
Intelligent Control and Automation, 2023, 14, 19-35
https://www.scirp.org/journal/ica

ISSN Online: 2153-0661
ISSN Print: 2153-0653

DOI: 10.4236/ica.2023.142002 May 31, 2023 19 Intelligent Control and Automation

Maximizing the Efficiency of Automation
Solutions with Automation 360: Approaches
for Developing Subtasks and Retry Framework

Sai Madhur Potturu

Robotics Center of Excellence (CoE) Zoetis Inc., Parsippany, USA

Abstract
In this paper, I present a solution that explores the use of A360 subtasks as a
comparable concept to functions in programming. By leveraging subtasks as
reusable and maintainable functions, users can efficiently develop customized
high-quality automation solutions. Additionally, the paper introduces the re-
try framework, which allows for the automatic retrying of subtasks in the
event of system or unknown exceptions. This framework enhances efficiency
and reduces the manual effort required to retrigger bots. The A360 Subtask
and Retry Framework templates provide valuable assistance to both profes-
sional and citizen developers, improving code quality, maintainability, and
the overall efficiency and resiliency of automation solutions.

Keywords
Automation 360, Robotics Process Automation (RPA), Subtasks, Retry
Framework, Efficiency, Resiliency, Exception Handling, Reusability

1. Introduction

Automation Anywhere is a top player in the RPA and Intelligent automation
space [1] [2] [3]. A360 is Automation Anywhere’s cloud-based platform which
makes building automation solutions easy and reliable. It offers seamless inte-
grations with various tools and technologies to facilitate digital transformation.

A360 is a No-Code/Low-Code platform [4]. It allows users to develop auto-
mation solutions without any prior programming experience, making it an ac-
cessible platform for all skill levels [4]. While A360 does not have a native con-
cept of functions [5] [6], this article explores the potential of subtasks as a com-
parable concept to functions in programming.

How to cite this paper: Potturu, S.M.
(2023) Maximizing the Efficiency of Auto-
mation Solutions with Automation 360:
Approaches for Developing Subtasks and
Retry Framework. Intelligent Control and
Automation, 14, 19-35.
https://doi.org/10.4236/ica.2023.142002

Received: April 15, 2023
Accepted: May 28, 2023
Published: May 31, 2023

Copyright © 2023 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/ica
https://doi.org/10.4236/ica.2023.142002
https://www.scirp.org/
https://doi.org/10.4236/ica.2023.142002
http://creativecommons.org/licenses/by/4.0/

S. M. Potturu

DOI: 10.4236/ica.2023.142002 20 Intelligent Control and Automation

A Task Bot is an interface where a developer can access pre-defined and cus-
tom packages to develop a software robot. A Subtask is created by using a task
bot in Automation Anywhere.

In Automation Anywhere, a subtask is a smaller unit of work within an auto-
mation process or bot [7]. It represents a specific action that contributes to
achieving a task or objective, allowing for better organization and reusability.
The subtasks are self-contained modules that can be easily reused across mul-
tiple bots or scenarios. By breaking down complex processes into manageable
components, subtasks streamline bot development and improve automation ef-
ficiency [8].

This paper provides an in-depth explanation of different approaches for de-
veloping subtasks and retrying templates in A360. These methods can aid de-
velopers in creating high-quality and consistent code, while also assisting sup-
port teams in easily maintaining the code. Furthermore, these methods improve
the efficiency and resiliency of the automation solution. Additionally, this paper
will cover the retry framework, which can be leveraged to retry subtasks a de-
fined number of times or until the desired output is generated in the event of
system or unknown exceptions. This approach can enhance the bot’s efficiency
and reduce the manual support effort required to retrigger the bot.

2. Solution

The solution provided explains different aspects of task classification and me-
thods of writing subtasks in A360. The first part discusses the classification of
tasks into main tasks and subtasks, where main tasks integrate multiple subtasks
within a process or bot [9]. The second part focuses on three different methods
for writing subtasks: resilient subtasks, exception-bubbling subtasks, and retry
frameworks for resilient and exception-bubbling subtasks. Each method is de-
scribed with steps, scenarios, advantages, and suggested use. Resilient subtasks
handle exceptions within the subtask while exception-bubbling subtasks throw
exceptions to the caller/main task. Retry frameworks allow the retrying of sub-
tasks until the desired output is achieved, improving bot efficiency and reducing
manual support efforts.

2.1. Classification of Tasks

In A360 the tasks are classified primarily into a Main task and a Subtask.
• A Main task is a task that integrates all the Subtasks and is considered a

Process/Bot [9].
• A Subtask is typically a function that performs a specific piece of work with-

in the process.
For example, consider the scenario of an 'Inventory Reporting’ process where

a bot needs to download a report from SAP and sends it as an email attachment
to the manager every day at 9 AM.

This process can include two subtasks and one main task.

https://doi.org/10.4236/ica.2023.142002

S. M. Potturu

DOI: 10.4236/ica.2023.142002 21 Intelligent Control and Automation

Subtasks:
• Export Report: Download reports from SAP.
• Send Email: Send an email with an attachment to the manager.
Main Task:
• Inventory Report: Integrates the above Subtasks. This Main task will be

scheduled to run at 9 AM every day in the control room.
However, there is no difference in the interface or availability of com-

mands/packages in the Main Task or Subtask. It is just a classification depending
on their usage.

2.2. Different Methods of Writing Subtasks

The following section presents different approaches for writing a subtask and
integrating different types of subtasks within the retry framework.

2.2.1. Resilient Subtasks
Subtasks that can capture and act on the exceptions. (Figure 1)

1) Steps
• Begin by writing the code within a Try block [10] [11].
• If an exception occurs within the Try block, all subsequent code is skipped,

and the program moves to the Catch block [11] [12].
• The Catch block catches and handles any errors (e.g., logging the error, cap-

turing a screenshot, sending an email) [12].
• The “Finally” block can be utilized to perform any necessary actions after the

task, regardless of whether an exception has occurred [13].
2) Scenarios
The behavior of resilient subtasks is described in cases where errors occur and

in cases where errors do not occur within the subtask.

Figure 1. A360 Resilient task syntax.

https://doi.org/10.4236/ica.2023.142002

S. M. Potturu

DOI: 10.4236/ica.2023.142002 22 Intelligent Control and Automation

a) No Error:
The code in the try block is executed then the code in the “Finally” block is

executed [11] [13]. The catch block code will not be executed. (Figure 2)
b) Error:
When an error occurs in the try block [11], the code after the faulty code is

skipped, and the control jumps to the Catch block [12]. The Catch block cap-
tures the error and handles the exception. The “Finally” block code will be ex-
ecuted [13]. (Figure 3)

Figure 2. A360 Resilient task with no error syntax.

Figure 3. A360 Resilient task with no error syntax.

https://doi.org/10.4236/ica.2023.142002

S. M. Potturu

DOI: 10.4236/ica.2023.142002 23 Intelligent Control and Automation

3) Advantages
This approach makes the task independent and enables it to handle excep-

tions. The method can provide the caller task with exception information for
further validation and actions, allowing the caller to determine whether to con-
tinue or exit the process [13].

4) Suggested Use
Use this approach when subtasks are independent of each other within the

process/Main task. Each subtask receives specific inputs from the caller/main
task.

2.2.2. Exception Bubbling Subtasks
Subtask that captures and throws the exception to caller/main task. (Figure 4)

1) Steps
• Create a task with a Try-Catch-Finally block structure [10] [11] [12] [13].
• Write the code within the Try block.
• When an exception occurs within the Try block, the code below the faulty

code is skipped and the exception is caught by the Catch block.
• The catch block throws [14] the exception to the caller/main task for further

handling.
• Use the “Finally” block to perform actions at the end of the task, regardless

of whether an exception was encountered or not.
2) Scenarios
The behavior of Exception Bubbling subtasks is described in cases where er-

rors occur and in cases where errors do not occur within the subtask.
a) No Error:
The code in the Try block is executed then the code in the “Finally” block is

executed. The Catch block code will not be executed. (Figure 5)
b) Error:
The code in the Try block is executed. If an exception occurs at a faulty/error

line, the control jumps to the catch block, skipping the code after the faulty code.
The Catch block captures the error and throws the exception to the caller/main
task to handle. The “Finally” block code will be executed. (Figure 6)

3) Advantages

Figure 4. A360 Exception bubbling syntax.

https://doi.org/10.4236/ica.2023.142002

S. M. Potturu

DOI: 10.4236/ica.2023.142002 24 Intelligent Control and Automation

Figure 5. A360 Exception bubbling no error syntax.

Figure 6. A360 Exception bubbling error syntax.

This approach helps to avoid redundant lines of exception-handling code in

every subtask.
4) Suggested Use
This approach is suitable for cases where subtasks are interdependent, mean-

ing that they rely on each other's outputs. If subtask 1 fails, there is no need to
execute subtask 2 in the caller/Main task.

2.2.3. Retry Framework for Subtask—Resilient Task
The resilient task [15] can handle the exceptions and return task outputs to the
caller. When the retry task calls a resilient subtask, the subtask returns task sta-
tus and error message values as outputs. The retry task validates the subtask
outputs. If the subtask fails, the validation block throws an exception to the catch
block to capture error information and rerun the subtask a specified number of
times until it successfully completes the task. If the subtask runs successfully, the
retry framework task will end its execution and return control to the main task.
(Figure 7)

https://doi.org/10.4236/ica.2023.142002

S. M. Potturu

DOI: 10.4236/ica.2023.142002 25 Intelligent Control and Automation

Figure 7. A360 Retry Framework syntax—Resilient task.

1) Steps
• Create a “For loop” that executes for n times (where n is a configurable value

passed from the caller task).
• Create a Try-Catch-Finally block [10] [11] [12] [13].
• Call the subtask within the Try block.
• The retry framework task validates the subtask outputs.
• If an error occurs in the subtask, the validation block in the retry framework

task throws an exception to the catch block. The catch block captures the error,
notifies the relevant support group, closes/kills applications, and clears the ex-
ception.

• The subtask will be retried until it either reaches the maximum retry limit or
successfully completes the task.

2) Scenarios
The behavior of Retry framework is described in cases where errors occur and

in cases where errors do not occur in the resilient subtask.
a) No Error:
The “Finally” block will validate the output from the subtask and exit the retry

framework when the subtask runs successfully. (Figure 8)

https://doi.org/10.4236/ica.2023.142002

S. M. Potturu

DOI: 10.4236/ica.2023.142002 26 Intelligent Control and Automation

Figure 8. A360 Retry Framework no error syntax—Resilient task.

b) Error:
Catch block captures the error, notifies the relevant support group, closes/kills

applications, and clears the exception. The “Finally” block validates the subtask
outputs and reruns the subtask in the event of a system exception. (Figure 9)

3) Advantages
This method allows retry framework task to validate subtask outputs. If the

subtask fails, the retry framework runs the subtask multiple times until the de-
sired output is achieved. This method improves bot efficiency and reduces ma-
nual support effort to retrigger the process.

4) Suggested Use
This method is suitable for situations where the behavior of applications (web,

windows, etc.) is unpredictable, and sometimes killing/closing the applications
and relaunching them can fix any temporary issues/bugs and releases the system
resources. For example, loading web browsers or SAP windows, etc. [15].

2.2.4. Retry Framework for Subtask—Exception Bubbling Task
The Exception bubbling task [16] bubbles/throws the exceptions to the caller
task. When the retry framework calls an exception bubbling subtask, the subtask
either returns an exception or an output. If the subtask returns an exception, the
subtask is marked as failed and the control jumps to the catch block in the retry
framework task. The catch block will capture the error information and the sub-

https://doi.org/10.4236/ica.2023.142002

S. M. Potturu

DOI: 10.4236/ica.2023.142002 27 Intelligent Control and Automation

task is retriggered for a specified number of times until it successfully completes
the task. If the subtask runs successfully, the retry framework task will end its
execution and return control to the main task. (Figure 10)

1) Steps
• Create a “For loop” that executes for n times (where N is a configurable val-

ue passed from the caller task).
• Create a Try-Catch-Finally block [10] [11] [12] [13].
• Call the subtask within the Try block.
• If the subtask throws an exception, the control jumps to the catch block in

the retry framework task. The catch block captures the error, notifies the rele-
vant support group, closes/kills applications, and clears the exception.

• The subtask will be retried until it either reaches the maximum retry limit or
successfully completes the task.

2) Scenarios
The behavior of Retry framework is described in cases where errors occur and

in cases where errors do not occur in the exception bubbling subtask.
a) No Error:
The “Finally” block will validate the output from the subtask and exit the retry

framework when the subtask runs successfully. (Figure 11)

Figure 9. A360 Retry Framework error syntax—Resilient task.

https://doi.org/10.4236/ica.2023.142002

S. M. Potturu

DOI: 10.4236/ica.2023.142002 28 Intelligent Control and Automation

Figure 10. A360 Retry Framework syntax—Exception bubbling task.

Figure 11. A360 Retry Framework no error syntax—Exception bubbling task.

https://doi.org/10.4236/ica.2023.142002

S. M. Potturu

DOI: 10.4236/ica.2023.142002 29 Intelligent Control and Automation

b) Error:
Catch block captures the error, notifies the relevant support group, closes/kills

applications, and clears the exception. The “Finally” block validates the subtask
outputs and reruns the subtask in the event of a system exception. (Figure 12)

3) Advantages
This method allows the subtask to run multiple times until the desired output

is achieved; it improves bot efficiency and reduces manual support effort to re-
trigger the process.

4) Suggested Use
This method is suitable for situations where the behavior of applications (web,

windows, etc.) is unpredictable, and sometimes killing/closing the applications
and relaunching them can fix any temporary issues/bugs and releases the system
resources. For example, loading web browsers or SAP windows, etc.

3. Case Studies

The effectiveness and feasibility of the proposed solution are verified with the
following case studies.

3.1. Exception Bubbling Subtasks

Scenario: Automating data extraction and processing from a website.
Main Task: Extract Data from the website.

Figure 12. A360 Retry Framework error syntax—Exception bubbling task.

https://doi.org/10.4236/ica.2023.142002

S. M. Potturu

DOI: 10.4236/ica.2023.142002 30 Intelligent Control and Automation

Subtasks:
• Open website: Launches a website URL and login to the website.
• Extract Data: Extract relevant data from the website.
• Process Data: Process the extracted data.
In this scenario, the successful execution of each subtask depends on the per-

formance of the previous subtask integrated into the main task. If the “Extract
Data” subtask fails, the “Process Data” subtask cannot run, and if the “Open
Website” subtask fails, the “Extract Data” subtask cannot run either. Conse-
quently, it is unnecessary to proceed with the next task if the previous task has
failed. To handle this, each subtask will be implemented as an exception bub-
bling task, where the code is encapsulated within a Try-Catch-Finally block. If
an exception occurs, it will be thrown to the main task, allowing it to catch the
exception, notify the relevant support group, and terminate the execution of the
process.

Advantages
• The Exception Bubbling Subtasks approach avoids the need of developing

and executing redundant validation code in the subtask and main task. It greatly
improves the processing time of the automation.
• Exception information can be logged, captured, or used for further valida-

tion and actions in the main task.
• It improves the overall efficiency and resiliency of the automation solution.

3.2. Resilient Subtasks

Scenario: Automating data extraction and processing from a website for mul-
tiple transactions.

Main Task: Process Data for all transactions.
Subtasks:
• Open website: Launches a website URL and login to the website.
• Extract Data: Extract relevant data from the website.
• Process Data: Process the extracted data.
In this scenario, every transaction operates independently and follows the

same set of processing steps. If the “Open website” task encounters a failure, it
only affects the current transaction. This exception does not require stopping the
processing of other transactions. To handle this, each subtask will be imple-
mented as a resilient task, encapsulating the code within a Try-Catch-Finally
block. If an exception occurs, it will be caught and handled within the subtask,
allowing the main task to validate the exception from the subtask, mark the cur-
rent transaction as failed, skip it, and proceed with processing the next transac-
tion.

Advantages
• The implementation of Resilient Subtasks enables the main task to validate

the outputs of each subtask, thereby reducing the impact of exceptions on other

https://doi.org/10.4236/ica.2023.142002

S. M. Potturu

DOI: 10.4236/ica.2023.142002 31 Intelligent Control and Automation

transactions. This approach ensures that all transactions are processed effective-
ly.

• Exception information can be logged, captured, or used for further valida-
tion and actions in the subtask task.
• It improves the overall efficiency and resiliency of the automation solution.

3.3. Retry Framework

Scenario: Automating data extraction and processing from a website.
Main Task: Process Data from a website.
Subtasks:
1) Retry Framework for Open Website: Open Website subtask is integrated/

called in the retry framework task.
a) Open website: Launches a website URL and login to the website.
2) Retry Framework for Extract Data: Extract Data subtask is integrated/called

in the retry framework task.
a) Extract Data: Extract relevant data from the website.
3) Retry Framework for Process Data: Process Data subtask is integrated/

called in the retry framework task.
a) Process Data: Process the extracted data.
In this scenario, each subtask is coupled with a retry framework task that at-

tempts to execute the subtask a specified number of times until it succeeds. If the
“Open Website” task fails to launch a website due to browser or internet connec-
tivity issues, the retry framework acts by closing or terminating the browser ses-
sion. It then triggers the subtask again, enabling it to relaunch the website and
perform the necessary login. Similarly, if the “Extract Data” or “Process Data”
subtasks encounter difficulties in identifying an element within an application,
the retry framework task clears the application sessions. This allows the subtasks
to retry the extraction or processing of the data.

Advantages
• By incorporating a Retry Framework into the automation process, the over-

all resilience is enhanced, ensuring robust and error-proof execution. This frame-
work offers the capability to resolve temporary system bugs encountered during
the execution of high runtime processes, thus improving the reliability of the
automation solution.
• It improves the overall efficiency and resiliency of the automation solution.

4. Extensibility of the Solution

The extensibility of A360 subtasks allows for the development of diverse applica-
tion functionalities that can be reused across multiple automation processes.
A360 subtasks allow developers to quickly develop automation solutions by le-
veraging reusable assets and simplifying maintenance efforts. Below are some of
the application functions that can be built by using A360 subtasks [2] [15] [16].

https://doi.org/10.4236/ica.2023.142002

S. M. Potturu

DOI: 10.4236/ica.2023.142002 32 Intelligent Control and Automation

4.1. Web Applications

A360 subtasks can be extended to perform various web operations, such as web-
site login, data entry, and data extraction.

4.2. Windows Applications

A360 subtasks can be extended to handle a wide range of Windows operations,
including launching applications, managing files and folders, validating data,
performing data entry, and extracting information.

4.3. Database Systems

A360 subtasks can be extended to perform diverse database operations, such as
data validation, data extraction, and data synchronization.

4.4. Legacy Systems

A360 subtasks can be extended to execute various operations on legacy systems,
such as simulating mouse clicks, emulating keystrokes, and performing other
necessary functions.

4.5. API Integrations

A360 subtasks can be extended to execute various API operations across differ-
ent systems, including actions like GET, PUT, POST, DELETE, and other re-
quired functionalities for seamless integration.

5. Contribution and Innovation

The research work presented in the article introduces innovative methods and
frameworks to enhance the efficiency of automation solutions developed using
Automation 360. The main contributions and innovations of this research work
can be summarized as follows.

5.1. Introduction of A360 Subtasks as Comparable Concepts to
Functions in Programming

The article explores the potential of using subtasks in Automation 360 as reusa-
ble and maintainable tasks, like the concept of functions in programming. This
approach allows users, regardless of their programming experience, to efficiently
develop customized automation solutions. By leveraging subtasks, users can
create high-quality automation solutions that are easier to maintain and improve
overall code quality [4] [10] [11] [14].

5.2. Introduction of the Retry Framework

The article presents a retry framework that automatically retries subtasks in the
event of system or unknown exceptions. This framework enhances efficiency by
reducing the manual efforts required to retrigger bots and improving the resi-
liency of automation solutions. The retry framework allows for the repeated ex-

https://doi.org/10.4236/ica.2023.142002

S. M. Potturu

DOI: 10.4236/ica.2023.142002 33 Intelligent Control and Automation

ecution of subtasks until the desired output is achieved, thereby increasing the
chances of successful completion, and reducing the need for manual interven-
tion.

5.3. Assistance to Professional and Citizen Developers

The A360 Subtask and Retry Framework templates are designed to assist both
professional and citizen developers. These templates provide valuable resources
for developers of all skill levels to create reliable, reusable, and efficient automa-
tion solutions. By utilizing these templates, developers can streamline the devel-
opment process, ensure consistent code quality, and simplify maintenance and
support efforts.

Overall, the research work contributes to the field of automation solutions by
introducing innovative methods and frameworks that improve the efficiency, re-
siliency, and maintainability of automation solutions developed using Automa-
tion 360.

6. Advantages of the Solution

The proposed solution in the article offers several advantages in terms of per-
formance, efficiency, and other key aspects. These advantages include [15] [16].

6.1. Reusability and Maintainability

By using A360 subtasks as reusable and maintainable functions, developers can
create automation solutions more efficiently. Subtasks can be developed once
and reused in multiple processes or bots, reducing duplication of effort, and en-
hancing code maintainability. This approach improves development productivi-
ty and allows for consistent code implementation across different automation
projects.

6.2. Code Quality and Consistency

The use of subtasks as comparable concepts to functions in programming pro-
motes high-quality and consistent code development. Developers can define
specific tasks within subtasks, ensuring modular and well-structured code. This
approach improves code readability, reduces errors, and enhances overall code
quality.

6.3. Efficiency and Resiliency

The retry framework introduced in the paper improves the efficiency and resi-
liency of automation solutions. In the event of system or unknown exceptions,
the retry framework automatically retries subtasks until the desired output is
achieved. This framework ensures robust and error-proof execution of the au-
tomation solution by resolving temporary systems bugs encountered during the
execution of high runtime processes. This automation reduces the need for ma-
nual intervention and minimizes the effort required to retrigger bots, resulting

https://doi.org/10.4236/ica.2023.142002

S. M. Potturu

DOI: 10.4236/ica.2023.142002 34 Intelligent Control and Automation

in improved efficiency and resource utilization.

6.4. Error Handling and Exception Management

The solution provides effective error handling and exception management me-
chanisms. The resilient subtasks handle exceptions within the subtask and ex-
ception bubbling subtasks throw exceptions to the caller/main task. Both solu-
tions allow for better error tracking, logging, and notification. By capturing and
handling exceptions appropriately, the solution enhances the reliability and sta-
bility of automation processes.

7. Conclusion

The A360 Subtask and Retry Framework templates provide a valuable resource
for developers of all skill levels to create reliable, reusable, and efficient automa-
tion solutions. These templates not only ensure high-quality, consistent code but
also facilitate maintenance and support efforts. The Retry framework is a po-
werful tool that can enhance the efficiency and resiliency of bots by retrying
subtasks in the event of a system or unknown exception. This framework makes
automation solutions error-proof and reduces the need for manual intervention
for retriggering the automation process. Overall, utilizing these templates can
greatly improve the effectiveness of automation solutions and streamline devel-
opment processes.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this pa-
per.

References
[1] Automation Anywhere (n.d.) Automation 360. Automationanywhere.com.

https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-clo
ud/topics/security-architecture/cloud-automation-anywhere-enterprise-overview.ht
ml

[2] Mahey, H. (2020) Robotic Process Automation with Automation Anywhere: Tech-
niques to Fuel Business Productivity and Intelligent Automation Using RPA. Packt
Publishing Ltd., Birmingham.

[3] Anagnoste, S. (2017) Robotic Automation Process—The Next Major Revolution in
Terms of Back Office Operations Improvement. Proceedings of the International
Conference on Business Excellence, 11, 676-686.
https://doi.org/10.1515/picbe-2017-0072

[4] Automation Anywhere (n.d.) No-Code Is an Approach to Designing and Using
Applications That Doesn’t Require Any Coding or Knowledge of Programming
Languages. Automationanywhere.com.
https://www.automationanywhere.com/rpa/no-code-automation

[5] Make Use of (n.d.) What Is a Function in Programming? Makeuseof.com.
https://www.makeuseof.com/what-is-a-function-programming/

[6] Make Use of (n.d.) Why Programming Languages Can’t Exist without Functions.

https://doi.org/10.4236/ica.2023.142002
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-cloud/topics/security-architecture/cloud-automation-anywhere-enterprise-overview.html
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-cloud/topics/security-architecture/cloud-automation-anywhere-enterprise-overview.html
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-cloud/topics/security-architecture/cloud-automation-anywhere-enterprise-overview.html
https://doi.org/10.1515/picbe-2017-0072
https://www.automationanywhere.com/rpa/no-code-automation
https://www.makeuseof.com/what-is-a-function-programming/

S. M. Potturu

DOI: 10.4236/ica.2023.142002 35 Intelligent Control and Automation

Makeuseof.com.
https://www.makeuseof.com/tag/programming-languages-need-functions/?newslett
er_popup=1

[7] Automation Anywhere (n.d.) Building Reusable Bots. Automationanywhere.com.
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-clo
ud/topics/aae-client/bot-creator/developer-recommendations/cloud-build-reusable-
bots.html

[8] Automation Anywhere (n.d.) Managing Reusable Assets—Start Phase. Automatio-
nanywhere.com.
https://community.automationanywhere.com/developers-blog-85009/managing-reu
sable-assets-start-phase-85218

[9] Automation Anywhere (n.d.) Using the Run Action. Automationanywhere.com.
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-clo
ud/topics/aae-client/bot-creator/commands/using-the-run-action.html

[10] Automation Anywhere (n.d.) Error Handler Package. Automationanywhere.com.
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-clo
ud/topics/aae-client/bot-creator/commands/cloud-error-handling-command.html

[11] Automation Anywhere (n.d.) Try Action in Error Handler. Automationanywhere.com.
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-clo
ud/topics/aae-client/bot-creator/commands/error-handler-try.html

[12] Automation Anywhere (n.d.) Catch Action in Error Handler. Automationanyw-
here.com.
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-clo
ud/topics/aae-client/bot-creator/commands/error-handler-catch.html

[13] Automation Anywhere (n.d.) Finally Action in Error Handler. Automationanyw-
here.com.
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-clo
ud/topics/aae-client/bot-creator/commands/error-handler-finally.html

[14] Automation Anywhere (n.d.) Throw Action in Error Handler. Automationanyw-
here.com.
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-clo
ud/topics/aae-client/bot-creator/commands/error-handler-throw.html

[15] Worksoft (n.d.) Solving Bot Fragility with Change Resilient RPA. Worksoft.com.
https://www.worksoft.com/corporate-blog/solving-bot-fragility-with-change-resilie
nt-rpa

[16] DeepSource (n.d.) What Happens in the Absence of Exception Handling? Deep-
source.com.
https://deepsource.com/glossary/exception-handling#:~:text=If%20an%20exception
%20is%20thrown,unless%20a%20function%20handles%20it

https://doi.org/10.4236/ica.2023.142002
https://www.makeuseof.com/tag/programming-languages-need-functions/?newsletter_popup=1
https://www.makeuseof.com/tag/programming-languages-need-functions/?newsletter_popup=1
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-cloud/topics/aae-client/bot-creator/developer-recommendations/cloud-build-reusable-bots.html
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-cloud/topics/aae-client/bot-creator/developer-recommendations/cloud-build-reusable-bots.html
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-cloud/topics/aae-client/bot-creator/developer-recommendations/cloud-build-reusable-bots.html
https://community.automationanywhere.com/developers-blog-85009/managing-reusable-assets-start-phase-85218
https://community.automationanywhere.com/developers-blog-85009/managing-reusable-assets-start-phase-85218
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-cloud/topics/aae-client/bot-creator/commands/using-the-run-action.html
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-cloud/topics/aae-client/bot-creator/commands/using-the-run-action.html
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-cloud/topics/aae-client/bot-creator/commands/cloud-error-handling-command.html
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-cloud/topics/aae-client/bot-creator/commands/cloud-error-handling-command.html
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-cloud/topics/aae-client/bot-creator/commands/error-handler-try.html
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-cloud/topics/aae-client/bot-creator/commands/error-handler-try.html
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-cloud/topics/aae-client/bot-creator/commands/error-handler-catch.html
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-cloud/topics/aae-client/bot-creator/commands/error-handler-catch.html
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-cloud/topics/aae-client/bot-creator/commands/error-handler-finally.html
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-cloud/topics/aae-client/bot-creator/commands/error-handler-finally.html
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-cloud/topics/aae-client/bot-creator/commands/error-handler-throw.html
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-cloud/topics/aae-client/bot-creator/commands/error-handler-throw.html
https://www.worksoft.com/corporate-blog/solving-bot-fragility-with-change-resilient-rpa
https://www.worksoft.com/corporate-blog/solving-bot-fragility-with-change-resilient-rpa
https://deepsource.com/glossary/exception-handling#:%7E:text=If%20an%20exception%20is%20thrown,unless%20a%20function%20handles%20it
https://deepsource.com/glossary/exception-handling#:%7E:text=If%20an%20exception%20is%20thrown,unless%20a%20function%20handles%20it

	Maximizing the Efficiency of Automation Solutions with Automation 360: Approaches for Developing Subtasks and Retry Framework
	Abstract
	Keywords
	1. Introduction
	2. Solution
	2.1. Classification of Tasks
	2.2. Different Methods of Writing Subtasks
	2.2.1. Resilient Subtasks
	2.2.2. Exception Bubbling Subtasks
	2.2.3. Retry Framework for Subtask—Resilient Task
	2.2.4. Retry Framework for Subtask—Exception Bubbling Task

	3. Case Studies
	3.1. Exception Bubbling Subtasks
	Advantages

	3.2. Resilient Subtasks
	Advantages

	3.3. Retry Framework
	Advantages

	4. Extensibility of the Solution
	4.1. Web Applications
	4.2. Windows Applications
	4.3. Database Systems
	4.4. Legacy Systems
	4.5. API Integrations

	5. Contribution and Innovation
	5.1. Introduction of A360 Subtasks as Comparable Concepts to Functions in Programming
	5.2. Introduction of the Retry Framework
	5.3. Assistance to Professional and Citizen Developers

	6. Advantages of the Solution
	6.1. Reusability and Maintainability
	6.2. Code Quality and Consistency
	6.3. Efficiency and Resiliency
	6.4. Error Handling and Exception Management

	7. Conclusion
	Conflicts of Interest
	References

