) 1R s s= ), 
2) The integral of the time multiplied by the absolute output y(t),  

( ) dITAY t y t t= ∫  with a null reference ( ( ) 0R s = ) and a unit step added to the 
G(s) output. 

 

 
Figure 1. Control system + tuning block. 
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2.1. The Plant 

The plant under test will be linear with time delay, represented by the transfer 
function G(s) modeling a continuous system. The exact expression for this trans-
fer function will be defined in section 3.3 where the control algorithm will be 
outlined. 

This approach is valid because most of the dynamic systems to be controlled 
are continuous, as described by the continuous transfer function of Laplace va-
riable s [30]. 

However, since the control will be performed by a digital processor, the inter-
face between the continuous and discrete domains should be taken into account. 
Thus, the plant G(s) together with both converters (the analog to digital (A/D), 
and the digital to analog (D/A)), is depicted in Figure 2. 

The current approach aims at the real time discrete control assisted by a pro-
cessor, and we should compute the discrete transfer function between the sam-
ples coming from the processor, [ ]u kT , and the samples picked up from the 
plant output by the A/D converter, [ ]y kT ; we will represent this transfer func-
tion by ( )dG z . The sampling time T was used for sampling procedure. 

The D/A converter is an electronic device called zero-order hold (ZOH) be-
cause it accepts a sample at a given instant, t kT= , let call it [ ]u kT , and holds 
its output constant until the next sample is sent at t kT T= + . According to this 
procedure, the D/A converter generates a continuous signal ( )x t  with a shape 
like a stair with steps wide equals to sampling time T. Therefore, the transfer 
function that we want evaluate, ( )dG z , is the z-transform of the signal [ ]y kT  
when the input [ ] [ ]u kT kTδ=  (the discrete delta Dirac impulse), so, we can 
compute ( )G z  following the next steps: 

1) Knowing the shape of [ ] [ ]u kT kTδ=  and the role of D/A we can define 
( )x t . 
2) Evaluation ( )X s  (the Laplace transform of ( )x t ). 
3) Evaluation ( ) ( ) ( )Y s X s G s= . 
4) ( )y t  is obtained by inverting the Laplace transform ( )Y s :  
( ) ( ){ }1y t Y s−= L .  
5) [ ]y kT  is obtained from the continuous signal ( )y t  for t kT= : 
[ ] ( ) t kT

y kT y t
=

=  
6) ( )dG z  is the z-transform of [ ]y kT : ( ) [ ]{ }dG z y kT= Z .  
Moreover, (see Figure 2) following the above steps, we can obtain [29] the 

discrete transfer function from the input [ ]u kT  to output [ ]y kT  by (2). 
 

 

Figure 2. The prototype sampled-data system. 
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( ) ( ) ( )11d

G s
G z z

s
−   = −  

  
Z                     (2) 

The symbol {}.Z  means that the Laplace transform (expression in variable s) 
should be inverted to the continuous time domain, after, it will be taken for 
t kT=  and finally evaluated its z-transform. 

As mentioned before, the plant under test should model a linear system with 
time delay; we rewrite G(s) as ( ) ( )e sG s H sλ−=  for practical reasons.  

Let us assume that time delay λ  is greater than the sampling time T: Tλ > . 
We define λ  in terms of T:  

lT mTλ = −                          (3) 

where l is the minimum number of T needed to transcend the time delay λ , so: 
( )l Ceil Tλ= , (Ceil round towards plus infinity). Thus, m is a fractional part of 

T, it can be evaluated after knowing l, λ  and T. Finally, we can deduct [29] 
from (2): 

( ) ( ) ( )11 el mTs
d

H s
G z z z

s
− −   = −  

  
Z                 (4) 

In spite of both expressions (2) and (4) be the same, the use of (4) is preferable 
when we deal with time delay systems, so, it will be adopted further. 

2.2. The PID Control 

The adopted control technique is the discrete equivalent of continuous control-
lers [31]. This is an indirect method: 
• We started with a continuous time design [29] (in this case a continuous PID 

controller) and then (actual work) we make a discretization because it should 
be implemented in a processor; this method of design is called emulation. 

Among the ways that we have to discretize the analog controller, we choose 
the numerical integration method. According to this technique, the integrals ob-
tained from the differential equations are approximated by differences, leading 
to differences equations, which are models of discrete systems. 

The approximation chosen was the bilinear transformation (also called trape-
zoidal integration or Tustin transformation) [31] within the numerical integra-
tions method. Therefore, it is proved [30] that, a continuous transfer function 
leads to a discrete equivalent transfer function by replacing the Laplace variable s 
according to (5). 

1

1

2 1
1

zs
T z

−

−

−
←

+
                           (5) 

Thus, using the emulation design explained before, the discrete PID controller 
is obtained from (1) using (5): 

( ) ( )2 2
2 2

i i
d c

i i

t T z t T
PI z k

t z t
+ − +

=
−

                   (6) 
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( ) ( )
( )
2 2

,
102 2

d d d
d f

f f

t T z t T t
D z t

t T z t T
+ − +

= =
+ − +

               (7) 

Now, we have all the blocks needed to establish the discrete version (see Fig-
ure 3) of the continuous control system presented in the bottom of Figure 1. 

In Figure 3 we locate the signals defined in the discrete time domain (k varia-
ble), which will be useful for the establishment of the algorithm. The discrete 
negative feedback control loop together with the z transform (6), (7), and G(z), 
will be used to define the algorithm which was implemented on the processor. 
This procedure will be detailed in the next section. Note that for simplicity pur-
poses the d sub-index for the discrete transfer function (4) (6) and (7) will be 
suppressed in the following. 

2.3. The Discrete Control Loop Algorithm 

The algorithm to be implemented in the processor should take into account the 
kind of plant that we will use. In the sequence of [29], the continuous plant will 
be a first-order plant with a time delay, FOPDT (8). 

( ) e s

G s
s a

λ−

=
+

                         (8) 

In the previous approach [29], we considered a time-invariant plant  
( 1, 1a λ= = ), now we extend the work to accommodate small changes for the 
polo location a, simulating a time-variant plant. Thus, taking into account the 
time delay λ  decomposed according to (3) and the sampled-data system 
(Figure 2); the continuous plant (8) leads to a discrete transfer function (9). 

( ) ( )
1

1 e
, e

e

aT
amT

d l aT l

z
G z

az a z
α α

α
−

−
+ −

− − +
= =

−
               (9) 

Now, we have all the transfer functions (6), (7), and (9) for the discrete ver-
sion of the continuous control system (Figure 3), so, we can establish different 
equations for the signals [ ]u k , [ ]y k  and [ ]m k . Thus, using (6), (9) and (7) 
we have (10), (11) and (12) respectively. 

[ ] [ ] [ ] [ ]2 2
1 1

2 2
i i

c c
i i

t T T t
u k u k k e k k e k

t t
+ −

= − + + −           (10) 

[ ] [ ] [ ] ( )1 ee 1 1
aT

aTy k y k u k l u k l
a a
α α −

− − −
= − + − + − +          (11) 

[ ] [ ] [ ] [ ]
2 2 2

1 1
2 2 2

f d d

f f f

t T t T T t
m k m k y k y k

t T t T t T
− + −

= − + + −
+ + +

        (12) 

Based on these deference equations we can deduct the discrete close loop al-
gorithm. 

In spite of this algorithm is implemented into a processor, it was before vali-
dated with a Simulink model which is the discrete counterpart of the continuous 
system presented in [29].  
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Figure 3. The discrete version of the continuous control system. 
 

Algorithm 1. Discrete close loop algorithm. 

1. Initialize: 
2. Time Delay 
3. Sampling Time 
4. number Of Points 
5. l ← Time Delay/Sampling Time 
6. frac_m % is m according expression (3) 
7. frac_m← l – Time Delay/Sampling Time 
8. frac_m SamplingTimee aα − × ×←  
9. [ ]0 0m ←  

10. For cont← 1 to number Of Points – 1 
11. k← cont+1 
12. ( ) ( )1e k m k← −  

13. If 2k =  then 

14. [ ] [ ]2
2
i

c
i

t Tu k k e k
t
+

=  % expression (10) 

15. else 

16. [ ] [ ] [ ] [ ]2 21 1
2 2
i i

c c
i i

t T T tu k u k k e k k e k
t t
+ −

= − + + −  % expression (10) 

17. End if 
18. % expression (11) 
19. If 2k =  then 
20. [ ] 0y k =  

21. Else if 2k ≥  and k l≤  
22. [ ] [ ]e 1aTy k y k−= −  

23. Else 

24. [ ] [ ] [ ] [ ]1 ee 1 1
aT

aTy k y k u k l u k l
a a
α α −

− − −
= − + − − + −  

25. End if 
26. % expression (12) 
27. If 2k =  then 

28. [ ] [ ]2
2

d

f

t Tm k y k
t T
+

=
+

 

29. Else 

30. [ ] [ ] [ ] [ ]
2 2 21 1
2 2 2

f d d

f f f

t T t T T tm k m k y k y k
t T t T t T
− + −

= − + + −
+ + +

 

31. End If 
32. [ ] [ ]1m k m k+ =  

33. End For 
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3. Proposed Methods 

A Multi-Population Genetic Algorithm (MPGA) is applied to solve the tuning 
problem approached. Algorithm 2 has the pseudocode of the MPGA. 

 
Algorithm 2. Multi-Population genetic algorithm. 

1. Repeat 

2.    for i ← 1 to nPop do 

3.   initialize(pop(i)); 

4.   evaluate (pop(i)); 

5.   structure(pop(i)); 

6. repeat 

7.    for j ← 1 to crossRate*popSize do 

8.   (ind1,ind2) ← selectedParents(pop(i)); 

9.   newInd ← crossover(ind1,ind2); 

10.    if λ • mutatioRate then 

11.   newInd ← mutation(newInd); 

12.   evaluate(newInd); 

13.   insert(newInd, pop(i)); 

14.    end for 

15.   structure (pop(i)); 

16.    until convergence(pop(i)); 

17.   executeMigration(pop(i),pop(i+1)); 

18.    until stopCriterion; 

 
The individuals used by MPGA are PID parameters in the context presented 

on section 3. Thus, each individual i is encoded as [ ]i c i dind k t t=  and, the 
full amount of individuals will be distributed by a total of nPop populations 
which be used on MPGA running. The populations are initialized through lines 
2-5 in Algorithm 1. First, the procedure initialize() in line 3 generates the indi-
viduals of each population from random values uniformly distributed such that 

[ ], , ,c i dk t t Min Max∈ . Next, the fitness of each individual is calculated by eva-
luate() function in line 4. The fitness function follows Equation (13): 

( ) ( ) ( )1 2_ , , _ , ,c i d c i d c i dFitness k t t w F ITAE k t t w F ITAY k t t= + ,     (13) 

where 1w  and 2w  are weights and functions F_ITAE() and F_ITAY() return 
the ITAE and ITAY values, respectively. Finally, the individuals on each popula-
tion are hierarchically structured in trees from structure() by line 5. Figure 4 
illustrates a population where the individuals are hierarchically structured in 
trees. 

The individuals are represented as nodes with their fitness values as shown by 
Figure 4 for a minimization problem. The ternary tree structure is employed since 
each node presents degree three, except by the leaves nodes. The three degree is  
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Figure 4. Population hierarchically structured in ternary tree. 
 

defined based on empirical tests and previous results applying the MPGA in 
other problems as reported in [15] [16] [17] [18]. The procedure structure() will 
dispose of individuals hierarchically based on their fitness values. In this case, 
the better individuals will be placed as a parent node (cluster leader) with three 
supporter nodes within each cluster. Thus, the structure() arranges individuals 
keeping cluster leaders with better fitness value than their followers. In the whole 
population, the best individual found so far will be at the root node of such a 
hierarchical tree. 

The evolving process happens from lines 6 to 16 in Algorithm 1. A total of 
crossRate*popSize new individuals are generated at each iteration (line 7). In 
this process, crossRate is the rate of individuals to be generated from popSize by 
applying crossover and mutation operators. The selectedParents() procedure se-
lects two parents by choosing randomly a cluster leader and taking one of its 
followers in line 8. Next, three crossover operators are employed: arithmetic [4], 
geometrical [4] e blend [2]. For each pair of parents, one of these three crossover 
operators is randomly selected to be applied over the two parents in line 9, ge-
nerating only one new individual. If the mutation rate is satisfied, the new indi-
vidual is changed by mutate() procedure, which also selects randomly three possi-
ble mutation types (lines 10 and 11). All the mutation operators begin by choos-
ing randomly one parameter of the individual. The first mutation replaces this 
parameter with another one randomly taken from [Min, Max]. The second mu-
tation replaces by Min or Max value allowed for this parameter. The third muta-
tion changes the parameter value following equation (14). 

new Value max Value min Value old Value= + −           (14) 

The new individual can be inserted into the population based on procedure 
insert() in line 13. If the new individual is better than one of their parents, it 
replaces the worst parent in the hierarchical tree. After the generation of cros-
sRate*popSize individuals, the inserted individuals are hierarchically disposed in 
the population by structure() in line 15. If none of the crossRate*popSize new 
individuals is inserted through lines 7 - 14, a population convergence is assumed 
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and a migration() operator takes place in line 17. This operator sends the best 
individual from the current population pop(i) to the next one pop(i+1). The 
current population is reinitialized before the steps on lines 6-16, but the re-in- 
itialization procedure keeps its best individual, and the migrated one. All steps 
described are repeated until the stop criterion has been reached in line 18. 

The MPGA previously described was coded using as the main tool the NIOS 
II processor embedded in FPGA. The hardware employed was the development 
kit DE2-70 from Altera-Cyclone II-EP2C70F896C6N-100 MHz, [31] whose fea-
tures supported two core architectures. The schematic of the hardware is shown 
in Figure 5. 

There is a control algorithm that updates the control parameters of PID and it 
is executed in the first processor, while a second algorithm triggers the MPGA to 
run in the second processor of Figure 5. In order to have the interaction of the 
MPGA with the PID controller algorithm, a shared region is demanded from 
which the MPGA sends [ ]c i dk t t  parameters for the controller tuning algo-
rithm. Two solution approaches are introduced to manage the interactions be-
tween MPGA and the controller algorithm as explained in the next subsections. 

3.1. Approach 1 

The approach 1 combines MPGA with an artificial neural network (ANN) that is 
applied to estimate fitness values. This is done by taking the PID parameters en-
coded in each individual of MPGA and propagating them through the ANN. 
The authors in [11] evaluated several types of ANN, where a Multi-Layer Per-
ceptrons (MLP) with a sigmoid activation function was chosen. Two MLP with 
the same topology (Figure 6) were trained off-line for mapping PID parameters 
into F_ITAE() and F_ITAY(), respectively. 
 

 

Figure 5. Hardware schematic—Nios II Multicore. 
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Figure 6. MLP for F_ITAX(kc, ti, td) estimation. 
 

Experiments were previously conducted to look for the best generalization per-
formance for MLP-ANN, which was reached by two hidden layers MLP with 9 
and 5 neurons in the 1st and 2nd hidden layers, respectively. Details about the ex-
periments to define the best topology are reported in [11]. The MPGA in this 
first approach uses the previously trained ANNs to estimate values for F_ITAE() 
and F_ITAY() terms in the fitness function (see Equation (13)). Thus, for each 
individual, its encoding (kc, ti, td) is propagated as input through the ANNs to 
find values for F_ITAE() and F_ITAY().  

It could be too risky to initialize the PID control following the system pro-
posed in Figure 5, without a feasible adjustment of values for parameters (kc, ti, 
td). The values for such control parameters could be first estimated and opti-
mized next, avoiding an infeasible initial adjustment that damages the system to 
be controlled. Following this idea, the initial parameter adjust, represented as 

( )0 0 0 0, ,c i dind ind k t t= , is set and its F_ITAE() and F_ITAY() values define the in-
itial fitness value. At this point, MPGA will be in charge to evolve new parameter 
controls (individuals) able to improve this initial system configuration. There is 
a communication between MPGA and PID controller algorithm that allows up-
dating the parameter values when the best individual is returned by MPGA. Fig-
ure 7 shows how the data is sent during the communication between the two 
processes running in our approach, and Algorithm 2 and Algorithm 3 have the 
related pseudocode. 

In Algorithm 3, the routines (Mutex) controlling the resource accesses are 
first initialized, and the core running the controller algorithm (core 1) keeps 
waiting for the first individual sent by MPGA to begin the controller algorithm. 
This first individual is ( )0 0 0 0, ,c i dind k t t=  which has the initial and feasible set of 
parameters. The core running MPGA executes the routine ga_first_lock () in 
Algorithm 4 that assures the first access to the Mutex for the MPGA. Next, the 
evolution process happens at core 2, aiming to find a better individual to replace 
the current one (ind0). This is done by execute(MPGA) routine, which triggers 
the MPGA and updates the best individual found until the stop_criterion has 
been satisfied. 
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Figure 7. Shared information scheme—Approach 1.  
 

Algorithm 3. Controlador PID—M1. 

1. mutex_initialize(); 

2. if(mutex)then 

3.    waiting_start_flag(); 

4.    update(); 

5.    while(stop_criterion)do 

6.   communication(); 

7.   PID(); 

8.    end while 

9.    while(period_end≠0)do 

10.   PID(); 

11.    end while 

12.    end if 

 
Algorithm 4. Algoritmo Genético—M1. 

1. mutex_initialize(); 

2. if(mutex)then 

3.    ga_first_lock(); 

4.    while(stop_criterion)do 

5.    sol.fitness← execute(MPGA) 

6.    if(sol→fitness < best.fitness) then 

7.   communication(); 

8.    end if 

9. end while 

10. end if 

 
The communication process occurs when MPGA finds a better individual 

(best_individual). First, core 2 stores data related to best_individual in the 
shared memory region, and the flags variables are updated. These variables in-
dicate the individual availability for core 1. On the other hand, since an update is 
detected by core 1, the new parameter values are set by the PID controller algo-
rithm.  
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However, as mentioned, the best individual returned by MPGA in Approach 1 
was found by a fitness function that applies an MLP-ANN to estimate ITAY and 
ITAE. This best individual can have a lower fitness value when controlling the 
system for real or it can even be infeasible in the worst case. Thus, the parame-
ters provided by the new individual are evaluated for a short period (period_end) 
in Algorithm 3. During this short period, the fitness value of the best individual 
sent by Algorithm 4 is recalculated based on the real control of the system. If 
the recalculated fitness is better than the current one, the parameters given by 
the best individual become the current one in core 1. Otherwise, the previous 
parameters are kept. Also, this short period of evaluation is enough to avoid an 
infeasible individual damaging the system under control. 

3.2. Approach 2 

The approach 2 does not apply MLP-ANN to estimate fitness values. The me-
thod uses the control loop to evaluate all individuals needed by MPGA. The main 
advantage of this approach is to avoid the designing and training of ANN, which 
demands a previous database of the system under control for training and vali-
dation. Another advantage is a better evaluation of the individual since its para-
meters are effectively used to control the system. However, this approach leads 
to the main advantage once infeasible individuals can damage the system. In this 
case, it is necessary to find the trade-off between enough time controlling the 
system to evaluate the individual properly and enough time to avoid any damage 
to the system.  

In our experiments, we set one wave cycle from the input signal [ ]r k  as the 
time to evaluate the parameters sent by MPGA for both Approach 1 and 2. An 
initial feasible individual is also set in approach 2 as done for approach 1. How-
ever, a saving factor measure is defined to avoid any instability in the system that 
could compromise its functioning. The saving_factor works with upper and bound 
response limits of the system for signal [ ]y k . If the system’s output is greater 
than the saving factor, the current set of parameters is replaced by the stable one 
in use by the controller algorithm. Figure 8 gives an example where the saving 
factor was useful. The square wave [ ]r k  in blue is superimposed with output 
[ ]y k . 
The saving factor is set to be activated when the difference (max_diff) between 

signals [ ]y k  and [ ]r k  is greater than 2. Figure 8 reveals instability between 
0.2 s and 0.25 s, so the saving factor was activated, leading the control algorithm 
to replace the unstable parameters with feasible ones, aiming to recover the sys-
tem control, as we can see by the evolution of [ ]y k  after 0.25 s.  

Figure 9 shows the communications process employed by Approach 2. 
It is possible to observe that the first core now receives each individual to be 

evaluated and returns its fitness. The state machine representation of the MPGA 
in the second core illustrates the state changes, aiming at synchronizing with the 
first core. The second core stays within the inactive period due to the real-time  
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Figure 8. The violation of the saving factor.  
 

 

Figure 9. Shared information scheme—Approach 2. 
 

evaluation of the individual (waiting PID). When the first core sends back the 
evaluated individual to the shared region (individual available), the second core 
wakes up to continue the evolving process. 

As explained in Approach 1, when the whole system starts, both cores execute 
the routines that control access to resources (Mutex). The first core is still re-
sponsible for the controller algorithm (core 1) and it waits for the first individual 
to be sent by core 2. The second core is responsible for the optimization step and 
it performs the routines that guarantee it to be the first one to access the Mutex 
(ga_first_lock ()). 

The feasible and first individual (ind0) is sent to the first core, and this core 
initializes the system control process (running_PID). The half cycle of the refer-
ence signal [ ]r k  is set as the evaluation period for each individual. If the time 
spent in the evaluation of an individual by MPGA is greater than half of the pe-
riod, the individual loses the excitation to the step corresponding to him, and the 
configuration used in this period is replaced by the best individual saved by the 
condition of rescue. Thus, in order to take advantage of the whole wave, shortly 
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before the wave change, it was established that the best configuration takes con-
trol of the system. The period in which the individual is actually evaluated (pe-
riod_SEND) is smaller than the evaluation period (period_EVAL). The remain-
ing period is used to calculate and send the fitness of the current individual to 
the MPGA. If the remaining period is too long, there is a loss in the reliability of 
the fitness found since it is given a reduced time for the evaluation of the indi-
vidual. On the other hand, if the period is short, the actions prior to the wave 
shift may not be performed. Figure 10 illustrates the time periods mentioned 
and Algorithm 5 and Algorithm 6 give the pseudo codes implemented in both 
cores for approach 2.  

It should be emphasized that this approach associates the fitness value after 
the execution of the PID control in real time. More, in the pseudocode of the 
MPGA, the routines responsible for sending and receiving the fitness do not 
present restriction to the communication as in the approach 1. 

 

 

Figure 10. The send and evaluation time period in Approach 2. 
 

Algorithm 5. PID Controller—Approach 2. 

1. mutex_initialize(); 

2. if(mutex)then 

3.    waiting_start_flag(); 

4.    while(stop_criterion)do 

5.   communication(fitness); 

6.   fitness = PID(); 

7.    end while 

8. end if 
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Algorithm 6. Optimization—Approach 2. 

1. mutex_initialize(); 

2. if(mutex)then 

3. ga_first_lock(); 

4. while(stop_criterion)do 

5.    for i ← 1 to nPop do 

6.    initialize(pop(i)); 

7.    for j ← 1 to nIndividuals do 

8.   send_individual(indj); 

9.   receive_individual(indj); 

10.    structure(pop(i)); 

11.    repeat 

12.    for j ← 1 to crossRate*popSize do 

13.    (ind1,ind2)←selectedParents(pop(i)); 

14.    newInd ← crossover(ind1,ind2); 

15.    if λ • mutatioRate then 

16.   newInd ← mutation(newInd); 

17.   send_individual(newInd); 

18.   receive_individual(newInd); 

19.   insert(newInd, pop(i)); 

20.    end for 

21.    structure (pop(i)); 

22.    until convergence(pop(i)); 

23.    executeMigration(pop(i),pop(i+1)); 

24. end while 

25. end if 

4. Computational Results 

In spite of last results were obtained from FPGA board [31], a MATLAB/SI- 
MULINK [32] simulator was developed aiming to validate the corresponding 
algorithms. Therefore, preliminary results obtained from MATLAB/SIMULINK 
simulator are presented in subsection 5.1, and subsequent results obtained from 
FPGA board are presented in subsection 5.2.  

4.1. Results from MATLAB/SIMULINK Simulator 

The control loop represented in Figure 3 is modeled by the systems implemented 
in MATLAB/SIMULINK as proposed in [29], these models were designed to 
evaluate the control criteria ITAE and ITAY.  

The first results provided by these models were useful to evaluate the control 
criteria ITAE and ITAY, which validate the algorithm implemented in FPGA 
displayed in Table 1.  
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Table 1. Performance of the discrete equivalent system when the controller is tuned by the 
optimal values obtained in continuous time. 

 PID Continuous Discrete Δ(%) 

ITAE 

0.749 

1.658 1.783 7.5 0.963 

0.434 

ITAY 

0.664 

1.150 1.262 9.7 0.903 

0.479 

ITAE_ITAY 

0.714 

1.429 1.543 8.0 0.964 

0.424 

 
As referred before, our methodologies aim at testing the performance of the 

FPGA implementation when the optimization proceeds in real continuous time. 
Therefore, we use the former investigation where the minima were obtained in 
continuous time [13] (Figure 1), to evaluate the distortion introduced into the 
discrete equivalent system, Figure 3. In other words, the problem could be for-
mulated in the following terms: Let’s xm be the minimum found for the function 
f according to the approach [13] and fd the discrete equivalent of f, so, we will 
evaluate the deviation between ( )mf x  and ( )d mf x . According to the current 
approach, f is taken successively as control performance measures ITAE, ITAY 
with 0.5ITAE + 0.5ITAY as presented in section 3, and xm is the PIDm vector 
minimum evaluated for the corresponding functions. Finally, ( )d mf x  is the dis-
crete counterpart of the control performance measures, which is evaluated from 
the discrete loop presented in Figure 3 tuned by PIDm. 

The results obtained are displayed in Table 1; so, as reference values, we used 
the minima obtained by gradient method [13] for ITAE, ITAY and 0.5ITAE + 
0.5ITAY; the corresponding minimized (xm) are displayed in PID column and 
the correspondent minima for continuous time ( ( )mf x ) are shown in column 
Continuous.  

It should be noted that several values for sampling time T were tested, so, we 
concluded that the maximum value of T allows acceptable behavior using the 
emulation control technique is 0.1 sT = . Therefore, the column Discrete dis-
plays ( )d mf x ; finally, last column shows the difference in percentage between 
( )mf x  and ( )d mf x .  

4.2. Results from FPGA Board 

The current approach was tested using FPGA Stratix II: EP2S60F672C3 Altera 
kit [31].  

The preliminary tests performed into MATLAB/SIMULINK environment were 
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confirmed using FPGA board. Therefore, starting with sampling time 0.1 sT = , 
we aim at study the behavior of the optimization and tuning procedure when we 
enlarge T. To perform this, it was used a square wave as reference [ ]r k , and the 
output [ ]y k , the response was observed during 30 s simulation, the control cri-
terion to be optimized is ITAE and the MPGA was setup with the following pa-
rameters: 
• independent populations: 3 
• total individuals for each population: 7 
• Crossover: 100% 
• Mutation: 90% 

Several values of sampling time were tested; the most significant results are 
presented in this paper. For 0.1 sT = , we obtain the output displayed in Figure 
12 superimposed to the reference square wave. 

It is clear that at the beginning the tuning is poor due to a large overshoot and 
settling time, however, after about 10 s the optimization converges leading to an 
acceptable overshoot. 

Enlarging the sampling time we find an opposite behavior; for 0.25 ssT =  
the output is displayed in Figure 11. 

This graphic shows that 0.25 ssT =  is inadequate to this tuning because it 
leads to instability; despite this, the genetic algorithm was able to capture the 
tuning as demonstrated by the running after about 15 s. For this reason, in the 
FPGA implementation, it wasn’t used sampling time greater than 0.1 s.  

For both cases the procedure converges to  
[ ] [ ]0.581 0.942 0.108m c i dPID k t t= = . 

Due to the control criteria in use, ITAE and ITAY it is compulsory that half 
period of the square wave [ ]r k , be large enough to accommodate the settling 
time of the control system. If the square wave period is not large enough, the 
values obtained in real time for ITAE and ITAY are wrong and the correspond-
ing fitness evaluated online is also wrong. 

On the other hand, due to the fact that control parameters be evaluated online, 
the time disposed to do it is crucial. Therefore, we should avoid the next distur-
bance during the evaluation of the parameters; this can be reached by enlarging 
the square wave period. 

4.2.1. Settling Time Consequences 
It was set width between 5 s and 7 s for the test window. To show the influence 
of the frequency disturbance (square wave period, T) on the optimization pro-
cedure, we present Figure 12 for two opposite situations, 0.4 sT =  and  

0.2 sT = . 
According to Figure 12, the square wave transitions for 0.2 sT =  cuts the 

transient, consequently, the performance measures will be wrong evaluated. The 
fitness will be a mistake, the optimization procedure fails and the tuning will be 
wrong. 
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Figure 11. Square wave reference superimposed to the corresponding out-
put for 0.25 ssT = . 

 

 

Figure 12. Square wave reference [ ]r k  superimposed to the corresponding output [ ]y k  for distinct values of pe-

riod T. 

 
Several tests were performed for the system with a transfer function  

( ) e
1

s

G s
s

−

=
+

; it was used 0.1 ssT =  for sampling time. The controller was tuned 

for the optimal value of ITAE_ITAY evaluated by previously trained NN; in this 
case we obtained fitness 2.1611oF =  corresponding to the individual  

[ ]0.9467 1.4306 0.2540oPID = .  

The suitability of the T for fitness evaluation is reported in Table 2. 
The optimal online evaluated fitness for T large enough to extinct the transient 

is 2.1672, so, we can conclude that NN presents a relative error  
2.1672

100 0.28%
2.1672

oF
=

−
× . 

As expected, reducing T leads to a decreasing (and incorrect) value of the fit-
ness. In the 3rd column, we can see the relative error between the fitness eva-
luated for each T and the correct one evaluated numerically. Therefore, we can  
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Table 2. On-line fitness accuracy and square wave period. 

T(s) Fitness on-line Relative error (%) 

0.5612 2.1672 0.00 

0.2638 2.1672 0.00 

0.2203 2.1672 0.00 

0.1969 2.1671 0.01 

0.1853 2.1646 0.12 

0.1577 2.1340 1.54 

0.1411 2.0567 5.10 

0.1121 1.9992 7.75 

0.0750 1.3823 36.22 

 
conclude for the tested plant that it is needed square wave plateau greater than 
or equal to L = 0.19686/2 s for the fitness evaluated online has been considered 
correct. In fact, rows corresponding to values greater than or equal to L present a 
relative error negligible. 

So, if disturbances occur not faster than L s, the tuning methodology is accu-
rate. 

We also note that for every test the optimal individual,  

[ ]0.9467 1.4306 0.2540oPID = , was reached due to the fact that NN was prop-
erly trained. 

4.2.2. Influence of Sampling Time on the Computational Cost 
As referred before, the choice of sampling time Ts is crucial for the performance 
of the tuning. In a sequence of the tests performed before in MATLAB/SIMU- 
LINK and resumed in Table 2, now, it is important to evaluate the conse-
quences of the computational effort due to an accurate Ts into the tuning per-
formance. 

Using the same methodology as before, crescent values of Ts were used in 
FPGA and preliminary results showed that 0.1 ssT ≤  is compulsory to obtain 
stable systems. On the other hand, a more refined sampling requires a longer 
computational time, therefore, it is needed that square wave transition occurs lat-
er to ensure accurate tuning. In Table 3 we show some values of Ts used and the 
corresponding values of T needed for an accurate fitness.  

In the 4th column, we display the relative error between the fitness evaluated 
online and the true fitness numerically evaluated. In spite of the error decreasing 
when the Ts decrease, for all the stable examples, the relative error is negligible. 
It is important to note that shorter values of Ts requiring larger values of T to 
assure that online fitness are acceptable. In all the cases, the optimal  

[ ]0.9467 1.4306 0.2540oPID =  is reached. 
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Table 3. Square wave period needed for different values of sampling time. 

( )mssT  ( )msT  Fitness on-line Relative error (%) 

100 202.82 2.1671 2.04 

50 381.75 2.1429 0.90 

25 812.67 2.1310 0.33 

10 2009.67 2.1238 0.00 

4.2.3. Time-Variant System 
This methodology accommodates time-variant systems, this means that for the 

transfer function in use, ( ) e s

G s
s a

λ−

=
+

, two parameters can be changed, the pole 

a and time delay λ , therefore, the robustness of the tuning is exemplified by 
varying the pole around the test value: 1a = .  

Based on the results obtained in the previous section, we chose the less restric-
tive value of sampling time: 100 mssT = . The optimal individual  

[ ]0.9467 1.4306 0.2540oPID =  is constant for all the cases; however, if it is 
accurate for 1a = , it is not so accurate when we move the pole away. This is 
shown by results in Table 4, where, for each location of the pole, we evaluate the 
relative error between the fitness obtained on-line and the one obtained through 
NN. 

Looking at the examples from the previous table, we conclude that worse tun-
ings appear for 1st and last row because the pole is far from the location for 
which the NN was trained; despite this, we can point out the neighborhood 
[ ]0.75 1.25  where the tuning could be considered robust. 

To illustrate the distortion of the tuning, we present the response superim-
posed to the square wave input for the cases correspondent to the 1st and last 
row, Figure 13.  

The overshoot in the case where 0.25a =  and the undershoot for 2a =  
shows that the tuning is poor, moreover, the square wave period is not enough to 
extinct the transient regime. Thus, the fitness evaluated in both cases are wrong. 
On the other hand, for the pole 1.25a =  the response is best damped (see Fig-
ure 14). 

We can also observe (see Figure 16) that the half period of the square wave is 
greater than the settling time, so, the fitness evaluation online is correct. This 
behavior is contrary to what happens for 0.25a =  and 2a = , (see Figure 15). 

4.2.4. THE Tuning without a Model 
The need of a model when we deal with systems in real time was explained be-
fore, however, include it could be computationally hard and not always they are 
accurate. Therefore, testing the methodology without a model is important ei-
ther theoretically field or practical field. Several tests were performed and the 
square wave response is depicted in the following figure for the most relevant 
time windows. 
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Table 4. Relative error for a time-variant plant. 

a Fitness on-line NN fitness Relative error (%) 
0.25 16.8660 13.2697 27.10 
0.50 5.5468 5.7089 2.84 

0.75 2.9083 2.9083 0.00 

1.00 2.1671 2.1671 0.00 

1.25 3.1753 3.2800 3.19 

1.50 4.6706 5.0289 7.12 
1.75 6.1856 7.0028 11.67 

2.00 7.6669 9.1826 16.51 
 

 

Figure 13. Square wave reference [ ]r k  superimposed to the corresponding out-

put [ ]y k  for distinct pole locations. 

 

 

Figure 14. Square wave reference [ ]r k  superimposed to 

the corresponding output [ ]y k  for pole 1.25a = . 

 

 

Figure 15. Square wave response when the tuning is made without a model, 
[ ]26 32t∈ . 
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Figure 16. Square wave response when the tuning is made with a model. 

 
The system was initialized with PID parameters randomly chosen around the 

Ziegler and Nichols values; this procedure assures us of the stability of the con-
trol loop. Next, the genetic algorithm takes place and each individual generated 
tunes the controller. This procedure presents as a consequence of getting unsta-
ble solutions. To overcome this undesirable behavior, a security factor was im-
plemented as follows. The best individual is always memorized and if the securi-
ty factor detects an unstable behavior, the best individual is recalled and the sta-
bility is replaced. This situation is illustrated in Figure 15.  

The observation of this figure shows that an unstable individual appears in the 
interval [ ]27 28  s. However, due to the security factor, a stable situation is 
reached immediately and the system will remain stable for the subsequences in-
dividuals.  

The latter time window is also presented in Figure 16. Since the genetic algo-
rithm is a random process, it is expected that unstable individuals appear any-
where, in this case, it happens in the interval [ ]58 59  where once again the 
security factor avoids great damage. 

The observation of this example shows us that tuning performance was glo-
bally improved when we compare the behaver for [ ]26 32t∈  with  

[ ]58 61t∈ . 

5. Concluding Remarks  

This work presents a PID implementation in digital software and an optimized 
tuning assisted with MATLAB/SIMULINK simulator.  

Regarding the real time implementation, the inclusion of a plant model inside 
the tuning system could be very useful, so, a NN trained off-line for the conti-
nuous plant was used and the results demonstrate its usefulness.  

Before the hardware implementation, it is important to understand the beha-
vior of the equivalent discrete system when the PID controller was previously 
tuned for the correspondent continuous. The MATLAB/SIMULINK implemen-
tation shows that the distortion noted is small when the equivalent discrete is 
tuned by the parameters optimized for the continuous one. Thus, it is proof that 
the approach according to NN trained off-line in continuous time will be used 
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for tuning the controller online is feasible.  
The sampling time is an important parameter either for the stability of the 

discrete equivalent system or the computational effort in a real-time implemen-
tation. Therefore, the MATLAB/SIMULINK implementation is prepared to test 
several sampling time values and select the more convenient ones. These pre-
liminary tests were performed and the value obtained was considered for the 
next step, FPGA implementation. 

The FPGA implementation accommodates time-variant plants, so, for big 
changes in the plant, instability could appear. A security factor was implemented 
to prevent plant damage to overcome this undesirable behavior.  

Tests running in FPGA can confirm the ones performed in MATLAB/SIMU- 
LINK simulator and the extent of issues related to real-time online tuning. 

For now, the control criteria implemented are ITAE, ITAY, and the weighted 
sum of both, however, any control criterion could be accommodated according 
to our methodology.  

The time between square wave transitions is crucial for the accuracy of control 
criteria evaluated online, so, we can conclude this feature influences the robust-
ness of the tuning when the goal is dealing with time-variant plants. Therefore, 
an accurate online evaluation is compulsory either to a robust optimization or 
an adaption of the plant model. 

After testing the sampling time in terms of stability using MATLAB/SIMU- 
LINK simulator, it is important conclusions about how it influences the compu-
tational cost inside FPGA board. Therefore, we conclude that a shorter sampling 
time enlarges the computation time, limiting the rate of transitions of the square 
wave. In fact, it is undesirable that a disturbance occurs before the parameters 
evaluated from the previous one tune the controller. The balance between the 
square wave period and the system’s settling time is considered in our metho-
dology. 

Our tests for time-variant plants accommodate changes in the pole location, 
so, we can conclude about the dimension of the neighborhood centered into the 
pole where the tuning remains feasible. 

The usefulness of a model is obvious; however, the powerfulness of the genetic 
algorithms used demonstrates that automatic tuning without a model could be 
possible under certain conditions. 

Our current research explores the power of the tools developed in both envi-
ronments, MATLAB/SIMULINK simulator, and FPGA board.  

Now, knowing that our methodology accommodates time-variant plants, it is 
important to make a survey about the most representative transfer functions of 
industrial plants and construct a test database with them. After, a few models 
should be trained and evaluated for their validity over the transfer function da-
tabase. 

Our methodology accommodates several control criteria, so the tuning will be 
prepared for optimization of other criteria like overshoot, settling time, or rise 
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time; the methodology can accommodate multi-objective optimization. 
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