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Abstract 
The main scope of this research is to detect geologic structure trends affecting 
the study area, determine uranium anomalous areas and define alteration 
zones. Airborne magnetic data were used to detect the geologic structure 
trends affecting the study area through applying edge detectors such as total 
horizontal derivative, analytic signal and tilt derivative. The radio-spectro- 
metry data and Landsat image data were used in determining the uranium 
anomalous areas and alteration zones. The integration between geology, 
magnetic and Landsat image was applied through constructing lineaments 
density map for the three data sets resulting in the leading of NW-SE trend all 
over the area. This integration makes clear that the basement (Red Sea hills), 
Esh El-mallaha range and G. Zeit are limiting two large basins (West Mallaha 
and Zeit). In addition, the main areas of uranium enrichment (Duwi forma-
tion at Esh El-Mallaha range) are found to be well related to alteration zones. 
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1. Introduction 

The study area is located at the northern part of the Eastern Desert between lati-
tudes 27˚17'58''N & 27˚59'02''N and longitudes 32˚56'29''E & 33˚44'25''E, cover-
ing an area of about 4560 Km2 (Figure 1(a)). The topographic map shows that 
the western side of the area which represents the Red Sea hills reaches an eleva-
tion of 1600 m at G. Giala, while the elevations on the eastern side decrease to 30 
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meters until we reach the shoreline (Figure 1(b)). 
Eastern Desert of Egypt has been considered the main target for mineral re-

sources exploration, which was hosted by Precambrian rocks. There are many 
researches that concern with mineralization mapping, especially radioactive 
minerals ([1] [2] [3]). Radioactive anomaly zones are the result of two main rea-
sons; natural lithological distribution and post magmatic processes caused by 
either hydrothermal solutions and/or dikes factors. Therefore, mineralization 
zones investigation is mainly done by evaluating lithological units, alteration, 
and structural features (e.g. [4] [5] [6]). Consequently, the value of integration of 
remote sensing and geophysical data and its interpretation is fundamental for 
providing a geological and mineralogical model of the earth’s surface [7]. This 
study aims essentially to deduce the radioactive mineralization zones, the hy-
drothermal alteration areas and the structure controlling the mineralization.  

Satellite image data is used to determine lithologic contacts that may be lo-
cated on geologic structures and may extend to the subsurface [8]. Hydrother-
mal alteration zones and potential mineralization areas can be identified using 
several approaches like band ratios and principal component analysis (PCA) 
which used commonly in multispectral data like Landsat ([9]-[17]). Band ratios 
were applied to the multispectral data to identify hydrothermal alteration zones 
([17] [18] [19] [20] [21]) because the hydrothermal processes are often related to 
mineralization which may as a result change the country rocks properties. 
 

 

Figure 1. (a) Location map of the study area, (b) Topographic map of the study area. 
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Airborne magnetic data are usually used in mapping the shallow and deep 
geologic structures and enlightening intrusions [22]. These structures are 
represented in trends and intensities on magnetic maps that represent magnetic 
patterns [23]. The spectrometric maps of the study area will help to locate the 
high alteration areas of the radioactive minerals and discriminate the boundaries 
of the different rocks. 

2. Geologic Setting 

According to [24], the Eastern Desert of Egypt is separated into Northern, Cen-
tral, and Southern parts depending on the basement characteristics. The area 
represents part of the Central Eastern Desert of Egypt. The CED was formed by 
collapse of a small ocean basin or back arc basin [25]. The study area consists of 
two sedimentary basins (Zeit and West Mallaha basins) trending in the NW-SE 
direction and lying parallel to the Gulf of Suez [26]. The topographic map 
(Figure 1(b)) showed that the two basins are separated by Esh El-Mallaha 
heights, which trending NW-SE heading with a height of about 400 m. The geo-
logic map (Figure 2) showed that Esh El-mallaha range at the east and red sea 
hills at the west are bounded by normal faults, trapping West Mallaha basin  
 

 

Figure 2. Geologic map of the study area, after conco, 1987. 
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between them. These normal faults trending mainly in NW-SE direction and in 
lesser extent in NE-SW direction.  

The surface geology is mostly Late Precambrian-Quaternary (Figure 2). These 
rocks are intersected by numerous wadis filled with Quaternary sediments. The 
western part of the study area is covered by different rock units which can be 
seen on geological map such as Metamorphic Rocks, Metagabbro, Intrusive Me-
tagabbro, Metavolcanics, Acidic Metavolcanics, Metasediments (a sequence of 
fine grained “geosynclinals” clastics mostly in a low-grade metamorphism), 
Hammamat clastics (a thick succession of clastic sediments), Older Granite (fel-
sic plutonic rocks of essentially intermediate composition), Younger Granite 
(mostly occurs as isolated, equidimensional plutons of 1 to 10 km diameter) and 
Dokhan Volcanics ([27] [28]). The Upper Cretaceous rocks are represented by 
Taref, Duwi, and Dakhla formations while the Tertiary rock units are 
represented by Tarawan, Thebes, Nakheil, Um Mahara, Um Gheig and Shagra 
formations [29]. Quaternary and Wadi deposits are mainly pebbles of sand, de-
tritus, cobbles and little boulders filling the main wadis. These sediments result 
mainly from the weathered adjacent rocks of the Red Sea Mountains. The base-
ment rocks are unconformably overlain by the Upper Cretaceous and Tertiary 
rocks. 

3. Data and Methodology 

Many data have been used in this research, such as airborne magnetic survey 
data, airborne radio-spectrometric survey data, in addition to remote sensing 
data. The magnetic and spectrometry data were acquired along flight lines ex-
tending in NE-SW direction with 1.5 km spacing, while the tie lines were flown 
along profiles perpendicular to the flight lines (NW-SE) with 10 km spacing. The 
nominal flying altitude was 120 m above ground level [30]. 

Multispectral remote sensing data, specifically Landsat-8 OLI satellite image 
has been used as one of the primary data sources. This image was obtained on 
August 18, 2021, from path 175 and row 041. It was downloaded from the USGS 
Earth Explorer data portal (https://earthexplorer.usgs.gov/). 

3.1. Magnetic Data 

The regional gradient of earth’s magnetic field was obtained by eliminating the 
International Geomagnetic Reference Field from the total intensity magnetic 
data [31]. The final total magnetic intensity data was gridded and presented in 
Figure 3.  

The TMI data were reduced to the north magnetic pole (RTP) to overcome 
the distortion in shape and location produced by the dipolarity problem [32] 
and presented in Figure 4. The RTP map clearly shows the signature of the two 
basins (Zeit and West Mallaha basins) which have magnetic intensity ranging 
from −388 to −589 nT and trending NW-SE direction. The basement intrusions 
at the western part (Red Sea hills) and Esh El-mallaha range at the eastern part 
exhibit high positive anomalies reach about 650 nT. 
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Figure 3. Total magnetic intensity map of the study area. 
 

 

Figure 4. Reduced to magnetic pole (RTP) map of the study area. 
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The main purpose of using magnetic data in this work is to determine the 
geological structures that govern the mineralization process present in the area. 
Several techniques for detecting edges of magnetic source have been introduced 
such as: total horizontal derivative [33], analytic signal ([34] [35]) and tilt angle 
derivative [36].  

Total horizontal derivative (THD) depends on the fact that the amplitude of 
the horizontal derivative of the RTP magnetic field resulted from a tabular body 
has the greatest values over the anomaly edges in case of vertical edges and 
well-separated edges from each other [33]. The method can be used to delineate 
the trends of subsurface fault [37]. It is less sensitive to noise and very strong in 
detection magnetic sources at shallow depths [38]. 

The analytic signal (AS) is a widely used tool to determine the geometry of the 
magnetic source [39]. The amplitude of the AS has a bell-shaped anomaly and 
lies above the causative magnetic source with maximum values corresponding to 
the edges of the source [40]. The AS method is independent of the source’s 
magnetization; therefore, it is very useful in regions of rocks that have remnant 
magnetization [41].  

In noisy data, tilt derivative (TD) techniques very powerful edge detector and 
responds equally well for both shallow- and deep-seated magnetic sources be-
cause it elaborates like an automatic gain-control filter [42]. Due to the nature of 
the arctangent trigonometric function, TD amplitude has a range of −π/2 and 
+π/2. Moreover, the amplitude of the TD has three rates: positive over the mag-
netic body, zero at/close to the body’s edges, and negative elsewhere ([39] [43]). 
The three techniques (THD, AS & TD) were used to figure out the trends affect-
ing the study area and, consequently, the mineralization process. These tech-
niques and their result were presented in Figure 5. 

3.2. Radio-Spectrometric Data 

The qualitative interpretation of the airborne gamma-ray spectrometric data 
depends mainly upon the excellent correlation between the general pattern of 
the recorded measurements and the surface distribution of rock units. The tex-
ture of the radio-spectrometric contour lines (signatures) could be an aid during 
interpretation of surface geology (lithology and structure) [44]. 

The main four windows of radio-spectrometric data were gridded using suita-
ble grid cell size and presented in Figures 6-9. Total Count map (TC) (Figure 6) 
for the area ranges from 0.0 to 22.76 µR/h. the highest readings are related to 
younger granites (gβ) which located at the NW, SW parts (Red Sea hills), at the 
eastern part (Esh El-mallaha range) and at NE corner (G. Zeit) trending mainly 
in NW-SE direction and partially in NE-SW direction. 

Potassium map (Figure 7) show up the distribution of Potassium concentra-
tions in the study area which resemble to great extent the distribution of TC 
concentrations. The concentrations of equivalent uranium range from 0.0 to 
17.28 ppm (Figure 8). The highest values related mainly with younger granites 
(gβ) at the western part and Duwi formation (Kuw) at Esh El-mallaha range and  
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Figure 5. (a) Total horizontal derivative, (b) Analytic signal, (c) Tilt derivative of RTP data, and (d) the resulted lineation and its 
rose diagram. 

 
partially with parts of older granites (gα). Equivalent thorium map is also pre-
sented in Figure 9 with values reach about 40.64 ppm. Like as the aforemen-
tioned maps (Figures 6-8), the distribution of high values of equivalent thorium 
is also related mainly to the younger granitic rocks at the western part of the 
study area. 

Different rock types have different characteristic concentrations of potassium, 
uranium, and thorium. Therefore, concentrations calculated from gamma-ray 
spectrometric data can be used to identify zones of consistent lithology and con-
tacts between constraining lithologies [45]. The radioelements composite image 
(Figure 10) of the study area shows the variations occurring in the three  
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Figure 6. Total count (TC) map of the study area. 
 

 

Figure 7. Potassium (K) map of the study area. 
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Figure 8. Equivalent uranium (eU) map of the study area. 
 

 

Figure 9. Equivalent Thorium (eTh) map of the study area. 
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Figure 10. Radioelement composite image of the study area. 
 
radioelements concentrations, which mainly reflect lithologic variations. It was 
noticed that the higher bright zones are clearly correlated with younger granite 
rocks which are normally characterized by their strong radio-spectrometric res-
ponses and elemental differences. Meanwhile, the ternary composite image 
shows dark areas of weak radioelement contents as indicative to the low radioac-
tive rocks. The other remarkable notice is that the green colour which represents 
100% of uranium concentration is well coincidence with Duwi formation at Esh 
El-mallaha range.  

The same as radioelement composite image (Figure 10), uranium composite 
image (Figure 11) was constructed using eU in red, eU/K ratio in green and 
eU/eTh ratio in blue. The bright white means that the concentrations of eU, 
eU/K and eU/eTh are the highest at these parts, consequently, highest uranium 
concentrations. The bright white spots which indicate the highest concentrations 
of uranium are well correlated with Duwi formation, Dakhla formation and 
parts of Umm Mahara formation at Esh El-mallaha range. The black spots 
represent the lowest uranium concentrations all over the area.  

3.3. Remote Sensing Data 

The main objective of remote sensing data is defining areas of hydrothermal al-
terations and extracting the surface lineaments which affect the study area. Us-
ing band composite 7, 5, 3 in R, G, and B discriminates between felsic, mafic and  
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Figure 11. Equivalent uranium composite image of the study area. 
 
wadi deposits. In this combination, the felsic varieties appear in reddish brown 
color, the mafic rocks are dark; however, the wadi deposits show bright tone 
(Figure 12). 

Band ratio is widely used in mineralization to improve the spectral characte-
ristics of the alteration regions depending on the absorption bands of their al-
tered minerals. For example, using Landsat-7 the iron bearing (ferrous and ferric 
oxides) minerals are delineated using band ratios 3/5 and 5/4 [46] and 3/1 [47]. 
Moreover, band ratio 5/7 was applied to detect high values of the hydrox-
yl-bearing minerals (kaolinite, alunite, muscovite, epidotes and chlorites) [48]. 
The hydrothermal alteration areas are clearly highlighted in bright tone by ap-
plying the band ratio 6/7 of Landsat-8 OLI that equal to 5/7 of Landsat-7 ETM+ 
(Figure 13(a)). In order to highlight the alteration areas using band ratio com-
posites 6/7, 6/5, 5 in R, G, and B, ([16] [49]) the alteration areas clearly marked 
in yellow color (Figure 13(b)). 

Band ratio 5/4 was used for detecting the alteration zone of ferrous and ferric 
minerals in the study area as shown in Figure 14(a) in which these alteration 
areas are represented by the very clear white color surrounded by the grey color. 
For detecting the Alteration zone of the hydroxyl (OH)-bearing minerals, the 
band ratio 5/7 is used, as shown in Figure 14(b). Another band ratio has been 
applied for representing the final alteration zone in the study area, this band ra-
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tion displayed the OH-bearing menials (5/7 ratio) in R, the Fe-bearing menials 
(5/4 ratio) in B and OH + Fe (5/7 + 5/4) in G (Figure 15), which appear in very 
light pink colour. 
 

 

Figure 12. Landsat-8 composite image 7, 5, 3 in R, G, and B. 
 

 

Figure 13. (a) Band ratio 6/7 of Landsat-8, (b) 6/7, 6/5, 5 in R, G, and B composite image reveals the alteration areas in yellow 
colour. 
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Figure 14. (a) Band ratio 5/4 of Landsat-8 (Fe-minerals, (b) Band ratio 5/7 of Landsat-8 (OH-bearing minerals). 
 

 

Figure 15. Band ratio image showing the alteration areas of ore deposits mineralization 
represented with very light pink color after displaying OH in (R), Fe in (B) and OH + F in 
(G). 

4. Data Interpretation 

The main aim of this research work is to deduce radioactive mineralization, es-
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pecially uranium promising areas, determine the alteration zones which related 
to mineralization accumulation and geologic structure trends affecting the study 
area. The integration between the geophysical data (magnetic and radio-spectro- 
metry) and remote sensing data is a good tool for delineating and interpreting 
the objectives of the study.  

4.1. Geologic Structure Trends 

The different geological structures that affect the study area is one of the most 
important factors that affect the mineralization accumulation. Magnetic method 
is very valuable tool to delineate the subsurface structure and basement configu-
ration. In this work, the subsurface structure trends (deep and shallow trends) 
were delineated through magnetic method by using the edge detectors (THD, AS 
and TD) and presented in Figure 5. 

In addition to subsurface structure trends deduced from magnetic method, 
Landsat-8 satellite data and their analyzed images are very effective for linea-
ments mapping (e.g.: [50] [51] [52]). The Landsat 8 structure lineaments de-
duced by using automatic extraction using the LINE tool in PCI Geomatica 2013 
software. This algorithm improves the data edges through specific parameters as 
edge detection, thresholding, and curve extraction (e.g. [53]).  

In the current study, the line density map was resulted using the ArcMap line 
density tool; it shows the frequency of lineaments per unit area. The density map 
technique was applied to the lineaments determined by the geology, magnetic 
and satellite image and presented in Figures 16-18 respectively, to give a com-
prehensive sight to the structure trends affecting the study area.  
 

 

Figure 16. Geologic lineation on density geologic lineaments map with its rose diagram. 
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Figure 17. Magnetic lineation on density magnetic lineaments map with its rose diagram. 
 

 

Figure 18. Satellite image lineation on density lineaments map with its rose diagram. 
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Figures 16-18 show that the higher densities reflect the topographic variation 
for the exposed lithological units, thus it indicates that the basement and sedi-
mentary rocks in this area are highly deformed. The three density maps (Figures 
16-18) clarify that the basement at the western part of the study area (Red Sea 
hills) are highly dissected with normal faults. In addition, Esh El-mallaha range 
at the eastern part and G. Zeit at NE part of the study area were affected by 
normal faults. The three maps also show that Red Sea hills, Esh El-Mallaha range 
and G. Zeit structures inclosing West Mallaha basin and Zeit basin. The rose di-
agram of the three maps (Figures 16-18) show that NW-SE direction is the 
predominance trend in the study area whereas NE-SW trend appeared in geo-
logic structure lineaments. In addition, lineation density map of satellite image 
(Figure 18) showed the presence of ENE-WSW trend. 

4.2. Uranium Anomalies and Alteration Zones 

The main target of aerial prospection using gamma ray spectrometric survey da-
ta is the delineation of expected boundaries of radioactive concentrations, in 
which the varying rock units are enriched in eU, eTh and K [54]. Because ura-
nium is the most important radioactive element; so, in this research work, ura-
nium anomalies will be determined using radio-spectrometric data depending 
on the uranium composite image (Figure 11). The bright white spots on the 
uranium composite image represent the highest values of uranium enrichment.  

The integration between the uranium composite image (Figure 11) and alte-
ration map deduced from satellite image band ratio 6/7 (Figure 13(a)) is pre-
sented in Figure 19. The first look to Figure 19 shows that the uranium enrich-
ment parts on uranium composite image (Figure 17(a)) are well correlated with  
 

 

Figure 19. Integration between (a) uranium composite image, (b) band ratio 6/7 of Landsat 8. 
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the alteration zones detected on alteration map (Figure 19(b)). The main ura-
nium enrichment and alteration zone is related with Esh El-Mallaha range, espe-
cially with Duwi formation. In addition, there are other parts related to Umm 
Mahara formation located at the SE part of the study area. There are other small 
parts enriched with uranium and related with younger granites. The alteration 
zone map (Figure 19(b)) clarifies that there are other altered rocks at NE part 
related to Umm Gheig formation, small parts related to Thebes formation at the 
boundary of basement rocks and parts of Dokhan volcanics to the west (Red Sea 
hills). 

4.3. Basement Tectonic and Uranium Anomalies 

The magnetic data considered to be a very good direct method to detect the 
basement configuration. The integration between the basement structure and 
uranium anomalies was introduced in Figure 20. The figure shows clearly that 
most of uranium anomalies were related mainly to faults in NW-SE direction. 
The structure produced from basement tectonic map is well correlated with 
structure trends produced from Figures 16-18 that NW-SE is the most predo-
minance trend all over the study area at different depth levels, and these faults 
related mainly with uranium anomalies. Consequently, the uranium anomalies 
are not only controlled by the difference in rock properties but also by structure.  
 

 

Figure 20. Integrated map between basement tectonic and uranium anomalies. 
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5. Conclusions 

This research deals essentially with three data sets to achieve three main objec-
tives: structure trends affecting the study area, uranium anomalous areas and alte-
ration zones. Airborne magnetic data were analyzed using edge detectors (THD, 
AS and TD) to detect the geologic structure trends affecting the study area. In ad-
dition, radio-spectrometry and Landsat image helped to determine the uranium 
anomalous areas and alteration zones. 

By integration between the lineaments of geology, magnetic and Landsat im-
age, NW-SE trend was found to be the most predominant trend all over the area. 
This integration also shows up that the basement (Red Sea hills), Esh El-mallaha 
range and G. Zeit are confining two large basins (West Mallaha and Zeit). 

In addition, the integration between uranium composite image (spectrometry 
data) and alteration map (band ratio 6/7 image of Landsat 8 data) clarifies that 
the main areas of uranium enrichment (Duwi formation at Esh El-Mallaha 
range) are well correlated to alteration zones. Basement tectonic map shows that 
uranium anomalies are controlled by structures mainly in NW-SE direction. 
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