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Abstract 
Considering the structural analysis problem of systems properties with Bouc- 
Wen hysteresis (BWH), various approaches are proposed for the identifica-
tion of BWH parameters. The applied methods and algorithms are based on 
the design of parametric models and consider a priori information and the 
results of data analysis. Structural changes in the BWH form a priori. Me-
thods for the Bouc-Wen model (BWM) identification and its structure esti-
mation are not considered under uncertainty. The study’s purpose is the analy-
sis the structural problems of the Bouc-Wen hysteresis identification. The 
analysis base is the application of geometric frameworks (GF) under uncer-
tainty. Methods for adaptive estimation parameters and structural of BWM 
were proposed. The adaptive system stability is proved based on vector Lya-
punov functions. An approach is proposed to estimate the identifiability and 
structure of the system with BWH. The method for estimating the identifia-
bility degree based on the analysis of GF is considered. BWM modifications 
are proposed to guarantee the system’s stability and simplify its description. 
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1. Introduction 

Various models are used to describe hysteresis [1]. The Bouc-Wen model (BWM) 
is widely used to describe hysteresis. BWM is proposed by R. Bouс [2] and is 
generalized by Y.K. Wen [3] (system SBW) 

 ( ) ( ), , ,mx cx F x z t f t+ + =�� �                       (1) 
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 ( ) ( ) ( ) ( ), , 1F x z t kx t kdz tα α= + − ,                 (2) 

 ( )( )1 n nz d ax x z sign z x zβ γ−= − −� � �� ,               (3) 

where 0m >  is mass, 0c >  is damping, ( ), ,F x z t  is the recovering force, 
0d > , 0n > , 0k > , ( )0,1α ∈ , ( )f t  is exciting force, , ,a β γ  are some 

numbers. Equation (3) is the BWM. 
Many modifications of BWM [4] are proposed. Each model considers the fea-

tures of the considered object. The BWM successful application depends on the 
identification of its parameters. The solution of the nonlinear Equation (3) is the 
main problem of BWM identification. The methods of identification and control 
Bouc-Wen hysteresis systems are given in [5] [6]. Adaptive modelling methods 
[6] are used to analyze the state of structural dynamics objects. An approach to 
the BWH identification based on analysis of a priori information and some heu-
ristic procedures is proposed in [7]. Adaptive algorithms are proposed in [8] [9] 
for the BWM parameters estimation with the data forgetting [10]. It is assumed 
that are available for measurement x��  and z, and x� , x are obtained by integra-
tion. The approach to adaptive identification [11] [12] is based on the least-squares 
method application and correction of the gain matrix. Change areas x� , x and 
the parameter n value are set. The adaptive observers use for the BWH identifi-
cation is considered in [13]. The analysis of other approaches to the BWH pa-
rameters identification is given in [4] [14] [15] [16] [17]. Most procedures are 
based on measuring derivatives x. This possibility does not always exist when 
solving practical problems. 

Examples [18] are known when BWM parameters estimations do not coincide 
with results obtained for other inputs. Such examples speak about the ambiguity 
of identification, which causes the instability of the model. Explain it with the 
fact that the Bouc-Wen model should be stable and ensure the adequacy of a 
physical process [19]. Requirements for BWM [19]: 1) adequacy of the mathe-
matical model to the physical process; 2) BWM stability. Stability conditions im-
pose restrictions on the changing area of model parameters. The choice of para-
meters belonging to the stability domain does not always give the adequate BVM 
[16] under uncertainty. Therefore, the approach [18] to the hysteresis; 3) para-
meters identification based on the BWH approximation of polynomial is pro-
posed. 

So, the analysis of publications shows that many algorithms and procedures 
for the BWM parameters identification propose. Proposed models consider fea-
tures of the system. As a rule, the area of the BWM parameters changing sets a 
priori. Some parameters, such as n, are considered known. It is often assumed 
that derivatives of the system are measured. This situation does not always occur 
in practice and gives to the non-realizability of algorithms. The structure choice 
of the system (1)-(3) (structural identification (SI)) is the use result of the re-
searcher’s knowledge and intuition. This approach does not always give an ade-
quate choice of the BWM structure under uncertainty. Often the structural iden-
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tification problem is reduced to the parametric identification problem [20] [21]. 
This approach is laborious under uncertainty. 

So, we see that BWH structural identification problem has not been developed. 
The SBW-system modeling effectiveness depends on the choice of its parameters 
due to its initial instability. The input perturbation choice is significant for ob-
taining adequate results. The incorrect choice of input can lead to a system’s 
non-identifiability. These problems require a solution for BWH. Some results on 
these problems are presented in [22]. 

The systematic approach proposed in this work gives the problem solve of 
identification systems with Bouc-Wen hysteresis. It includes: 1) the method for 
the input affect estimation on the SBW-system identifiability; 2) a hierarchical 
immersion method that allows you to decide on the BWH structure under un-
certainty; 3) the adaptive identification of BWH parameters based on in-
put-output data; 4) the method for estimating the identifiability degree based on 
the analysis of GF and the phase portrait of the SBW-system. 

Work structure: 1) problem statement; 2) the method of SBW-system adaptive 
identification; 3) modifications of the SBW-system to simplify it and ensure sta-
bility; 4) the estimation method of structural identification and identifiability 
SBW-systems; 5) the properties analysis of the input ( )f t , which guarantees the 
SI and identifiability of the SBW-system; 6) BMW modifications guarantee its sta-
bility. 

Remark 1. The parametric approach does not allow estimating of the BWH 
structure under uncertainty. The proposed approach is based on the properties 
analysis of geometric frameworks. 

2. Problem Statement 

Consider SBW-system. We have information on the input and the output 

 ( ) ( ) [ ]{ }0I , , ,o ef t x t t t t= ∈ ,                    (4) 

where et < ∞ , ( ) ( ),f t x t  are limited functions of time. 
Determine conditions of the system SBW identifiability and structural compo-

nents of the Bouc-Wen model (3) based on analysis of the sets (4). 
Solving this problem is answered to the question: can we get an estimate of the 

system (3) structure under uncertainty? 
Consider the identification of system parameters (1)-(3) by Io . 

3. Adaptive Identification of BWH 
3.1. Problem Statement 

Consider the system SBW. Let y x=  be the output of the system. The set of the 
experimental data is ( ) ( ){ }I , ,o f t y t t J= ∈ , where J R⊂  is the specified 
time interval. 

Designate by the parameters vector of the system as [ ]T, , , , , , ,A m c a k nα β γ= . 
Problem: an adaptive observer to design for the evaluation of vector A such 
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that 

 ( ) ( )ˆlim yt
y t y t π

→∞
− ≤ ,                       (5) 

where ŷ R∈  is the output of the adaptive observer, 0yπ ≥ . 
Remark 2. The identification effectiveness of the system SBW depends on fea-

tures of the input ( )f t . Requirements to ( )f t  in identification problems are 
known. The force ( )f t  must satisfy the constant excitation (CE) condition. 
This condition is necessary but not enough [23]. The input having the CE prop-
erty cannot ensure the identifiability of the hysteresis structure. The structural 
identifiability of hysteresis is possible if ( )f t  has the S-stabilization property 
of the system [23]. 

3.2. Adaptive System Identification 

The set Io  has the form (4). Therefore, it is not applicable for estimating the 
parameters of the system SBW. Design an adaptive observer for the system 
(1)-(3). 

Consider the simplified system (1)-(3) when 1d = , 1a = . Substitute  
( ), ,F x z t  in (1), and divide it by s µ+ , where 0µ >  does not coincide with 

roots of the polynomial 2
1 2s a s a+ + , s d dt= . Then 

 1 2 3x z fx a x a p a p bp= + + +� ,                  (6) 

 
, ,

,
x x f f

z z

p p x p p f

p p z

µ µ

µ

= − + = − +

= − +

� �

�
                (7) 

where ( )1a c m mµ= − − , ( )( )2a k c m mα µ µ= − − − , ( )3 1a k mα= − − . 
Equations (6), (7) contain only measurable variables except z. It complicates 

the identification process of the system SBW parameters. Apply the model 

 ( ) 1 2 3
ˆˆ ˆ ˆ ˆ ˆx x z fx k x x a x a p a p bp= − − + + + +�             (8) 

to the estimation of the system (6) parameters, where 0xk >  is the specified 
number; ( )ˆia t , 1,2,3i =  and ( )b̂ t  are adjusted parameters. 

Designate ˆe x x= − . Obtain the equation for the identification error from (6), 
(8) 

 1 2 3x x z fe k e a x a p a p bp= − + ∆ + ∆ + ∆ + ∆� ,            (9) 

where ( )ˆb b t b∆ = − , ( )1 1 1ˆa a t a∆ = − , ( )2 2 2ˆa a t a∆ = − , ( )3 3 3ˆa a t a∆ = − . 
(9) is not solvable as the variable z is unknown in (7). Obtain the current es-

timation for ( )z t . Consider model 

 ( ) 1 2
ˆˆ ˆ ˆ ˆz x z x fx k x x a x a p bp= − − + + +� .             (10) 

Determine the misalignment ˆz zx xε = −  and use it for the variable z estima-
tion. Let zε  is the current estimation z. Apply the model to the estimation z 

 ( ) ( )ˆ ˆˆ ˆ ˆ ˆ ˆn n
z zz k z x x z sign z x zε β γ= − − + − −� � � �� � � ,        (11) 

where ( ) ( )( )x x t x tτ τ= + −�� ; 0zk >  is the given number β̂ , γ̂  are the 
hysteresis (3) parameters estimations; τ  is the integration step. 
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Introduce the misalignment ˆ zzε ε= −  and obtain the equation for ε  

 ( )ˆ ˆ ˆn n
zk x x z sign z x zβ γε ε β βη γ γη= − + ∆ + ∆ + + ∆ +� �� � � � ,       (12) 

( ) ( )ˆ ˆn nx z sign z x z sign zβη = − �� � , ˆn nx z x zγη = − �� � , 

where x x x∆ = −�� � � , ˆβ β β∆ = − , ˆγ γ γ∆ = − . 
Present (8) as 

 ( ) ˆ1 2 3
ˆˆ ˆ ˆ ˆ ˆx x z fx k x x a x a p a p bp= − − + + + +� ,              (8a) 

where 

 ˆ ˆ ˆz zp p zµ= − +� .                        (13) 

Then (9) rewrite as 

 ˆ1 2 3x x z fe k e a x a p a p bp= − + ∆ + ∆ + ∆ + ∆� ,              (14) 

and adaptive algorithms describe as 

 ˆ1 1 2 2 3 3, , , ,x z b fa ex a e a ep b epγ γ γ γ∆ = − ∆ = − ∆ = − ∆ = −� � �        (15) 

where 0, 1,2,3i iγ > = ; 0bγ > . 
Tuning algorithms for β∆  and γ∆  in (11) have the form 

 
( )ˆ ˆ ,

ˆ ,

n

n

x z sign z

x z

β

γ

β χ ε

γ χ ε

∆ = −

∆ = −

� ��

�� �
                   (16) 

where 0, 0β γχ χ> >  are parameters ensuring a convergence of algorithms. 
Several algorithms are applicable for the indicator n estimation in (11). The 

effectiveness of their work depends on several factors. The simple algorithm has 
the form 

 
[ ]

[ ]

ˆ 1
0 1

0 1

ˆ ˆ ˆ , if , ,
ˆ

0, if , ,

n
n

z

z

z zx
n

εγ εβ υ υ
ε

ε υ υ
ε

−
− ∈

= 
 ∉


��
�               (17) 

where 0 1,υ υ  are set positive numbers, 0nγ > . 
Remark 3. The identification procedure stability is the main problem of the 

system synthesis with BWM. We propose the method based on adaptive observ-
er application. 

3.3. Properties of Adaptive System 

We estimate the adaptive system stability by applying Lyapunov vector functions. 
Consider the subsystem XAS  described by (14), (15). Let 

( ) ( ) ( ) ( ) ( ) T
1 2 3, , ,K t a t a t a t b t∆ ∆ ∆ ∆ ∆  � , 

 ( ) ( ) ( )T 10.5KV t K t K t−∆ Γ ∆� ,                  (18) 

 ( ) ( ) ( )e KV t V t V t= + ,                     (19) 

where ( )1 2 3, , , bdiag γ γ γ γΓ = . Next, we give a results generalization [23] [24]. 
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Assumption 1. The input ( )f t  is constantly exciting and limited. 
Theorem 1. Let 1) functions (19), ( )KV t  are positive definite and satisfy  

conditions ( )inf ee
V e

→∞
→ ∞ , ( )inf KK

V K
∆ →∞

∆ → ∞ ; 2) assumption 1 for the system  

(1)-(3) is satisfied. Then all trajectories of the system XAS  are limited belong area  

( ) ( ) ( ){ }0G , :t e K V t V t= ∆ ≤  and the estimation ( ) ( ) ( )
0

02 d
t

x e
t

k V V t V tτ τ ≤ −∫  

is fair. 
Theorem 1 shows the limitation of adaptive system trajectories. The asymp-

totical stability ensuring the system demands to impose additional conditions. 
Let ( ) ( ) ( ) ( ) ( ) T

ˆx z fP t x t p t p t p t  � . 
Definition 1. The vector P is constantly excited with a level ν  or have prop-

erty νPE  if νPE : ( ) ( )T
4P t P t Iν≥  fairly for 0ν∃ >  and 0t t∀ ≥  on some 

interval 0T > , where 4
4I R∈  is the unity matrix. 

If the vector ( )P t  has property νPE  then we will write ( )P t ν∈PE . 
The system BWS  is stable, and the input ( )f t  is restricted. Therefore, 

present the property νPE  for the matrix ( ) ( ) ( )T
PB t P t P t=  as 

 ( ), 4 4: PI B t Iν ν ν ν≤ ≤PE , 0t t∀ ≥ ,               (20) 

where 0ν >  is some number. 
Let the estimation to ( )KV t  be fair 

 ( ) ( ) ( ) ( ) ( )2 21 1
10.5 0.5l KK t V t K tβ β− −Γ ∆ ≤ ≤ Γ ∆ ,       (21) 

where ( )1β Γ , ( )lβ Γ  are minimum and maximum eigenvalues of the matrix 
Γ . 

Apply inequalities (20), (21) and obtain estimations for ,e KV V� �  

 ( )l
e x e K

x

V k V V
k

νβ Γ
≤ − +� ,                    (22) 

 ( )1
3 8
4 3K K eV V Vϑνβ ϑ≤ − Γ +� ,                 (23) 

Theorem 2. Let conditions be satisfied 1) positive definite Lyapunov func-
tions ( )eV t  and (18) allow the indefinitely small highest limit at ( ) 0e t → , 

( ) 0K t∆ → ; 2) ( ) ,P t ν ν∈PE ; 3) equality ( )T T 2e K P K B K eϑ∆ = ∆ ∆ +  is fair 
in the area ( )O Oν  with 0 ϑ< , where { }3 3

0,0,0 m mO R R J ∞= ⊂ × × , Oν  is 
some neighborhood of the point O; 4) the function ( )KV t  satisfies (21); 5) 

, KV Vε
� �  satisfy the system of inequalities 

 

( )

( )138
3 4

l
x

ee x

KK

V

k
VV k
VV

A

ν β

νϑβ
ϑ

 Γ 
−     ≤    Γ     −

 

�
�

���������

;              (24) 

6) the upper solution for ( ) ( ) ( ) T
,e K e KV t V t V t=     satisfies to the comparison 

equation VS A S=�  if 
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 ( ) ( )V t s tρ ρ≤ , ( ) ( ) ( )( )0 0 0&t t V t s tρ ρ∀ ≥ ≤ ,          (25) 

where ,e Kρ = , [ ]T
e KS s s= , 2 2

VA R ×∈  is M-matrix. Then the system XAS  
is exponentially stable with the estimation 

 ( ) ( ) ( )0
, 0e VA t t

e KV t S t−≤ ,                    (26) 

if 

 
( )

( )1

24
3

l
xk

νβ
νβ

Γ
≥

Γ
.                     (27) 

Theorem 2 shows that the adaptive system gives the estimates for system (1) 
parameters. It is fair at the fulfillment of conditions (27). We supposed that the 
variable ẑp  restricted. The boundedness of the variable ˆzx  follows from the 
boundedness of the system XAS  trajectories. 

Consider subsystem ZAS  described by Equations (12), (16). Introduce Lya-
punov functions 

 
( ) ( ) ( )

( ) ( )( ) ( )( )
,

2 21 1
,

,

0.5 0.5 .

V t V t V t

V t t t

εβγ ε β γ

β γ β γχ β χ γ− −

= +

= ∆ + ∆
          (28) 

Theorem 3. Let 1) functions ( )V tε , ( ),V tβ γ  are positive definite and satisfy 
condition 

 ( )inf Vεε
ε

→∞
→ ∞ , 

[ ]
( ),,

inf ,Vβ γβ γ
β γ

∆ ∆ →∞
∆ ∆ → ∞ ;        (29) 

2) the function ( )V tεβγ  has the form (28); 3) the function 

 ( ) ( )
( )

1

1 sup
,

n t
g t

V tε ε

ε
ε

+

∈Ω
=� , ( )1 1supg g t

ε∈Ω
= � ,             (30) 

exists, where Ω  is the definition range of the subsystem ZAS ; 4) x δ∆∆ ≤� , 
0δ∆ ≥ ; 5) x υ≤� , 0υ > ; 6) the assumption 1 holds for the system (1)-(3). Then 

all trajectories of the system ZAS  are bounded, belong in the area  
( ) ( ){ }0G , , : ( )V t V tε εβγ εβγε β γ= ∆ ∆ ≤ , and the estimation 

 
( )( ) ( )

( )( )( )
( )

( ) ( )
0

2
1

1 0

0

1d
2

t

z
t z

k g V
k g t t

V t V t

ε

εβγ εβγ

υ β γ τ τ δ
υ β γ ∆− + +

− + −

≤ −

∫
  (31) 

is fair if 

 ( ) 1zk gυ β γ> + .                      (32) 

So, the boundedness of trajectories in the adaptive system is proved. The 
analysis showed that the subsystem XAS  is asymptotically stable. The prove of 
trajectories boundedness for the subsystem ZAS  is a more complex problem. 
The estimation (31) shows that the quality of processes in the ZAS -system de-
pends on the output derivative of the BWS -system. The following result give 
more exact estimations for processes in the ZAS -system. 

Theorem 4. Let 1) positive definite Lyapunov functions ( ),V tβ γ  and ( )V tε  
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exist and have the indefinitely small higher limit at ( ) ( ), 0t tβ γ∆ ∆ →    to 
( ) 0tε → ; 2) ( ) ,P t ν ν∈PE ; 3) such 1 20, 0c c> >  exist that conditions 

( ) ( )
( ) ( ) ( )

22 2
2

22 2
1

ˆ ˆ ,

ˆ ˆ ˆ

n n

n n

x z c x z

x z sign z c x z

ε γ γ ε

ε β β ε

 ∆ = ∆ +  
 ∆ = ∆ +  

� �� �

� �� �
            (33) 

are satisfied in the area ( )O Oν , where { }2 2
0,0,0O R R J ∞= ⊂ × × , Oν  is some 

neighbourhood of the point O; 4) inequality ( )2n
z zсε ε− ≥  holds for almost all 

t where 0zс ≥ ; 5) such 0xπ ≥  and 0ω >  exist that ( )2

xx π≥��  and  

zε ε ω ε− ≤ ; 6) the function 

 ( )
( ) ( )
( )

2 1

2 sup
,

n t
g t

V tε ε

ε
ε

+

∈Ω
= , ( )2 2supg g t

ε∈Ω
= �                (34) 

exists, where Ω  the subsystem ZAS  definition domain; 7) Vε
� , ,Vβ γ

�  satisfy 
the system of inequalities 

 
( )

�

( )
1 2

2

,,

12
2 ;
02

z

zs

k g gV V
kd VV с

BA

ε ε

β γβ γ

εε

υ ωυ λχωυ
δ∆

 − − −       ≤ +      −          

��

�
���������������

    (35) 

8) the upper solution for ( ) ( ) T
, , ,V V t V tε β γ ε β γ =    satisfies to the equation 

 ( )2S A S Bε ε δ∆= +�� �                        (36) 

if 

 ( ) ( )V t s tρ ρ≤� �� , ( ) ( ) ( )( )0 0 0&t t V t s tρ ρ∀ ≥ ≤� �� ,            (37) 

where , ,ρ ε β γ=� , 
T

,S s sε β γ =  
� � � , 2 2A Rε

×∈  is M-matrix. Then the system 

ZAS  is exponentially dissipative with the estimation 

 ( ) ( ) ( ) ( ) ( )0

0

2
, , 0e e d

T
A t t A t

t

V t S t Bε ε τ
ε β γ εδ τ− −

∆≤ + ∫� ,            (38) 

if ( )1 22 2z sk g g d cυ ωυ λχωυ− − >� , 1 22zk g gυ ωυ> −� , 0sd > , 

 ( ) ( ) ( )1 2min , , min , , max , , .s x zc c с d ccβ γ β γχ χ χ χ χ χ χπ= = = =    (39) 

M-matrix is considered in [25]. 
So, the system ZAS  is exponentially dissipative. The dissipativity area de-

pends on the informational set Io  of the BWS -system. 

3.4. Simulation Results 

Consider the system (1)-(3) with parameters 1.5n = , 2c = , 1m = , 0.5β = , 
0.7α = , 0.6k = , 1d a= = . Parameters are selected based on simulation. The 

exciting force ( ) ( )2 2sin 0.15f t t= − π . The system is modeled with initial con-
ditions ( )0 1x = , ( )0 0x =� , ( )0 1z = . Form the set Io . The system phase por-
trait and output of the hysteresis shown in Figure 1. 
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Figure 1. System phase portrait and hysteresis change. 

 
Consider the identification of the system parameters. Determine the parameter 

µ  of the system (13) using the transient process analysis for e�  and 9.85 st < . 
Calculate Lyapunov exponents (LE) [26]. The estimation for the maximum LE is 
−0.9. Therefore, we set 0.8µ = . Initial conditions in (7) are equal to zero. 

Adaptive system work results presented in Figures 2-4. Parameters xk , zk  
are equal to 2.5 and 0.75. The tuning process of XAS -systems (the model (8)) 
parameters shown in Figure 2. Figure 3 shown the model (11) parameters tun-
ing. 

Show the modification of identification errors ,e ε  in Figure 4. We see that 
the accuracy of obtained estimations depends on the numbers of tuned parame-
ters and the level x�  and properties ( )f t . Obtained results confirm statements 
of theorems 3, 4. The ZAS -system work results influence the tuning processes 
in the XAS -system. Gain coefficients in (15), (16) and (17) are 0.0000002βχ = , 

0.0000002γχ = , 4 0.00005γ =  1 0.0002γ = , 2 0.00001γ = , 3 0.00002γ = . The 
hysteresis output estimation shown in Figure 5. 

So, simulation results confirm the exponential dissipativity of the designed 
system. 

4. Modification SBW-Systems 

Various modifications of BWM have been proposed (see, for example, [4] [5] 
[26] [27] [28]). They reflect the features and properties of the control object. 
System (1)-(3) is the basis for modifications. The BWM modification proposes 
for the case of asymmetric hysteresis in [29]. The model has the form 

 ( )( )( )nz a sign zx z xβ γ= − + � �� .                  (40) 

The BWM modifications set is based on the introduction of new multipliers in 
(3) [4] [30]. They reflect requirements to the system. BWM considering the de-
gradation and clamping of reinforced concrete structures has the form [30] 

 ( ) ( ) ( )( )1,
1

1
nnh z

z x x z x zν
η

ε
δ β γ

δ
− = − − +  +

� � �� ,          (41) 
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Figure 2. Tuning of model (8) parameters. 

 

 

Figure 3. Tuning of model (11) parameters: 1 is tuning β̂ , 2 is tuning γ̂ . 
 

 
Figure 4. Outputs modification of systems XAS , ZAS . 
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Figure 5. Hysteresis estimation at adaptation of BWAS -system. 

 
where ηδ  and νδ  are parameters reflecting the decrease in rigidity and strength 
of the structure, ( ),h z ε  considers the pinching effect. 

The analysis showed that the last term in (3) is responsible for “fine-tuning” 
the hysteresis in the saturation or switching areas. If this is not critical for the 
object, then by selecting the parameters of the SW-system, this term in Equation 
(3) can compensate. In addition, some modifications simplify and increase the 
system (1)-(3) stability. They have the form [32] 

 ( ) ( ): n
n z z x a x sign x x z sign zω µ υ

ρωµυβ ρ β= − + −� � � ��M ,      (42) 

 ( ) ( ): n
n z a x sign x x z sign zµ

µβ β= −� � ��M ,            (43) 

 ( ) ( ): n
n z a x sign x x z sign zµ υ

µυβ β= −� � ��M .           (44) 

The introduction in (42) of the linear component of z increases the feasibility 
of the BWM and the BWS -system stability. As the system is nonlinear, the func-
tion ( )x t

ω
�  introduces to ensure the required hysteresis state. It guarantees a 

change z in the specified boundaries. Parameters 0, 0ρ ω> ≥  are some num-
bers. 

A comparison of the models (42)-(44) and BWM is shown in Figure 6. The 
representation allows comparing model properties by generalized indicators in 
the “minimum-maximum” space. Notation in Figure 6: z is model (3), z1 is 
model nρωµυβM , z2 is model nµβM , z3 is model nµυβM ;  is average value; — is 
median;  is the extreme value (end of the “saturation” region). 

So, BWM modifications are considered. The application of proposed models 
depends on the object properties. The parameters influence analysis of models 
(42)-(44) give in [31]. 

5. Theoretical Foundations of SI 
5.1. Preliminary 

The modern direction of structural identification is based on the parametric  

0 2 4 6 8
-3

-2

-1

0

1

2
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Figure 6. Comparison of hysteresis models (3), (42)-(44). 

 
paradigm. It is explained by the formation and development of the theory of 
identification. Nonlinear systems SI methods are based on the approximation of 
nonlinearity by parametric models (see, for example, [32] [33] [34] [35] [36]). 
This approach leads to levelling of the nonlinearity structure. The second direc-
tion of structural identification is related to the analysis of geometric frame-
works (GF). GF reflect the state of the system nonlinear part. It is the new direc-
tion in the identification theory. This approach proposes in [22] [37]. The 
statement of this approach gives below. 

5.2. Problem Statement 

Consider dynamic system 

 
( )

T

,

,

X AX y I Bu

y C X

ϕ= + +

=

�
                       (45) 

where u R∈ , y R∈  are input and output system; q qA R ×∈ , qB R∈ , qI R∈  
qC R∈ ; ( )yϕ  is the scalar nonlinear function belonging to the class of the 

hysteresis hF ; [ ]T0,0, ,0,1I = � . We suppose that A is the Hurwitz matrix. 
Various assumptions are made about the structure of the function ( )yχ ϕ= . 

They determine by the level of a priori information. Under a priori definiteness, 
apply the methods based on linearization [38]. In the absolute stability study of 
nonlinear systems, suppose [28] 

 ( ) ( ){ }2 , 0, 0 0ϕχ ϕ ξ ξ ξ ξ ϕ∈ = ≥ ≠ =F ,               (46) 

where Rξ ∈  is the nonlinearity input. ξ  is a linear combination of the state 
variables (the vector X). The sector condition is used for approximation of func-
tion χ  

 ( ) ( ){ }2 2
1 2 1 2, 0, 0 0, 0,ϕχ γ ξ ϕ ξ ξ γ ξ ξ ϕ γ γ∈ = ≤ ≤ ≠ = ≥ < ∞F ,    (47) 
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Static nonlinearity often applies in control systems. Therefore, next, we con-
sider the static (algebraic) functions which describe a hysteresis. For system (45), 
we have a set of the data 

 ( ) ( ) [ ]{ }0I , , ,o ku t y t t J t t= ∈ = .                 (48) 

Problem: determine a form and parameters of function ( ) hyϕ ∈F  based of 
the analysis and a processing of the set Io .  

The problem solution is based on the formation of the set ,IN g  contained 
data about ( )yϕ . 

5.3. Formation of Set N g,I  

The differentiation operation applies to ( )y t  and designates the obtained va-
riable as 1x . Generate informational the set { }1I I ,ent o x= . Select the data 
I Ig ent⊂  subset described the particular solution (steady state) of the system 
(45). The mathematical model 

 ( ) ( ) ( ) TT
1̂ 1lx t H u t y t=                      (49) 

applies to obtain I I \ Ig ent tr= . Model (49) is determined on the time gap  
\g trJ J J=  and gives the linear component 1x  estimation. 3H R∈  is a pa-

rameters model vector. The choice of an interval gJ  depends on the value of 
criterion ( )Q e . 

Determine a vector H as 

 ( )
1 1ˆ

min
l optH e x x

Q e H
= −

→ ,                   (50) 

where ( ) 20.5Q e e= . 
Apply the model (49) and determine the forecast for the variable ( )1x t  

Igt∀ ∈ . Compute the error ( ) ( ) ( )1 1ˆ le t x t x t= − . ( )e t  depends on nonlinearity 
( )yϕ  in the system (45). Obtain set 

 ( ) ( ){ },I , ,N g gy t e t t J= ∈ ,                  (51) 

which we will use next. We will apply the designation ( )y t , supposing that 
( ) ,IN gy t ∈ . 
The further problem solution is based on the analysis of frameworks eyS , 

ekS  which reflect the state of the nonlinearity. 
Remark 4. Choice of the model (49) structure is one of the stages of structural 

identification. Simulation results show that the model (49) is used in identifica-
tion systems of plants with static nonlinearity. For other classes of nonlinearity, 
this problem demands further research. 

5.4. Frameworks eyS , ekS  

Go into space ( ),ye y e=P  and construct the phase portrait S  of the system 
(45). The framework eyS  corresponds to a phase portrait S  [37]. eyS  de-
scribes function { } { }:ey y eΓ →  gt J∀ ∈ . eyS  must have a closed form. This 
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property eyS  differs from frameworks ekS . ekS  is applied for the analysis of 
statics systems [39] [40]. 

For decision making, we will use also ekS -framework. ekS  is described by 
function ( ){ } ( ){ }:ek sk t e tΓ → , where ( )sk t R∈  is a coefficient of structural 
properties [39] systems (45) in space yeP  

 ( ) ( )
( )s

e t
k t

y t
= .                          (52) 

Next, we construct sector sets for system (45) in the space ( ),ke k e=P  and 
will be decision-making on the class hF . The solution to this problem is based 
on the analysis of proposed frameworks. 

5.5. About Properties N g,I  

Consider the set ,IN g  properties ensured the solution of hysteresis F1 structural 
identification. Let fulfill to conditions 

(i) the set Io  ensures the solution of the model (49) parametric identification 
problem. 

(ii) the input ( )u t  ensures obtaining informative framework ( ),Iey N gS  or 
( ),Iek N gS . 

If ( )u t  has properties (i), (ii), then input ( )u t  is representative. 
Let the framework eyS  is closed and its area is not zero. Designate altitude 

eyS  as ( )eyh S , where the altitude is the distance between two points of the op-
posite sides of framework eyS . Then the framework eyS  is identified on set 

,IN g . 
Let u α∈PE , where αPE  is the constancy excitation property 

 ( )2: u tα α≥PE                         (53) 

fair for 0α∃ >  and 0t t∀ ≥  on some interval 0T > . 
Statement 1 [37]. Let (i) the linear part of system (45) is stable and nonlinear-

ity satisfies the condition (47); (ii) the input ( )u t  is piecewise continuous, li-
mited and constantly exciting; (iii) exists 0Sδ >  such that ( )ey Sh δ≥S . Then 
the framework eyS  is identified on set ,IN g . 

Proof of Statement 1. Consider input ( )u t  satisfied to condition 1). ( )u t
corresponds Fourier series containing a sinusoid with frequency iω . The output 

( ) ,IN gy t ∈  contains components of this spectrum and has a phase shift. The 
variable 1x  is the result of the differentiation ( )y t . Hence, 1x  contains compo-
nents with this frequent spectrum. Therefore, the framework S  (phase portrait) 
on a phase plane ( )1,y x  has a closed form. The eyS -framework has the same 
form. Determine the distance ( )eyh S  between opposite points of the frame-
work eyS . ( ) ( )1,y t x t  satisfy the condition 2) statement 1. Therefore, for al-
most all ,N gt J∈  ( )ey Sh δ>S .                                        

The framework eyS  which has referred properties, we will name h-identified. 
Further, we believe that eyS  has the specified properties. 

Features of the h-identifiability. 
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1) h-identifiability is a concept not parametric identification, and structural 
identification; 

2) The demand for parametric identifiability is the base h-identifiability; 
3) h-identifiability determines more stringent demands to the system input. 
Feature 3 means that “the bad” input can satisfy a constancy excitation condi-

tion. Such input can give a so-called “insignificant” eyS -framework (framework 

eyNS ) [37] which will have property h-identifiability. 

5.6. Framework eyNS  

Consider the framework eyS . Let 
ey ey

l r
ey = ∪S SS F F , where ,

ey ey

l r
S SF F  are left and 

right fragments eyS . Determine for ,
ey ey

l r
S SF F  secants 

 l l
S a yγ = , r r

S a yγ = ,                       (54) 

where ,l ra a  are the numbers determined using the method of least squares 
(LSM). 

Theorem 5 [37]. Let (i) the framework eyS  is h-identifiable; (ii) the frame-

work eyS  have the form 
ey ey

l r
ey F F= ∪S SS , where ,

ey ey

l r
S SF F  are left and right 

fragments eyS ; (iii) for ,
ey ey

l r
S SF F  secants (54) are obtained. Then eyS  is eyNS - 

framework, if 

 l r
ha a δ− > ,                         (55) 

where 0hδ >  is some number. 
Theorem 5 proves based on sets homothety. 
Remark 5. eyNS -frameworks are characteristic for systems with many-valued 

nonlinearities. They are the input inadequate use result. 

6. Structural Identification and Structural Identifiability  
BWH 

We have noted (see introduction) that structural identifiability (SID) is the result 
of structural identification. Therefore, we will consider the SID basics guaran-
teed SI. 

Apply the SI model (49) and represent the system (45) as (system yS ϕ ) 

 

( )

T

1

,:
,

: , ,

y
X AX IS
y C X

S e f y xϕ

ζ  = + 
= 


=

�� �

��                        (56) 

where nX R∈�  is a variable describing the general solution of the system (45), 
Rζ ∈  is a bounded perturbation appearing as the analysis result of the variable e. 

6.1. System Sϕ  

Consider the identifiability problem system Sϕ . Let conditions hold. 
B1. The input is constantly excited at the interval J. 
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B2. The analysis of eyS  gives the solution to the estimation problem the non-
linear properties of the system yS ϕ . 

We state the basic concepts, generalizing the results [22]. 
Definition 2. If ( )u t  satisfies В1 and В2 conditions, then the input ( )u t  is 

representative.  
Let the framework eyS  closed, and the area eyS  is not zero. Denote height 

eyS  as ( )eyh S  where height is the distance between two points opposite sides 
of the framework eyS . 

Theorem 6 [37]. Let (i) the linear part of the system (45) is stable; (ii) the 
nonlinearity ( )ϕ ⋅  satisfies the condition (47); (iii) the input is bounded and 
constantly excited; 4) ( )ey Sh δ≥S , where 0Sδ > . Then the framework eyS  is 
identified on the set ,IN g . 

Definition 3. The framework eyS  is called h-identifiable if theorem 6 holds 
for eyS . 

Let eyS  be h-identifiable. Introduce designations: ( )domy ey=D S  is defini-
tion range of the framework eyS , ( ) ( ) ( )max miny y y tt

D D y t y t= = −D  is di-
ameter yD . Let ( ) Uu t ∈ , where U is an acceptable set of inputs for the system 
(45). The set U contains representative inputs. 

Definition 4. If yD  of the framework eyS  has a maximum diameter yD , 
the input S-synchronizes the system (45). 

Consider a reference framework ref
eyS . ref

eyS  is the framework eyS  reflecting 
all properties of the function ( )yϕ . Designate by the diameter ( )ref

y eyD S  as 
ref
yD . ref

yD  exists if the input the system (45) is S-synchronizing. 
Definitions 2, 3 show if ref

ey ey≅S S , then ref
y y yD D ε− ≤ , where 0yε ≥ , ≅  

is the proximity sign. Elements of the subset SU  have property 

 ( )( )( )SU
ref

y ey u y yD u t D ε∈ − ≤S .                  (57) 

Synchronization ( ) Uu t ∈  is the choice of such input ( ) Uhu t ∈  that re-
flects all features ( )yϕ  in eyS . It is true if ( )u t  ensures max

h
yu

D  and  

ey ey≠S NS . We interpret the choice ( ) Uhu t ∈  as ensuring synchronization 
between structures of a model and the system. , max

h
h y yu

D=d  is the condition 
of h-identifiability which can represent as 

 ( )( )( )SU ,y ey u h y yD u t ε∈ − ≤S d .                 (58) 

The condition for eyNS  

 ( )( )( )SU\U ,y ey u h y yD u t ε∈ − >S d .                (59) 

(58) can be interpreted as proximity domain 

 ( )( )SU
ref

D ey u eyu t ∈= −Q S S ,                   (60) 

which is understood as ( ) ( )ref
yy t y t ε− ≤� �  for almost t t∀ ≥ � . 

We will write D yδ ε≤Q  if considered frameworks are close. 
Domain DQ  is the S-synchronizability area on ( ){ }hu t  or the structural 
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identifiability domain on ( )( ){ }h hu tS , where hS  is the phase portrait of the 
system (45) if the condition D yδ ε≤Q  is true for DQ  almost *t t∀ ≥ . 

So, two criteria (55) and (59) presented for the existence of the insignificant 
framework eyNS . Structure of systems Sϕ  and (45) are structurally non-identi- 
fiable in this case. 

Let the input ( )hu t  synchronize the system (45). If ( )u t  is S-synchronizing, 
then we will write ( ) Shu t ∈ . Note that a finite set ( ){ } Shu t ∈  exists for the 
system (45). The choice of optimal ( )hu t  depends on ,h yd  and (58). The hold 
of the condition (58) is one of the prerequisites for SI of the system (45). 

Definition 5. If framework eyS  is h-identified and conditions r r
ha a δ− ≤ , 

(8) are satisfied, then the framework eyS  or the system (56) (system (45)) is 
structurally identified or 

h
hδ -identifiable. 

Remark 6. Conditions specified in definition 5 are the conditions for the 
structural identification of systems (45), (56). 

Definition 5 shows if the system (45) is 
h

hδ -identified then the framework 

eyS  has the maximum diameter of area yD . 
Definition 6. The model (49) is SM-identifying if the framework eyS  is 

h
hδ - 

identifiable. 
The framework eyS  is defined on ( ) Shu t ∈  and ( )hu t  satisfies condition 

B1. Therefore, eyS  corresponds to the nonlinearity ( )yϕ  defined on the class 

 ( ) ( ) ( ){ }, , , , ,n
i i i iy y R y Rϕϕ ϕ ϕ α α α αΑ  ∈ = ∈ Α Α ∈ ∈ Α ∈  F ,     (61) 

where ,i iα α  are some numbers. 
Note that the term SM-identifying does not coincide with the concept pro-

posed in [41]. 
Theorem 7 [42]. Let (i) the input ( ) Su t ∈  is constantly excited; (ii) the sys-

tem (45) phase portrait have m features; (iii) eyS -framework is 
h

hδ -identified 
and contains fragments corresponding to features of the system (45). Then the 
model (49) is SM-identifying. 

The theorem 7 shows if the model (49) is not SM-identifying then model (49) 
structure or the informational set (48) need to change. 

Let сS  is the center of the framework eyS  on the set ( ){ }yJ y t= , 
yDс  is 

the center of the area yD . 
Theorem 8. Let the set SU  given for the system yS ϕ  and (i) exists 0ε ≥   

such that 
yDс с ε− ≤S ; (ii) l r

ha a δ− ≤ , where ,l ra a  are coefficients of 

secants (54) for ( ),
ey ey

l r
ey⊂S SF F S . Then the system (56) is 

h
hδ -identifiable, the 

input ( ) Shu t ∈ , and the framework eyS  defines the class ϕF . 

Proof of Theorem 8. Consider the input ( ) SUhu t ∈ . Since condition  
l r

ha a δ− ≤  is satisfied, the framework eyS  is symmetric concerning the point 
сS  plane ( ),y e . Consequently, definitional domains diameters of the fragments  

,
ey ey

l r
S SF F  for the framework eyS  coincide up to a certain value 0ε ≥F  on the 

set ( ){ }y t , i.e. 
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 ( ) ( )l l r r
S S S S

D D ε− ≤ FF F F F
D D ,                   (62) 

where ,l r
S SF F

D D  are definitional domains ,
ey ey

l r
S SF F . Then the framework eyS  

centre is equal to ( )0.5 l ry S S
Dс D D= +

F F
. Since l r

S S
yD D D+ =

F F
, there exist 0ε ≥  

such that 
yDс с ε− ≤S . The fulfillment of conditions (i), (ii) guarantees  

( ) ( )hu t u t=  and , max
h

h y yu
D=d . Therefore, the framework eyS  contains all  

the features characteristic of the function ( )yϕ  at ( )hu t . So, ( ) Shu t ∈ , and 
system (45) is 

h
hδ -identifiable.                                        

As ( )y ϕϕ ∈F , then the area yD  have center 
y DyD сс J∈ , 

DyсJ  is some in-

terval. 
Len subset ( ){ }, SU Uh iu t ⊂ ⊆  ( 1i ≥ ) which elements have the property of 

S-synchronizability exists. The framework ( ), ,ey i h iuS  has the diameter ( ), ,y i y iD D  
and corresponds to every ( ),h iu t . As ( ), Sh iu t ∈  the diameter ,y iD  has the 
property ,h Σd -optimality. 

Let the hypothetical framework eyS  (a framework ref
eyS ) of the system (45) 

have diameter ,h Σd . 
Definition 7. The framework ,ey iS  has ,h Σd -optimality property on the set 

Uh  if 0εΣ >  such that , ,h y iD εΣ Σ− ≤d  1,# Uhi∀ = . 
Definition 8. If ( ){ }( ) ( )( ), ,U U & Sh i h h iu t u t= ⊂ ∈ , 1i ≥  and frameworks 

( ), ,ey i h iuS  have ,h Σd -optimality property, then frameworks ( ), ,ey i h iuS  are 
structurally indiscernible on sets ( ){ },h iu t . 

So, the 
h

hδ -identifiability estimate can be obtained from any input, following 
definitions 6, 7. 

Definition 9. If frameworks ( ), ,ey i h iuS  have ,h Σd -optimality property, then 

( ), ,ey i h iuS  is locally structurally identifiable on the set Uh . 
Let the framework ( ), ,ey i h iuS  having ,h Σd -optimality property is ,ey i

ΣS , and 
the locally structurally identified framework ( ), ,ey i h iuS  is ,

LSI
ey iS . 

The framework eyS  is locally structurally identifiable on the set SU Uh ⊆  if 

 ( ) ( )S what LSI
h ey ey ey eyu Σ∃ ∈ ≅ → ≅S S S S .               (63) 

Remark 7. We consider nonlinearities satisfying condition (47). Therefore, 
notes made above are valid. 

Definition 10. The framework ( ), SUey i iu ∉S  that does not have the ,h Σd - 
optimality property is locally structurally non-identifiable on the set Uh . 

The framework ( ), SUey i iu ∉S  that is structurally non-identifiable on the set 
Uh  defines a class N

ϕ ϕ⊄F F . 
Remark 8. The described approach applies to the nonlinear system with a 

dynamic law of nonlinearity change. In this case, the hierarchical immersion 
method [43] is used for the structure estimation of the nonlinearity. 

The identifiability of system yS  considered in [44]. Let the phase portrait S  
constructed for the system. 
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6.2. Non-Identifiability Degree 

Obtain the non-identifiability degree estimate of the system (56). Definitional 
domains of S  and eyS  are coincident. Therefore, the diameter ( )eyD S  of the 
framework eyS  is known. Consider the set ( ){ }iu t  having the property αPE . 
Determine the framework ,ey iS  for each ( )iu t  and obtain ( ), ,y i ey iD S . Sup-
pose ( )( ), ,max

i
h y y ey iu

D=d D S  and denote the corresponding input as hu . De-
termine diameters ( )( ), , ,y j y j ey j jd D u = ∈ D S U  for all inputs  

( ){ } { }\i hu t u=U . Since Shu ∈ , therefore , ,h y y jD>d  1j∀ ≥ . As Shu ∈ , 
therefore , ,h y y jD>d  1j∀ ≥ . Then evaluate the non-identifiability degree as 

 ( ) , ,
,

,

h y y j
j ey j

h y

d−
= =

d
SI SI S

d
                    (64) 

SI  shows that BWS -system (1) is structurally identifiable if 0j →SI . 
If estimates for the fragments ,l r

S SF F  of the phase portrait S  are known, 
then the identifiability degree is defined as 

 ( )
( )
( )

l l
y

r r
y

d
SI SI

d
==

S

S

F
S

F
,                      (65) 

where ( ) ( ),l l r r
y yd dS SF F  are diameters of fragments ,l r

S SF F . The system Sϕ  is 
structurally identifiable if ( ) ( )1SI ≤S O  where ( )1O  is neighborhood 1. 

Example 1. Consider the BWH from Section 3.4. Consider four variant inputs 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

0 1

2 3

2 2sin 0.15 , 2 2sin 0.35 ,

2 2sin 0.5 , 2 2sin 0.15 0.2sin 0.35 .

u t t u t t

u t t u t t t

= − = −

= − = +π−

π π

π π
   (66) 

Calculate diameters for the phase portrait definitional domain 

 ( ),0 0 3.75yD =S , ( ),1 1 1.728yD =S , ( ),2 2 1.08yD =S , ( ),3 3 3.967yD =S . (67) 

Results obtained for the system BWS  steady state. The analysis showed  
( )0 Su t ∈ . We assume that the system BWS  with the phase portrait 0S  is the 

standard and ( ), ,0 0h y yD=d S . The degree of non-identifiability of the system 

BWS  for various iu  

 1 0.549=SI , 2 0.718=SI , 3 0.035= −SI .              (68) 

We see that the BWS -system is structurally non-identifiable with 1 2,u u , and 
the BWS -system with input 3u  is structurally indistinguishable from input 0u . 
So, frameworks ( ) ( ),1 1 ,2 2,ey eyu uS S  are frameworks of class eyNS , and the 
framework ( ),3 3ey uS  belongs to class LSI

eyS . 

6.3. Hierarchical Immersion Method 

If nonlinear processes are complex, then the model (49) will be inadequate. Then 
the hierarchical immersion method (HIM) [44] is used to design the eyS - 
framework. HIM realizes the subsequent stages of synthesis eyS  if the model 
(47) is inadequate. The method is based on the application (49) in a new struc-
tural space and the synthesis for ey

�S  new framework. If the new model (49) is 
significant, HIM stops. Otherwise, a new iteration is implemented. 
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6.4. SI and SID Bouc-Wen Hysteresis 

Consider the BWH from section 3.4. Introduce the framework eyS  to estimate 
the BWS -system structural identifiability. eyS  is the hysteresis estimation in 
the structural space eyP . Apply the model 

 ˆ 0.199 0.471x x f= − +�                        (69) 

and calculate the error ˆe x x= − �� . 
The framework eyS  described by the mapping ( ) ( ):eys y t e t→  and is 

showed in Figure 7. 
Apply the approach proposed in [45]. Draw the straight line parallel to the or-

dinate axis through point cS . Obtain two fragments ( ),
ey ey

l r
ey⊂S SF F S . Deter-

mine secants for the left 
ey

l
SF  and right 

ey

r
SF  fragment 

 
2

,

2
,

0.0313 0.146 912,

0.032

 , 0.

 0,15, 0.926,
ye l

y r

l
e

r
e e

y r

y r

γ

γ =

= − =

−=
                (70) 

Let ( )eyh S  be the distance between the opposite sides of the framework eyS . 
The framework eyS  satisfies conditions of theorem 6. The height ( ) 0.02eyh ≥S , 
and the input ( )f t  is constantly excited and S-synchronized. Therefore, the 

eyS -framework (system BWS ) is 
h

hδ -identifiable. Figure 8 confirms this con-
clusion. Models (69) is SM-identifying. 

Consider the structural identification of BWH. Apply the hierarchical immer-
sion method for estimating the BWH structure. Calculate the derivative for e 
applying numerical derivation. This procedure is sensitive to calculation errors. 
Therefore, perform smoothing ( )e t�  applying the Fourier transform.  

Denote the obtained variable as eε = � . Further analysis has shown that ε  
did not depend on x (see Figure 8). Thus, ε  depends on x�  or z. 

Consider the framework xε ��S  described by the mapping ˆ
ˆ:x xε εΓ →�
� , where 

x̂�  is the estimate of the derivative x� . Determine the secant εγ  for xε ��S : 

 ˆ
2
ˆ

ˆ0324 ,0 8. 60.x xx rεεγ = =� �
� .                     (71) 

The model (71) presents in Figure 8. Therefore, Figure 8 and the model (71) 
confirm effect x�  on hysteresis properties. 

Estimate the relationship between variables z and ε . Use the variable e as the 
estimation z. Apply the denote ẑ e= . The analysis shows ẑ  and ε  not re-
lates by the linear dependence. Therefore, the correlation between ε  and the 
combination ẑ  and x̂�  exists. Eliminate the effect of the linear component x̂�  
on ε . Obtain the variable 

x̂εϑ ε γ= − �
. Go to into the space ( ),ϑµ ϑ µ=P ,  

ˆˆ hz xµ = � , 0h > . 
The example of the relation estimation is shown in Figure 9, where 0.5h = . 

The secant ϑµγ  framework ϑµS  has the form 0.354ϑµγ µ= , coefficient of de-
termination 2 0.82rϑµ = . The parameter h cannot correspond to the parameter n 
in (3). The cause of such discrepancy follows from the proposed approach. True 
of BWM parameters estimates based on the use of the parametric identification. 
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Figure 7. Framework eyS . 

 

 

Figure 8. Framework for effect x̂�  estimation of BWS -system. 

 

 
Figure 9. Estimation of correlation ε  and ϑ . 
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The effect estimates of the variable µ  can be obtained in space εµP . This 
conclusion follows from Figure 9, where the dependency ( )ϑ ϑ ε=  is pre-
sented. 

Remark 9. Secant (71) can use as the output for estimating structural rela-
tionships in BWM. 

Figure 10 confirms the validity of the proposed approach. The framework re-
flects the relationship between the reference and received hysteresis estimates. 
The secant ˆzzγ  has the form 

 ˆ 0.033 0.0068zz zγ = − , 2
ˆ 0.836zzr = .                  (72) 

So, the structure analysis has shown that the hysteresis dynamics depends on 
variables z and x� . The system (1), (2) output does not influence the change of 
the hysteresis. The structure analysis is based on the application of adequate 
mathematical methods and guaranteed decision-making on the structure of the 
system BWS .  

The HIM stop rule. Let ( )i oI I  is an informational set on which the frame-
work iS  is defined, where i is the hierarchical immersion level. Examples of sets 

( )i oI I  and frameworks are presented above. Let 1i+NS  is the insignificant 
framework, and at the level i the system is structurally identifiable. 

Let 1i+NS  is the insignificant framework, and the system BWS  is structurally 
identifiable at the level i. 1i +  is a sign of structural non-identifiability the system 
at the level 1i + . 1i+NS  is a sign of the system (1)-(3) structural non-identifiability 
at level 1i + . 

Theorem 9. The system BWS  is structurally identifiable on the set ( )i oI I  if 

1 1i i+ +=S NS  at the level 1i + . 
The proof of theorem 9 follows from the analysis of secant for framework at 

each step i. 
Figure 11 represents the framework εµ =� �S NS  and the secant, where ˆẑ xµ =� � , 

ϑµε ϑ γ= − �� . Obtain the model for the variable ε�  on the set ( ) ( ){ }ˆ ,x t tµ� �  

 1 2
ˆ ˆˆ ˆa a xε µ= +� � � ,                         (73) 

 

 
Figure 10. Estimation of proximity z and ẑ . 
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Figure 11. Insignificant framework εµ� �S . 

 
and introduce the misalignment ˆκ ε ε= −� � � . An approximation κ�  by model 

( )ˆ fκ µ=� �  shows that this relationship is insignificant. This conclusion con-
firms the presence of the third term in the right part of the Equation (3). 

So, we propose the approach for structure estimating of the Bouc-Wen model 
based on the set Io  analysis. The approach is based on the hierarchical immer-
sion method and the analysis of geometrical frameworks. Frameworks describe 
the state of the system nonlinear part at each SI stage. 

7. Excitation Constancy Effect on System Identifiability 

Let input ( )u t  of the system (56) have the property 

 ( ) , k
u t α ω∈PEF ,                        (74) 

where 

 ( ) ( ) ( ) ( ): & & S
hh h h hu t u u uα ω∈ ∈ ∈PE PF , ( ) ( ):

h h h hu tω = ΩPF RF ,   (75) 

( )kΩRF  is a model for ( )ku t  based on the Fourier series and given on the set 
of frequencies { }1 2, , ,k kω ω ωΩ = � . 

Let Uk ku ∈ , SU U \ Uk = . Consequently, Sku ∉ . For Shu ∈  is hold 

 ( ) ( ) ( ) ( ): & & S
hh h h hu t u u uα ω∈ ∈ ∈PE PF , ( ) ( ):

h h h hu tω = ΩPF RF ,  (76) 

where h kΩ ≠ Ω . 
Compare (75), (76) and obtain 

 ( ) ( )( ) h k k
h h k k ey ey ey eyΩ ≠ Ω ⇒ ≠ ⇒ =RF RF S S S NS .          (77) 

From (77) have 

 ( ) ( )( ) ( ) ( )h k h k
y ey y ey y ey y eyD D ≠ ⇒ ≥ D S D S S S .           (78) 

The definitional domain of frameworks ,h k
ey eyS S  do not coincide, and h

eyS  is 

,h Σd -optimal on the set Uh . Therefore, the fulfillment of condition (58) follows 
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from inequality (78). Consequently, the structure of the system (45) nonlinear 
part with ku  has indicators that do not coincide with the structurally identifia-
ble parameters of the system (45) with hu . 

So, the CE condition of the input affects the Sϕ -system 
h

hδ -identifiable and, 
consequently, the system (56). 

The statement is true. 
Theorem 10 [37]. Let (i) the input ku  to condition (75); (ii) the k

eyS - 
framework corresponds to the input ku ; (iii) there is the input Shu ∈  such 
that the condition (76) satisfied; (iv) conditions (77), (78) holds. Then (a) the 
Sϕ -system is structurally non-identifiable by the input ku ; (b) structural para-
meters of the Sϕ -system do not correspond to the system yS ϕ  with the identi-
fiable framework h

eyS .  
The input amplitude can influence on the SI of nonlinear systems. Modify 

conditions (75), (76) 

 ( ) ( ) ( ) ( ): & & S
kk hu t u u uα ω∈ ∈ ∈PE PF , ( ) ( ): ,

k k k k ku t Gω = ΩPF RF ,  (79) 

 ( ) ( ) ( )( ) : & & S
hh h h hu t u u uα ω∈ ∈ ∈PE PF , ( ): ( ) ,

h h h h hu t Gω = ΩPF RF ,  (80) 

where kG , hG  are model kRF , hRF  parameter vectors. 
Present models kRF , hRF  as 

 ( ) � ( ), ,h h h h h h hG g GΩ = Ω�RF RF , ( ) � ( ), ,k k k k k k kG g GΩ = Ω�RF RF ,     (81) 

� ( ),h h hG Ω�RF , � ( ),k k kG Ω�RF  are modifications of models (78), (76);  

,maxh h ii
g g= , 1,# hi = Ω , ,h ig  is an element hG ; ,maxk k ii

g g= , 1,# ki = Ω . 

pg  ( ,p k h= ) denotes the generalized amplitude of the input. 
Condition (77) transformed into the form 

 � ( ) � ( ), ,h h h h k k k kg G g GΩ ≠ Ω� �RF RF .                 (82) 

Since Shu ∈  then h kg g≥ . This conclusion follows from 

 ( )( ) ( )( ) � ( ) � ( ), ,h h k k h h h k k kD u D u G G≥ ⇒ Ω ≥ Ω� �S S RF RF ,      (83) 

and the model � ( ),h h hG Ω�RF  approximates the input ensuring S-synchronization 
of the system yS ϕ . 

Obtain ,h Σd -optimality of the diameter ( )h
h eyD S  from ( ) h

h eyu ⇒S S . The 
framework k

eyS  does not have this property (see (80)). Therefore, the input 
Sku ∉ , which has a smaller generalized amplitude, gives the diameter ( )k

k eyD S . 
Theorem 11 [43]. Let (i) the input ku  of the system (45) satisfies the condi-

tion (79); (ii) the framework k
eyS  corresponds to input ku ; (iii) there is the in-

put Shu ∈  such that the condition (80) holds; (iv) conditions (77), (78) are 
hold. Then (a) the Sϕ -system is structurally non-identifiable by the input ku ; 
(b) structural parameters of the system Sϕ  do not correspond to the system (45) 
with the identifiable framework h

eyS  if h kg g≥ . 
So, the properties influence of input on SI and the structural identifiability of 

the system with BWH show. 
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8. Conclusion 

The estimate problem of Bouc-Wen hysteresis parameters is relevant under un-
certainty. The existing approaches to the identification are based on the parame-
tric paradigm and consider a priori information. Under uncertainty, the BWM 
synthesis requires time-consuming research. The parametric approach plays an 
approximative role for a given a priori model structure. It allows you to describe 
the behaviour of the system or set trends in its development. The structure is a 
hidden and non-formalized property of the system. Therefore, indirect and ob-
ject methods should be used that reveal the features (structure) of the system. 
The paper proposes a structural-identification approach (CIA) for analyzing 
features of the Bouc-Wen hysteresis under uncertainty. Geometric frameworks 
are the basis of the CIA. The GF analysis allows for the evaluation of the BWH 
structure and identifiability. The proposed approaches demonstrate the possibil-
ities of the stated paradigm. 
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