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Abstract 
In the synthesis of the control algorithm for complex systems, we are often 
faced with imprecise or unknown mathematical models of the dynamical sys-
tems, or even with problems in finding a mathematical model of the system 
in the open loop. To tackle these difficulties, an approach of data-driven 
model identification and control algorithm design based on the maximum 
stability degree criterion is proposed in this paper. The data-driven model 
identification procedure supposes the finding of the mathematical model of 
the system based on the undamped transient response of the closed-loop sys-
tem. The system is approximated with the inertial model, where the coeffi-
cients are calculated based on the values of the critical transfer coefficient, os-
cillation amplitude and period of the underdamped response of the closed-loop 
system. The data driven control design supposes that the tuning parameters 
of the controller are calculated based on the parameters obtained from the 
previous step of system identification and there are presented the expressions 
for the calculation of the tuning parameters. The obtained results of da-
ta-driven model identification and algorithm for synthesis the controller were 
verified by computer simulation. 
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1. Introduction 

Almost all electrical drivers, power converters, technological processes in indus-
trial applications are controlled based on the proportional-integral-derivative 
(PID) control algorithm [1] [2]. This algorithm is widely used in different in-
dustrial applications, due to its simplicity, feasibility and the advantages that of-

How to cite this paper: Cojuhari, I. (2023) 
Data-Driven Model Identification and Con-
trol of the Inertial Systems. Intelligent Con-
trol and Automation, 14, 1-18. 
https://doi.org/10.4236/ica.2023.141001 
 
Received: December 5, 2022 
Accepted: February 20, 2023 
Published: February 23, 2023 
 
Copyright © 2023 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/ica
https://doi.org/10.4236/ica.2023.141001
https://www.scirp.org/
https://doi.org/10.4236/ica.2023.141001
http://creativecommons.org/licenses/by/4.0/


I. Cojuhari 
 

 

DOI: 10.4236/ica.2023.141001 2 Intelligent Control and Automation 
 

fer to automatic control systems, such as good performance and robustness in 
case of uncertainties and disturbances. 

One of the difficulties in automatic control systems is the problem of synthesis 
of the PID control algorithm, which supposes the procedure of calculation of the 
tuning parameters according to the dynamics of the control object [2] [3]. The 
incorrect tuning of the PID controller can lead to bad performance and in the 
worst case can lead to the instability of the system. In this case, ensuring the 
closed loop system stability is one of the most important aspects in the synthesis 
of the control algorithm [4] [5].  

For the last decades have been developed a big variety of PID tuning tech-
niques in continuous—time, discrete time and frequency domain [6] [7]. In 
general, these methods can be grouped into the following categories as: experi-
mental tuning methods, analytical tuning methods and optimization tuning 
methods, which are based on the algorithms from artificial intelligence domain 
[6] [8].  

The experimental methods do not require to be known preliminary the ma-
thematical model that describes the dynamics of the control object. These me-
thods are based on some simple assumptions for calculation of the tuning para-
meters. One of the most known and used experimental methods for tuning the 
typical controllers is Ziegler-Nichols method, which supposes the calculation of 
the tuning parameters based on the undamped transient response of the closed 
loop system and it does not require to be known the mathematical model of the 
control object [2] [9] [10] [11]. Due to its simplicity, it is used as self-tuning 
method of P, PI or PID controller, though this method is characterized by the 
drawbacks as: 
● It is recommended for slow processes; 
● It does not offer the procedure for synthesis of the controller with imposed 

performance;  
● It provides the oscillating step response of the system; 
● It does not take into account the requirements related to the system stability 

reserve; 
● This method does not offer the procedure for optimization of the tuning pa-

rameters. 
The analytical methods require to be known the mathematical model of the 

control object and based on some algorithms for calculation of the tuning para-
meters and graphical representation in the time, or frequency domain, it can of-
fer the designed closed loop system satisfactory performance and good robust-
ness [12] [13] [14]. The disadvantages of these methods are the necessity of us-
ing a big volume of calculations and the mathematical model of the control ob-
ject should be given, or should be obtained based on the identification proce-
dure.  

Nowadays, there are developed many identification methods and procedures 
of the mathematical model, allowing with high accuracy to identify different 

https://doi.org/10.4236/ica.2023.141001


I. Cojuhari 
 

 

DOI: 10.4236/ica.2023.141001 3 Intelligent Control and Automation 
 

structures of object models with or without time delay, with high or low order 
inertia. Most of these methods offer procedures for approximation of the dy-
namics of control object with transfer function with first and second-order iner-
tia and these methods in most cases are applied in the open loop systems [2] [15] 
[16] [17]. The existence of the procedure, which will permit to obtain the ma-
thematical model of the control object in the closed loop system essentially will 
simplify the procedure of tuning the typical controllers [18]. 

Another category of tuning techniques is related to optimization methods and 
artificial intelligence approaches such as genetic algorithms, fuzzy logic control, 
neural networks [18]. These approaches are widely used in the case of optimiza-
tion problems of tuning parameters, especially for the case, when it is needed to 
control the nonlinear process and offer good performance and robustness of the 
system. However, these methods usually involve operator implication in forma-
tion the initial data set and hardly can be realized as self-tuning methods of the 
controller. 

This paper provides a new method for experimental identification, inspired by 
the Ziegler and Nichols tuning method when the closed loop control system is 
marginally stable. The new procedure of tuning the PID controller ensures to the 
system critically damped step response. 

Hereinafter, Section 2 introduces the basic principles of the PID controller 
and tuning methods. Section 3 presents the algorithm for mathematical model 
identification of the control object in the closed loop system and it is exposed the 
method for tuning the PID controller. Section 4 presents the study case of iden-
tification the mathematical model of the DC motor, and the study case of syn-
thesis of the PID controller. 

2. Basic Principles of the PID Control Algorithm and Tuning  
Methods 

2.1. PID Control Algorithm 

The PID control algorithm is widely used in different industrial applications and 
it can be easily implemented for various control problems. The PID controller as 
input receives the error signal e(t) and provides command signal—u(t), where 
the typical structure of the PID controller is given by the transfer function [8]: 

( )PID ,i
p d

kH s k k s
s

= + +                      (1) 

where kp—is the proportional tuning parameter, ki—integral tuning parameter, 
kd—derivative tuning parameter of the PID controller. 

In Figure 1, it is presented the structural scheme of the automatic control 
system. 

In Figure 1, ( )PIDH s  is the transfer function of the PID controller, described 
by the transfer function (1) and ( )H s  is the transfer function of the control 
object: 
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Figure 1. Structural scheme of the automatic control system. 

 

( ) ( )( ) ( )
( )
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1
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kH s
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B sk
A sa s a s a s a−

−

=
+ + +

= =
+ + + +





           (2) 

where 0 1 1, , , ,n nT T T T−  are time constants; 0 1 1, , , ,n na a a a−  are the parameters 
of the characteristic equation and depend on the internal proprieties of the con-
trol object; k is the static gain; n is the order of the characteristic equation A(s). 

The static gain of the system is calculated [2]:   

initial

initial

lim lim ,st
t t

y yyk
u u u→∞ →∞

−∆
= =

∆ −
                (3) 

where yst is the steady-state output, yinitial is the initial value of the output, u(t)— 
input signal, uinital is the initial value of the input signal.  

In the Figure 1, the r(t) is the reference signal, y(t)—output signal, u(t)— 
command signal and e(t)—error signal:  

( ) ( ) ( )e t r t y t= − .                       (4) 

According to the Equation (1) and Equation (2) the characteristic equation of 
the closed loop system with PID controller can be presented by: 

( ) ( )1 2 2
0 1 1

1 .n n
n n d p iA s a s a s a s a s k s k s k

k
+

−= + + + + + + +       (5) 

2.2. Tuning Methods 

Next, there are analyzed two methods of tuning the PID controller:  
- The experimental method of tuning the PID controller—Ziegler—Nichols 

method; 
- Graph-analytical method—maximum stability degree method with iterations.  

2.2.1. Ziegler-Nichols Method 
The Ziegler-Nichols method for tuning typical controllers from 1942, when it 
was proposed for the first time, has a big impact on linear feedback control sys-
tems and in implementation of self-tuning methods of typical controllers in dif-
ferent industrial applications [10]. The procedure for tuning the PID controller 
according to the Ziegler-Nichols method, for now, is accepted as a standard in 
control system practices. Ziegler and Nichols proposed two empirical methods for 
tuning the typical controllers. The first method is supposed, that the process is 
aperiodic and it can be obtained the transient response in the open loop and that is 
approximated with transfer function with inertia first order and time delay. Accord-

r(t)
HPID(s) H(s)

e(t) u(t) y(t)

-
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ing to this approximation, there are given the analytical expressions for the calcula-
tion of the tuning parameters of the P, PI and PID controllers [2] [9] [10] [11].  

The second method doesn’t require to be known the mathematical model of 
the control object and it offers the rules for determination in experimental way 
the tuning parameters. This method of tuning is performed for the closed loop 
systems with PID controller (Figure 1), when the integral tuning parameter—ki 
and derivative tuning parameter—kd, are settled to the zero value. The propor-
tional tuning parameter—kp is slowly increased until the system reaches the limit 
of stability and it determinates the period of the un-amortized oscillations Tcr of 
the system. The value of the proportional tuning parameter, when the system 
achieves the limit of stability is the critical transfer coefficient—kcr. Based on 
these two parameters Tcr and kcr, there are given the expressions for calculations 
of the tuning parameters of the P, PI and PID controllers (Table 1). 

2.2.2. Maximal Stability Degree Method with Iterations 
One of the analytical methods, which permit tuning the P, PI and PID control-
lers and it is taken into accounts the stability degree of the system is the maxi-
mum stability degree method with iterations [17]. 

Affirmation 1. If the coefficients of the characteristic equation are known and 
constant, then the stability degree of the system J obtains the maximum possible 
value by the [19]: 

( )
1

0

,
1

aJ
n a

=
+

                           (6) 

and in this case the real parts of all characteristic equation roots are equal with 
each other:  

1 2 ,n Jα α α= = = =                         (7) 

where 1 2, , , nα α α  are real parts of characteristic equation roots i i kp jα ω= − ± , 
, 1, 1i k n= + , 1,k m= . 

For the case when the number of the tuning parameters is equal or less then 
the characteristic equation order, the value of maximum stability degree value 
can be chosen as arbitrary value and the 1st Affirmation will not be valid.  

In concordance with the 1st Affirmation, it is possible to be found the tuning 
parameters of the PID controller so as to be satisfied the maximum stability de-
gree of the system: 

( )max max , , .p i dJ k k kη η= =                    (8) 

 
Table 1. Expressions for calculation the tuning parameters of the P, PI and PID control-
lers [2]. 

Type of controller kp ki kd 

P 0.5 kcr - - 

PI 0.45 kcr 1/(0.8Tcr) - 

PID 0.75 kcr 1/(0.6Tcr) 0.1Tcr 
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According to the maximum stability degree method with iterations, in the 
characteristic Equation (5) of the closed loop system with PID controller is in-
troduced the substitution s J= − , and the characteristic equation becomes [19]: 

( ) ( ) ( )( )1 2 2
0 1 1

1 .n n
n n d p iA J a J a J a J a J k J k J k

k
+

−− = − + − + + − + − +   (9) 

The Equation (9) derives two times and there are obtained the analytical ex-
pressions for calculating the tuning parameters of the PID controller:  

( ) ( ) ( )( )1 1
0 1 1

1 1 1 1 2 2n nn n
p n n dk n a J na J a J a k J

k
+ −

−= − + + − + + − + ;  (10) 

( ) ( )( )1 2 2
0 1 1

1 1 1n nn n
i n n d pk a J a J a J a J k J k J

k
+

−= − − − + − + − + ;   (11) 

( ) ( ) ( ) ( )( )1 2
0 1 1

1 1 1 1 1 2
2

n nn n
d nk n n a J n n a J a

k
− −

−= − + − − − + − .    (12) 

The analytical expressions (10)-(12) permit to calculate the tuning parameters 
of the PID controller and they represent the dependences of the known parame-
ters of the control object k, 0 1, , , na a a  and an unknown parameter J—stability 
degree of the system: kp = f(J), ki = f(J), kd = f(J). According to the 1st Affirma-
tion, if the degree of the system is higher than 2nd order, the maximum stability 
degree value can be calculated based on the Equation (6) [19].  

Otherwise, according to the maximum stability degree method with iterations, 
the value of the stability degree can be varied J ≥ 0 and based on the dependen-
cies kp = f(J), ki = f(J), kd = f(J), there are obtained different values of the tuning 
parameters of the PID controller, that offer the different performance for the 
automatic control system. 

3. Synthesis of the PID Control Algorithm Based on the  
Undamped Transient Response of the Closed Loop System 

The procedure for synthesis of the PID controller supposes to be known the 
mathematical model that approximates the dynamics of the control object, this 
implies to be used the procedure of experimental identification. The new tuning 
algorithm of the PID controller is presented in Figure 2. 

3.1. Data-Driven System Identification  

In order to solve the problem of mathematical identification in the closed loop 
system, it is proposed the procedure for experimental identification, based on 
the undamped transient response of the closed loop control system. According 
to this procedure, the dynamics of the control object is proposed to be approx-
imated with transfer function with inertia third order: 

( ) ( )( )( )
( )
( )3 2

1 2 3 0 1 2 3

,
1 1 1

B sk kH s
T s T s T s A sa s a s a s a

= = =
+ + + + + +

    (13) 

where 1 2 3, ,T T T  are time constants; k is transfer coefficient, that is calculated ac-
cording to the Equation (3); 0 1 2 3a TT T= , 1 1 2 1 3 2 3a TT TT T T= + + , 2 1 2 3a T T T= + + , 

3 1a = .  
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Figure 2. The algorithm of data-driven model identification and control. 
 

The characteristic equation of the transfer function (13) is following: 

( ) 3 2
0 1 2 3.A s a s a s a s a= + + +                    (14) 

The coefficients a0, a1, a2, a3 are proposed to be calculated based on the values 
of the kcr—critical transfer coefficient, Acr—amplitude of unamortized oscilla-
tions and Tcr—period of the unamortized oscillations, that are obtained for the 
case, when automatic control system gains the limit of stability. To achieve this 
state of the system as in the Ziegler-Nichols method, it is given the closed loop 
system with PID controller (Figure 1), the coefficients ki, kd are settled to the 
zero, and the proportional tuning parameter kp > 0 is varied, until the system 
achieves the limit of stability.   

If it is known the value of period oscillations, it can be calculated the natural 
frequency by the [2]: 

2 .n
crT

ω π
=                            (15) 
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In this way, it is proposed to find the dependencies for the calculation of the 
parameter of the control object in an experimental way, which depends on the 
natural frequency, oscillation amplitude and critical transfer coefficient: 

( )0 1 2 3, , , , ,n cr cra a a a f A kω= .                   (16) 

The characteristic equation of the closed loop system (13) with critical transfer 
coefficient is the following: 

( ) ( )3 2
0 1 2 3

1 .crA s a s a s a s a k
k

= + + + +                (17) 

In case, when the control system achieves the limit of stability, it has the poles 
placed on the imaginary axe, with real parts equal to zero and it is proposed to 
make the following substitution in the characteristic Equation (17): 

.ns jω=                            (18) 

Based on the substitution (18), the characteristic Equation (17) will become: 

( ) ( ) ( ) ( )( )
( ) ( )
( ) ( )

3 2
0 1 2 3

2 3
1 3 0 2

1

.

n n n cr

n cr n n

A j a j a j a j a k
k

a a k k j a a

P jQ

ω ω ω ω

ω ω ω

ω ω

= + + + +

= − + + + − +

= +

      (19) 

Next, it is proposed to equal the real and imaginary parts with zero—
( ) 0P ω =  and ( ) 0Q ω = , and based on these equalling there are obtained the 

following expressions: 

2

0

1 2

;

1.

n

cr

n

a
a

k ka

ω

ω


=




+ =

                        (20) 

The transfer function of the control object (13) can be rewritten in the fol-
lowing form [2]: 

( )
( )( )

( )
( )

2

2 2
,

2
n

n n

Y s
H s

X ss s s
αω

α ξω ω
= =

+ + +
             (21) 

where ξ  is a damping ratio. 
In this case, the unit—step response of the system is given by: 

( ) ( )1 ,Y s H s
s

=                         (22) 

( ) ( )1 21 e e sin ,ntt
dy t C C ξωα ω θ−−= + + −               (23) 

where 
2

1 2 2 ,
2

n

n n

C ω
ω ζω α α

= −
− +

                    (24) 

( )( )2
2 2 2

,
2 1n n

C α

ω ζω α α ξ
= −

− + −
               (25) 
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2 2
1 11 1

tan tan ,n

n

ξ ω ξ
θ

ξ α ξω
− −− −

= +
− −

               (26) 

21 .d nω ω ξ= −                        (27) 

In case, when system achieves the limit of stability there is 0ξ =  and the 
transfer function (21) becomes: 

( )
( )( )

( )
( )

2

2 2
.n

n

B s
H s

A ss s
αω

α ω
= =

+ +
               (28) 

The characteristic equation of the transfer function (28): 

( ) ( )( )2 2
nA s s sα ω= + +  

has three poles— 1 2 3, ,n ns s j s jα ω ω= − = = − . 
According to the Vieta’s theorem for calculation the roots of the cubic equa-

tion, it is obtained the following dependence: 

1

0

.a
a

α =                            (29) 

where 0 1,a a —are parameters of the characteristic Equation (14). 
The value of the amplitude of the unamortized oscillations from the undamped 

transient response can be calculated according to the step response of the system 
(23). There is obtained the following expression for calculation the value of os-
cillations amplitude:  

2 2cr

n

A α

α ω
=

+
.                       (30) 

Thus, then it is known the value of the oscillation amplitude, it is possible to 
calculate the value of α: 

21
cr n

cr

A

A

ω
α =

−
.                        (31) 

In concordance with Equations (20), (29) and (31) the control object’s para-
meters are calculated according to the following expressions: 

( )

( )

2

0 31
0

1 2
1 2

22
2 0

2

3

3

1 1
;

;
11 ;;

1 1; ;
1.

1.

cr cr

cr n

cr
cr

n
n

cr crn

cr n

k k A
aaa A

k kk k aa

k k Aa a a
Aa

a

ω
α

ωω

ω
ω

 + −
 = = 
 ++ = = → 

 
+ − = = 

= 
 =

            (32) 

Based on Equations (32), the parameters of the control object can be calcu-
lated in dependency of the natural frequency, oscillation amplitude and critical 
transfer coefficient, that are obtained from the undamped transient response of 
the closed loop system. In this way, the procedure of identification of the ma-
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thematical model can be performed in the closed-loop system. 

3.2. Data-Driven Control Algorithm Synthesis 

It is considered, that control process is described by the transfer function with in-
ertia third order—Equation (13) and the characteristic equation is the following: 

( ) 3 2
0 1 2 3.A s a s a s a s a= + + +                    (33) 

In this case, the system is characterized by the three poles—s1, s2, s3, that can 
be calculated based on the Vieta’s theorem for the calculation the roots of the 
cubic equation: 

1
1 2 3

0

2
1 2 1 3 2 3

0

3
1 2 3

0

;

;

.

as s s
a

as s s s s s
a

as s s
a


+ + = −


 + + =



= −


                     (34) 

The dominant poles are the poles, that are situated more closely to the imagi-
nary axe, and according to the [14], the sum of dominant poles from characte-
ristic Equation (33) is: 

 

31

0 0
dom_pol 1 2Σ ,

2

aa
a as s

−
= + ≈ −                   (35) 

where s1 and s2 are the dominant poles. 
The characteristic Equation (33) has three poles and if it is known the sum of 

dominant poles (35), based on the Vieta’s theorem, it is possible from the system 
(34) to calculate the production of the dominant poles, that will be equal with: 

3
dom_pol 1 2

1 3

2 .as s
a a

Π = ≈ −
+

                    (36) 

The transfer function of the PID controller is given by Equation (1) and in 
conformity with Vieta’s theorem for the second order equation, it is imposed 
that the zeros of the transfer function of the PID controller to be equal with do-
minant poles of the control object: 

1 2

1 2

;

.

p

d

i

d

k
s s

k
ks s
k


+ = −



 = −

                        (37) 

Based on Equations (35) and (36) the system of Equations (37) can be rewrit-
ten as: 

1 3

0

3

1 3

;
2
2 .

p d

i d

a ak k
a
ak k

a a

− =

 =
 +

                        (38) 
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From (38), it can be observed that tuning parameters for P and I components 
depend on the parameter of the control process (13), which are known and de-
rivative component that is unknown: 

( )0 1 2 3, , , , ,p i dk k f k a a a a= .                    (39) 

It is proposed to use the maximum stability degree method with iterations 
[20], in order to obtain the analytical expression for the calculation of the deriv-
ative tuning parameter.  

Next, based on the maximum stability degree method with iterations, there is 
obtained the analytical expression for calculation the kd tuning parameter of the 
PID controller: 

( )2
0 1 2

1 12 6 2 ,
2dk a J a J a

k
= − + −                  (40) 

where J is the stability degree. 
The value of the stability degree is calculated according to the expression [20]: 

1

0

.
4
aJ
a

=                            (41) 

Based on Equations (40) and (41), the expression for calculation the kd tuning 
parameter is: 

2
1 0 2

0

3 8 .
8d

a a ak
ka
−

=                        (42) 

In this way, the tuning parameters of the PID controller for the case then con-
trol process is described by the transfer function with inertia third order are the 
following: 

( )( )

( )

2
1 3 1 0 21 3

2
dom_pol 0 0

2
dom_pol 3 1 3 0 2 3

2 1 3 0 1 31 0 2
2 21 0 20 1 0 2

0 0

3 8
; ;; 2 16

; 2 3 8; ;
43 8 .

3 88 3 8. ,8 8

p d p
p d

i d
i d i

d

d d

a a a a aa ak k kk k a ka
k k a a a a a ak k ka a ka a aa a ak

a a aka a a ak kka ka

 − −− =  == Σ  = Π   −=→ → =  + +−  =  − − = = 

⋅

⋅




 (43) 

where the parameters 0 1 2, ,a a a  are known and there are calculated according to 
the equations (32). 

4. Study Cases 
4.1. Identification of the Mathematical Model of the DC Motor 

In automatic control systems, the DC motor is frequently used as an actuator 
element. 

Next, it is done the experimental identification of the mathematical model of 
the DC motor and in this study it was chosen the 2342L012 series Coreless en-
coder motor with technical parameters [20]: 
● J rotor inertia, equal to 5.7 gcm2; 
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● ke back EMF constant, equal to 1.4 mV/min; 
● km torque constant, equal to 13.4 mNm/A; 
● R terminal resistance, equal to 1.9 Ω; 
● kn speed constant, equal to 713 min−1/V; 
● L rotor inductance, equal to 65 μH. 

The input and output values of the DC motor are: 
● Input value Ua: supply voltage; 
● Output value θ ω= : rotor shaft speed; 
● Output value θ : rotor shaft position. 

The transfer function in the open loop, in which the control value is the rota-
tional speed of the rotor shaft and the input is a voltage applied to the armature 
windings Ua is: 

( )
( ) ( )( )

.m

a e m

s k
U s Ls R Js b k k
θ

=
+ + +



                 (44) 

According to the technical parameters, the analytical model of the DC motor 
is: 

( ) ( )
( ) 2

641.885 .
0.00000177 0.052 1a

s
H s

U s s s
θ

= =
+ +



           (45) 

Based on the proposed procedure of identification in the closed loop, the au-
tomatic control system was brought to the critically regime and the experimental 
curve is presented in Figure 3. 

The presented data were normalised and based on the undamped transient 
response of the closed loop system, there are obtained the following parameters: 

5, 0.1185, 0.0011s, 5712.cr cr cr nk A T ω= = = =  

 

 
Figure 3. Undamped transient response of the system. 
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Based on Equation (32) there are calculated the parameters of the control ob-
ject: 

0 1 2 32.698e 10, 1.839e 07, 0.008802, 1.a a a a= − = − = =  

The identified transfer function is the following: 

( ) ( )
( )3 2

1 .
2.698e 10 1.839e 07 0.008802 1

B s
H s

A ss s s
= =

− + − + +
     (46) 

Next in Figure 4, it is presented the comparison between the step response of 
the model of object analytical identified (transfer function (45))—curve 1; step 
response of the model of object identified by the proposed method (transfer 
function (46))—curve 2; the experimental curve of speed motor variation at the 
5800 rpm—curve 3. 

4.2. PID Control Algorithm Synthesis 

It is supposed that control process is described by the transfer function: 

( ) ( )( )( )
( )
( )3 2

1 1 ,
2 1 5 1 10 1 100 80 17 1

B s
H s

s s s A ss s s
= = =

+ + + + + +
   (47) 

The automatic control system with P controller was simulated and it was ob-
tained the undamped transient response of the closed-loop system and accord-
ing to the identification algorithm there are obtained the following parameters of 
the model:  

12.5993, 15.2394 s, 0.874, 0.4123.cr cr cr nk T A ω= = = =  

According to the obtained values—the natural frequency, oscillation ampli-
tude, critical transfer coefficient and based on the Equations (32), there are cal-
culated the parameters of the model: 

( )

( )

2

0 3

1 2

2

2

3

1 1
108.7;

1 80.43;

1 1
18.39;

1.

cr

n

cr

n

cr

n

k k A
a

A
k ka

k k A
a

A
a

ω

ω

ω

 + −
 = =

 + = =



+ − = =

 =

                   (48) 

Thus, the data-driven identified model is the following: 

( ) ( )
( )3 2

1 .
108.7 80.43 18.39 1

B s
H s

A ss s s
= =

+ + +
             (49) 

Next, it is done the comparison between original step response of the con-
trol object and step response of the identified model, that are presented in Fig-
ure 5. 

Next, to the model of object (49) is tuned the PID controller based on Equa-
tions (43):  
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Figure 4. Comparison of the DC motor output: 1—step response of the system with 
transfer (45); 2—step response of the system with transfer function (46); 3—experimental 
curve of DC motor speed variation.  

 

 
Figure 5. Comparison of the step responses of the control object: 1—step response of the 
system with transfer (47); 2—step response of the identified model (49). 
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The obtained results of tuning the PID controller were compared with maxi-
mum stability degree method with iterations (MSMI), where the tuning para-
meters were calculated according to the relations (10)-(12). For comparison, it 
was used the Ziegler-Nichols, where the tuning parameters were calculated ac-
cording to Table 1 and it was used the parametrical optimization, based on the 
PID Tuner Toolbox from MATLAB. The obtained tuning parameters and ob-
tained performances of the automatic control system (tr—rise time, ts—settling 
time, σ—overshoot) are presented in Table 2. 

In Figure 6, there is presented the computer simulation of the automatic con-
trol system with PID controller tuned by: the proposed method in this pa-
per—curve 1, maximum stability degree method with iterations—curve 2, Zieg-
ler—Nichols method—curve 3, parametrical optimization—curve 4.  

From Figure 6, it was observed that in case of using the proposed method for  
 
Table 2. Tuning parameters and the performance of the automatic control system. 

No. Tuning method kp ki kd ts tr σ, % 

1 
MSD method with  

dominant poles allocation 
1.43 0.096 3.91 30.5 30.5 0.0 

2 MSMI 1.74 0.12 3.91 37.57 18.72 3.33 

3 Ziegler-Nichols 9.44 0.109 1.52 171.79 6.55 56.75 

4 Parametrical optimization 3.29 0.245 9.64 10.98 27.5023 6.39 

 

 
Figure 6. Transient responses of the automatic control system: 1—PID controller tuned 
by MSD method with dominant poles allocation; 2—PID controller tuned by MSMI; 
3—PID controller tuned by Ziegler-Nichols method; 4—PID controller tuned by para-
metrical optimization. 
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tuning the PID controller, it is obtained the critically damped step response 
without overshoot. In the case of using the Ziegler-Nichols method, it is ob-
tained oscillated transient response. In the case of using MSMI and parametrical 
optimization method, there are obtained the underdamped transient responses 
of the automatic control system. 

5. Conclusions 

Synthesis of the control algorithm is one of the main problems that concerned 
engineers during the design of automatic control systems. The solution to this 
problem supposes to be known some key parameters of the control process, or 
the mathematical model, that approximates the dynamics of the control process. 
Frequently the mathematical model of the control process is obtained in the ex-
perimental, or analytical way in the open loop. This implies being involved with 
the operator for system identification in the open loop. The Ziegler-Nichols 
method is become so used, due to the fact that does not require to be known the 
mathematical model of the control process and the procedure of tuning the con-
troller supposes the extraction of some key parameters from step response of the 
closed-loop control system, when system is marginally stable. 

In this paper, it is presented the procedure for data-driven model identifica-
tion and control of the inertial systems. According to this procedure the first 
step involves being done the system identification, based on the undamped step 
response of the closed-loop system. The algorithm for mathematical identifica-
tion supposes to be achieved the limit of stability of the closed-loop system and 
based on the parameters, that are extracted from the undamped step response, 
there are presented some simple expressions for calculation the parameters of 
the model.   

In the second step, there are presented the expressions for calculation of the 
tuning parameters of the PID controller. These expressions were obtained based 
on the value of the maximum stability degree criterion and the tuning procedure 
of the PID controller ensures the system the critically damped step response. 

The procedure of the data driven identification and control was verified by 
computer simulation and gave good performances in the case of tuning the PID 
controller, and as further research, the proposed tuning method can be extended 
to the frequency domain. 
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