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Abstract 
Rhodamine 6G-chromone-derived compounds RD1 - RD4 have been syn-
thesized by condensation of rhodamine 6G hydrazide and substituted chro-
mone aldehydes in ethanol using microwave-assisted reaction. The structures 
of these synthesized rhodamine 6G derivatives were confirmed by proton 
nuclear magnetic resonance (1H-NMR), carbon nuclear magnetic resonance 
(13C-NMR), and high-resolution mass spectra data (HRMS). Colorimetric 
and photophysical studies show the synthesized compounds selectively detect 
copper (II) ion in aqueous acetonitrile solution. 
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1. Introduction 

The development of green chemistry and environmentally friendly organic syn-
thetic methods progressed rapidly in recent years. It has been known for many 
years that rhodamine derivatives are a widely used class of compounds due to 
their versatile applications in various fields [1] [2]. Because of their strong fluo-
rescence and photostability, rhodamine derivatives have been found to have ap-
plications in sensors [3] [4] [5], imaging [6], fluorescent markers [7], and in la-
ser applications [8]. The rhodamine skeleton, which has excellent photophysical 
properties like long absorption and emission wavelength, high molar extinction 
coefficient, high florescence quantum yield, good solubility, and photostability, 
has attracted great interest [9] [10]. These compounds have been well established 
as fluorescent sensors for cations due to their ability to trigger the change in 
structure between the spirocyclic and ring-open spirolactum forms, which result 
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in different optical properties [11]. Several studies have shown that the type of 
the substituent group on the lactam ring has influence on the properties of rho-
damine derivatives [12] [13]. 

Microwave application in organic synthesis has had exponential growth over 
the last twenty years due to its easy experimental conditions, rapid turnaround, 
and easy workups. Moreover, it is considered environmentally friendly and typ-
ically offers high yields, along with simplified processing and handling compared 
to conventional synthesis methods [14] [15] [16]. Microwave irradiation tech-
nique possesses several green attributes such as increased energy efficiencies, less 
purification process, cleanliness, and use of green solvents. More efficient ways 
of synthesizing rhodamine derivatives are needed so that a variety of products 
with various chemical and spectral properties can be made available to tho-
roughly investigate their potential use as optical sensors. The power of micro-
wave synthesis is utilized for speeding the reaction and providing an efficient 
and convenient way of obtaining these rhodamine variations or related com-
pounds [17]. 

In this work, we present an efficient, clean, and straightforward synthetic 
procedure to prepare four rhodamine-derived compounds. These target com-
pounds are synthesized in a two-step reaction (Scheme 1), using mild condi-
tions and inexpensive reagents under green conditions with relatively high 
yields. 
 

 

Scheme 1. Microwave-assisted synthesis of compound RD1 - RD4. 
 

   

Scheme 2. A possible proposed binding mechanism of compounds RD1 - RD4 towards Cu2+. 
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2. Experimental 
2.1. Reagents and Instruments 

All chemicals used in this study were commercially purchased and used as re-
ceived. Hydrazine monohydrate (79%), Rhodamine 6G, Chrome-3- carboxalde-
hyde, 3-Formyl-6-nitrochromone, 6-Chloro-3-formyl-7-methylchromone, 3- 
Formyl-6-methylchromone, acetonitrile, ethanol, DMSO (d6), and nitrate salts 
were used in this experiment. Microwave irradiation reactions were carried out 
in a CEM reactor. The CEM microwave irradiation system is developed to en-
hance the capacity to perform reactions under controlled conditions. The reac-
tions were performed safely at a maximum temperature of 100˚C. However, 
reactions can safely be performed at pressures up to 20 bar and temperatures 
ranging from 40˚C to 300˚C. 1H-NMR and 13C-NMR spectra were recorded at 
400 MHz NMR on a Bruker Avance spectrometer with tetramethyl silane (TMS) 
as an internal standard and DMSO-d6 as solvent. MALDI-HRMS analysis was 
recorded using Bruker 12T solarix FT-ICR-MS. All optical experiments were 
recorded using Agilent Cary 60 Ultraviolet -Visible (UV-Vis’s) spectrometer and 
Varian Cary Eclipse fluorescence spectrophotometer respectively.  

2.2. Microwave-Assisted Synthesis of RD1 

Rhodamine 6G hydrazide intermediate was synthesized according to Yang’s 
method [18]. A mixture of Rhodamine hydrazide intermediate (100 mg, 0.219 
mmol), Chrome-3-carboxaldehyde (22 mg, 0.0406 mmol) and 2 ml of ethanol 
was placed in a microwave vessel. The resulting mixture was stirred and placed 
in a reactor. The reaction vessel was then run under pressure and irradiation at a 
specific temperature and time shown in Table 1 and then the reaction vessel was 
cooled in ice bath. The reaction mixture was filtered out and washed three times 
with cold ethanol. After drying, the solid product was isolated, and obtained a 
higher yield ranging from 77% - 80%. 1H-NMR (d6-DMSO), δ (ppm): 8.59 (s, 
1H), 8.41 (s, 1H), 8.00 (m, 1H), 7.90 (m, 1H), 7.71 (m, 1H), 7.60 (m, 3H), 7.50 
(m, 1H), 7.00 (d, 1H), 6.40 (s, 2H), 6.26 (s, 2H), 5.01 (s, 2H, -NH), 3.14 (q, 4H, 
NCH2CH3), 1.87 (s, 6H, -CH3), 1.21 (t, 6H, NCH2CH3). 13C-NMR (DMSO), δ 
(ppm): 165.23, 152.07, 151.33, 147.35, 132.31, 129.48, 128.00, 127.01, 123.43, 
122.13, 117.79, 104.99, 95.85, 64.96, 55.99, 37.45, 18.53, 17.06, 14.20. HRMS 
(MALDI): m/z Calcd for RD1 (M + 1): 585.2496; Found: 585.2504. 
 
Table 1. Microwave-assisted irradiation reaction method for the preparation of RD1 
(phase II). 

Trials Method/Solvent Temperature (˚C) Time (mins) Yield (%) 

T1 Microwave/Ethanol 100 30 78.5 

T2 Microwave/Ethanol 100 20 80.5 

T3 Microwave/Ethanol 80 30 77.7 

T4 Microwave/Ethanol 80 20 82 
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2.3. Microwave-Assisted Synthesis of RD2 

A mixture of Rhodamine hydrazide derivative (100 mg, 0.219 mmol), 3-Formyl- 
6-nitrochromone (22 mg, 0.0511 mmol) and 2 ml of solvent was placed in a mi-
crowave vessel. The resulting mixture was stirred and placed in a reactor. The 
reaction vessel was then run under pressure and irradiation at a specific temper-
ature and time as shown in Table 2. The reaction mixture was filtered out and 
washed three times with cold ethanol. After drying, the solid product was iso-
lated, and obtained a higher yield ranging from 64% - 84%. 1H-NMR (d6-DMSO), 
δ (ppm): 8.68 (s, 1H), 8.50 (m, 2H), 7.90 (m, 2H), 7.62 (m, 2H), 7.00 (m, 2H), 
6.27 (s, 2H), 6.10 (s, 2H), 5.11 (s, 2H, -NH), 3.14 (q, 4H, NCH2CH3), 1.86 (s, 6H, 
-CH3), 1.22 (t, 6H, NCH2CH3). 13C-NMR (DMSO), δ (ppm): 164, 153, 152, 145, 
1321, 130, 127.02, 127.01, 122.43, 120.23, 116.79, 103.99, 94.85, 63.96, 54.99, 
36.44, 18.43, 17.05, 14.20. HRMS (MALDI): m/z Calcd for RD2 (M + 1): 
630.2347; Found: 630.2364. 

2.4. Microwave-Assisted Synthesis of RD3 

A mixture of Rhodamine hydrazide derivative (100 mg, 0.219 mmol), 6-Chloro- 
3-formyl-7-methylchromone (22 mg, 0.0519 mmol) and 2 ml of ethanol was 
placed in a microwave vessel. The resulting mixture was stirred and placed in a 
reactor. The reaction vessel was then run under pressure and irradiation at a 
specific temperature and time as shown in Table 3 The reaction mixture was fil-
tered out and washed three times with cold ethanol. After drying, the solid 
product was isolated, and obtained a higher yield ranging from 78% - 84%. 
1H-NMR (d6-DMSO), δ (ppm): 8.62 (s, 1H), 8.46 (s, 1H), 7.88 (m, 2H), 7.60 (s, 
1H), 7.58 (m, 2H), 7.00 (m, 1H), 6.40 (s, 2H), 6.23 (s, 2H), 5.04 (s, 2H, -NH), 
3.15 (q, 4H, NCH2CH3), 1.89 (s, 6H, -CH3), 1.22 (t, 6H, NCH2CH3). 13C-NMR  
 
Table 2. Microwave-assisted irradiation reaction method for the preparation of RD2 
(phase II). 

Trials Method/Solvent Temperature (˚C) Time (mins) Yield (%) 

T1 Microwave/Ethanol 100 30 65 

T2 Microwave/Ethanol 100 20 64 

T3 Microwave/Ethanol 80 30 84 

T4 Microwave/Ethanol 80 20 84.6 

 
Table 3. Microwave-assisted irradiation reaction method for the preparation of RD3 
(phase II). 

Trials Method/Solvent Temperature (˚C) Time (mins) Yield (%) 

T1 Microwave/Ethanol 100 30 80 

T2 Microwave/Ethanol 100 20 78 

T3 Microwave/Ethanol 80 30 82 

T4 Microwave/Ethanol 80 20 84 

https://doi.org/10.4236/gsc.2022.123005


B. Ranamagar, F. Abebe 
 

 

DOI: 10.4236/gsc.2022.123005 61 Green and Sustainable Chemistry 
 

(DMSO), δ (ppm): 165.23, 152.07, 151.33, 147.35, 132.31, 129.48, 128.00, 127.01, 
123.43, 122.13, 117.79, 104.99, 95.85, 64.96, 55.99, 37.45, 18.53, 17.06, 14.20. 
HRMS (MALDI): m/z Calcd for RD3 (M + 1): 633.2263; Found: 633.2263. 

2.5. Microwave-Assisted Synthesis of RD4 

A mixture of Rhodamine hydrazide derivative (100 mg, 0.219 mmol), 3-Formyl- 
6-methylchromone (22 mg, 0.0439 mmol) and 2 ml of solvent was placed in a 
vessel. The resulting mixture was stirred and placed in a reactor. The reaction 
vessel was then run under pressure and irradiation at a specific temperature and 
time as shown in Table 4. The reaction mixture was filtered out and washed 
three times with cold ethanol. After drying, the solid product was isolated, and 
obtained a higher yield ranging from 81% - 89%. 1H-NMR (d6-DMSO), δ (ppm): 
8.62 (s, 1H), 8.40 (s, 1H), 7.88 (m, 1H), 7.70 (s, 1H), 7.56 (m, 4H), 7.02 (m, 2H), 
6.37 (s, 2H), 6.20 (s, 2H), 5.08 (s, 2H, -NH), 3.20 (q, 4H, NCH2CH3), 2.40 (s, 3H, 
-CH3), 1.86 (s, 6H, -CH3), 1.21 (t, 6H, NCH2CH3). 13C-NMR (DMSO), δ (ppm): 
165.23, 152.07, 151.33, 147.35, 132.31, 129.48, 128.00, 127.01, 123.43, 122.13, 
117.79, 104.99, 95.85, 64.96, 55.99, 37.45, 18.53, 17.06, 14.20. HRMS (MALDI): 
m/z Calcd for RD4 (M + 1): 599.2652; Found: 599.2655. 

3. Results and Discussion 
3.1. Microwave-Assisted Synthesis 

Novel green microwave-assisted synthesis methods using ethanol as a solvent for 
the synthesis of rhodamine 6G-Chromone imines have been established. A total 
of four rhodamine 6G derived imine derivatives were synthesized using a con-
trolled CEM microwave heating reactor under closed-vessel conditions. The mi-
crowave system is equipped with a magnetic stirrer as well as temperature and 
power controls. Microwave-assisted synthesis of Rhodamine hydrazide with 
various substituted chromone compounds such as Chrome-3-carboxyaldehyde, 
3-formyl-6-Nitrochromone, 6-Chloro-3-formyl-7-methylchromone, 3-formyl-6- 
methylchromone, and 2-amino-3-formylchromone in ethanol results all target 
products in high yield, as illustrated in Scheme 1. In the first phase, the inter-
mediate compound was synthesized by microwave irradiation of Rhodamine 6G 
and excess hydrazine hydrate in ethanol, and in the second phase, the target 
products (RD1 - RD4) were synthesized by microwave irradiation and conden-
sation of the resulting rhodamine 6G hydrazone and corresponding aldehydes in  
 
Table 4. Microwave-assisted irradiation reaction method for the preparation of RD4 
(phase II). 

Trials Method/Solvent Temperature (˚C) Time (mins) Yield (%) 

T1 Microwave/Ethanol 100 30 86 

T2 Microwave/Ethanol 100 20 81.6 

T3 Microwave/Ethanol 80 30 83.3 

T4 Microwave/Ethanol 80 20 89 
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1:1 molar ratio in ethanol. The microwave-assisted synthesis results in a green 
and fast synthesis time, minimum solvent use, easy operation, and scalability. 
The reaction conditions for the microwave-assisted synthesis of rhodamine 6G 
imine derivatives RD1 - RD4 are summarized in Tables 1-4. The optimized 
conditions for each rhodamine 6G-Chromone based imine derivatives were de-
termined by conducting extensive temperature and time studies. It was observed 
that microwave-assisted reaction with temperature 80˚C afforded the best result 
with 82% - 89% product yield for 20 - 30 minutes (Tables 1-4, entry 3 and 4). 
The results indicate that microwave irradiation method accelerates synthesis of 
Rhodamine 6G-Chromone imine products in minutes. Due to our interest in 
green chemistry, minimum solvent conditions were mainly exploited. The target 
products required no rigorous purification, and pure solid products were iso-
lated from the reaction mixture. Therefore, this irradiation method offers an 
easy and practical access for the synthesis of a series of rhodamine 6G-based 
imine products. Structural analysis of these rhodamine 6G-Chromone imine de-
rivatives were performed with 1H-NMR, 13C-NMR, and high-resolution mass 
spectrometry, and all data are in accordance with the proposed structure 
(Figures S1-S12). 

3.2. Optical Properties 

The rhodamine 6G component has been demonstrated as an attractive sensor 
with emission turn on effect [18] [19]. In this work, chrome-3-carboxaldehyde, 
3-Formyl-6-nitrochromone, 6-Chloro-3-formyl-7-methylchromone, and 3- 
Formyl-6-methylchromone were used to modify rhodamine component, hoping 
to optimize a suitable structure for sensing application. All the photophysical 
studies were performed in aqueous acetonitrile in which rhodamine 6G- chro-
mone compounds RD1 - RD4 formed colorless solutions. In addition, the ab-
sorption spectra showed no peak above 400 nm due to the predominant 
ring-closed spirolactum (Figure 1(a)). This was further confirmed by the 13C 
NMR signal around δ 66 corresponding to bridging carbon, C-1 (Figure S2). 
Similarly, compounds were very weakly fluorescent at 565 nm (λex = 488 nm) in 
the absence of any analyte due to the predominant ring-closed spirolactum. The 
fluorescence spectrum of target compounds showed a peak at 565 nm upon the 
addition of Cu2+ corresponding to the delocalization in the xanthene moiety of 
rhodamine 6G (Figure 2). Several studies show that substituents can affect the 
optical properties of compounds [20]-[25]. As shown in Figure 2(a), Rhoda-
mine 6G derivative RD1 with no substituent on the chromone unit exhibits ex-
cellent selectivity and sensitivity towards Cu2+. Rhodamine 6G derivatives RD3 
and RD4 were designed to study the effect of an electron-donating group at the 
chromone ring. These compounds showed less fluorescence emission upon 
binding with copper (II) ion and some interference from Ni2+ and Pb2+ ions. The 
presence of a strong electron-withdrawing group on the chromone unit in com-
pound RD2 can significantly affect the solubility and optical properties. The re-
sults indicate different electronic distributions among the compound’s structure 
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have an influence on their optical sensing properties. Furthermore, Job’s plot 
experiment was used to investigate the stoichiometry of rhodamine-copper (II) 
ion binding. In an aqueous acetonitrile solution, the rhodamine derivative RD1 
is coordinated to copper (II) ion with a 1:1 stoichiometry, Figure 3. As demon-
strated in Scheme 2, a monomeric system forms a 1:1 complex, which is a re-
versible process. 
 

 
Figure 1. UV-Vis’s spectra of 20 μM (a) free RD1, (b) RD1 with 20 mM metal ions in CH3CN/H2O (7:3 v/v) HCl-tris buffer solu-
tion and (c) RD3 with 20 mM metal ions in CH3CN/H2O (7:3 v/v) HCl-tris buffer solution. 

 

 

Figure 2. Fluorescence spectra of 20 μM (a) RD1, (b) RD3 (c) RD4 with 20 mM metal ions in CH3CN/H2O (7:3 v/v) HCl-tris 
buffer solution. 

 

 

Figure 3. Binding stoichiometry and Job’s plot experiment for compound RD1 and Cu2+ 
in acetonitrile solution. 
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4. Conclusion 

The microwave irradiation synthesis method described here is the most conve-
nient way to synthesize the rhodamine 6G derivatives. The CEM single mode 
microwave irradiation system has provided substantially decreased reaction 
time, high yield, simple experimental procedure, and environmental friendliness. 
Upon binding, copper (II) ion triggers the formation of a highly fluorescent 
ring-open spirolactam system, while other ions showed no significant change. 
The recognition ability of compounds RD1 - RD4 was investigated by absor-
bance and fluorescence spectroscopy. 
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Figure S1. Proton NMR spectrum of compound RD1 (DMSO-d6, 400 MHz). 
 

 

Figure S2. Carbon NMR spectrum of compound RD1 (DMSO-d6, 400 MHz). 
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Figure S3. HRMS spectra of compound RD1 (MALDI positive mode). 
 

 

Figure S4. Proton NMR spectrum of compound RD2 (DMSO-d6, 400 MHz). 
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Figure S5. Proton NMR spectrum of compound RD2 (DMSO-d6, 400 MHz). 
 

 

Figure S6. HRMS spectra of compound RD2 (MALDI positive mode). 
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Figure S7. Proton NMR spectrum of compound RD3 (DMSO-d6, 400 MHz). 
 

 

Figure S8. Carbon NMR spectrum of compound RD3 (DMSO-d6, 400 MHz). 
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Figure S9. HRMS spectra of compound RD3 (MALDI positive mode). 
 

 

Figure S10. Proton NMR spectrum of compound RD4 (DMSO-d6, 400 MHz). 
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Figure S11. Carbon NMR spectrum of compound RD4 (DMSO-d6, 400 MHz). 
 

 

Figure S12. HRMS spectra of compound RD4 (MALDI positive mode).  
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