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Abstract 
The role of soil moisture in the survival and growth of trees cannot be over- 
emphasized and it contributes to the net productivity of the forest. However, 
information on the spatial distribution of the soil moisture content regarding 
the tree volume in forest ecosystems especially in Nigeria is limited. There-
fore, this study combined spatial and ground data to determine soil moisture 
distribution and tree volume in the International Institute of Tropical Agri-
culture (IITA) forest, Ibadan. Satellite images of 1989, 1999, 2009 and 2019 
were obtained and processed using topographic and vegetation-based models 
to examine the soil moisture status of the forest. Satellite-based soil moisture 
obtained was validated with ground soil moisture data collected in 2019. Tree 
growth variables were obtained for tree volume computation using Newton’s 
formular. Forest soil moisture models employed in this study include Topo-
graphic Wetness Index (TWI), Temperature Dryness Vegetation Index (TDVI) 
and Modified Normalized Difference Wetness Index (MNDWI). Relation-
ships between index-based and ground base Soil Moisture Content (SMC), as 
well as the correlation between soil moisture and tree volume, were examined. 
The study revealed strong relationships between tree volume and TDVI, SMC, 
TWI with R2 values of 0.91, 0.85, and 0.75, respectively. The regression values 
of 0.89 between in-situ soil data and TWI and 0.83 with TDVI ascertain the 
reliability of satellite data in soil moisture mapping. The decision of which 
index to apply between TWI and TDVI, therefore, depends on available data 
since both proved to be reliable. The TWI surface is considered to be a more 
suitable soil moisture prediction index, while MNDWI exhibited a weak rela-
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tionship (R2 = 0.03) with ground data. The strong relationships between soil 
moisture and tree volume suggest tree volume can be predicted based on avail-
able soil moisture content. Any slight undesirable change in soil moisture 
could lead to severe forest conditions. 
 

Keywords 
Forest Soil Moisture, Temperature Dryness Vegetation Index, Spatial Data, 
Vegetation Indices 

 

1. Introduction 

Forest Soil moisture content (SMC) is one of the important environmental fac-
tors that affect natural ecosystems (Briggs, 2016). Soil is the most treasured non-
renewable natural resource on earth and the most diverse part of the biosphere. 
Knowledge of soil moisture plays a crucial role in the field of hydrology (Bai et 
al., 2020; Gruhier et al., 2008), meteorology, climatology, ecology, land surface 
modeling, and studies in environmental changes (Gruhier et al., 2008; Verstrae-
ten et al., 2006). Soil moisture content in forest ecology is influenced by the ex-
isting forest species, altitude, climatic conditions, density, age, and soil condi-
tions (Briggs, 2016). According to Zwartendijk et al. (2017), the physico-chemical 
and biological soil properties such as temperature, ventilation, microbiological 
soil activity, nutrient uptake capacity, and accumulation of toxic substances are 
influenced indirectly by SMC. Xu et al. (2006), determined the contributions of 
soil water to forest biomass and the results of their study revealed a strong rela-
tionship between these ecological components. 

Soil moisture is often expressed spatially as indices and such indices used 
include the Topographic Wetness Index (TWI), The Temperature-Vegetation 
Dryness Index (TVDI) and modified normalized soil water index (MNDWI) 
(Haas, 2010; Maselli & Chiesi, 2007; Seelig et al., 2008). The TWI was first de-
veloped in 1979 by Beven and Kirkby. It is based on surrounding topography 
and describes the proclivity of an area to become water-saturated. Remote 
Sensing based soil moisture retrieval has been a promising research field since 
the early 1970s. Sandholt et al. (2002), developed the TVDI that describes the 
relations between measured land surface temperature, vegetation and soil 
moisture, which could be expressed by the “triangle” method (Haas, 2010). 
These indices have shown to be reasonable estimators of surface soil moisture, 
although some questions of validity remained. However, there seems to be li-
mited knowledge about soil moisture index-tree volume correlations and if 
one particular index can be considered to give superior results in the region of 
interest. 

Accurate estimation of soil moisture content is crucial for planning and man-
agement of water resources, particularly in forest ecosystems where water is a 
major resource. However, information on the spatial distribution of the soil 
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moisture content in the study area is very limited. Therefore, this study focused 
on the assessment of soil moisture distribution in the International Institute of 
Tropical Agriculture forest, Ibadan with a view to ascertain the impact of the soil 
water content on tree volume as well as determining the best index for estimat-
ing soil moisture content in the study area.  

2. Materials and Method  
2.1. Study Area 

The forest reserve, as shown in Figure 1, is located within the International In-
stitute of Tropical Agriculture (IITA) in Akinyele local government area, Ibadan, 
Oyo State, south-west Nigeria. It lies between Latitudes 7˚30'14.09"N and 
7˚28'55.51"N and Longitudes 3˚52'44.49"E and 3˚53'45.50"E. The forest covers 
an area of about 450 ha. The climate of IITA is tropical with distinct wet and dry 
seasons and a mean minimum annual temperature of 21˚C with seasonal varia-
tions in radiation, sunshine and cloud cover. Between March and October, the 
prevailing wind in the area is the moist maritime South-west monsoon which 
blows inland from the Atlantic Ocean, this is the period of the rainy season. No-
vember to February is the period of the dry season when the dry dust-laden wind 
blows from the Sahara desert. The mean annual rainfall of about 1205 mm, fall-
ing in approximately 109 days with two rainfall peaks in June and September  
 

 
Figure 1. International institute of tropical agriculture forest, Ibadan (Source: Protected area of Nigeria). 
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(Egbinola & Amobichukwu, 2013). It is characterized by surface elevation be-
tween 160 m and 240 m above sea level, with a rainforest vegetation type. 

2.2. Data Collection 

Since there are no permanent sample plots in the IITA forest, temporary sam-
ple plots were adopted for this study as was done by Akindele (1991), Alo & 
Aturamu (2014), Alo et al. (2017), Alo et al. (2011), and Onyekwelu et al. 
(2003). Two transects were laid in the forest at 300 m apart. In order to ac-
count for the same dimension with the 30 m resolution of Landsat images, six 
30 m by 30 m temporary sample plots were laid alternatively on each transect 
with an interval of 150 m for tree growth variables measurement, making a to-
tal of 12 temporary sample plots. Tree growth variables obtained from each 
sample plot collection were limited to; dbh of all trees encountered in the sam-
ple plot with dbh ≥ 10 cm, diameters over bark at the base, middle and mer-
chantable top, as well as total height of the trees with the use of Spiegel Re-
laskop. 

Landsat images of 1989, 1999, 1999, and 2019 were downloaded from the offi-
cial website of US Geological Survey (USGS). The study area is within Landsat 
path 191 and row 55. Table 1 shows the specifications of AsterDem, Landsat 
TM, ETM+ and OLI images used. 

Soil samples were collected with the use of a soil core sampler at every angle 
and middle of each sample plot, so to achieve a good mixture of the overall soil 
sample of each plot. The data sets in Table 1 were used as inputs to the ArcGIS 
and Idrisi software. Model setup includes delineation of the study area, topo-
graphical modeling from Asterdem, vegetation indexes from Landsat images, 
and index-ground data comparison (Haas, 2010). The primary and secondary 
data were acquired and used for this study. The primary data collected were soil 
and biomass data from samples plots in the field, point coordinates to identify 
different sample locations for effective data modeling and comparison. The 
coordinates were collected using hand-held Global Positioning System (GPS) of 
a 3m accuracy level. The secondary data include the administrative map of Nige-
ria collected from Remote Sensing and GIS laboratory in Forestry Research In-
stitute of Nigeria (FRIN) and base map of the area.  

Soil samples were taken from five locations of each plot at 30 cm depth by us-
ing a soil core sampler. The five soil sub-samples were bulked together to make a 
composite soil sample for each plot. The moist soil samples were first sieved  
 
Table 1. Data used for the analysis. 

Satellite 
Sensor 

Spatial resolution 
Acquisition 

years 
Path/Row 

Landsat 5, 7  
and 8 

30 m × 30 m 
1989, 1999, 2009 

and 2019 
191/55 

Asterdem 30 m × 30 m 2009 191/55 
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through 10 mm mesh to remove gravel, small stones and coarse roots and, then, 
passed through a 2 mm sieve. The initial weight of the soil sample was deter-
mined by the use of a weighing scale balance, soil samples were subjected to 
heat at a constant temperature of 105˚C for 24 hours. Therefore percentage soil 
moisture content was calculated in the following; 

Initial Weight Final WeightMC 100
Initial Weight

  
 
−

= ×              (1) 

MC = Moisture Content. 

2.2.1 Soil Moisture Retrieval in Remote Sensing 
With readily available long-term remote sensing records and progress in digital 
image processing techniques as well as the tendency towards macro-scale mod-
eling, remote sensing can provide large-scale distributed data sets where ground- 
based measurements are unavailable (Makinde & Agbor, 2019). Attempts have 
been made to combine remote sensing and hydrologic modeling (Bauer et al., 
2006; Houser et al., 1998; Milly & Kabala, 1985). Studies have been carried to 
compare remotely sensed and simulated soil moisture over a heterogeneous wa-
tershed and found both techniques to be consistent with ground measurements 
(Haas, 2010). Soil moisture retrieval with remote sensing techniques can be 
achieved in all regions of the electromagnetic spectrum. Comprehensive com-
parisons between different retrieval techniques can be found in Bryant et al. (2003) 
and Moran et al. (2014). In the same vein, Haas (2010) reported soil moisture re-
trieval techniques and analysed their capabilities, advantages and disadvantages. 
The following methods mentioned have been successfully used to model soil 
moisture and are briefly described: 

2.2.2. Dryness Index (TVDI) 
Studies have revealed that remotely sensed surface temperature as measured by 
thermal infrared (TIR) emissions and vegetation index has a strong relation with 
surface soil moisture (Zhang et al., 2007; Naira et al., 2007; Sandholt et al., 2002; 
Wang et al., 2007; Zeng et al., 2004). The relationship has proved to be important 
in obtaining further information. For instance, Nemani and Running (1989) and 
Price (1990) were the initial studies that made use of the temperature/vegetation 
relationship to estimate evapotranspiration. Numerous investigations regarding 
the validity of the relationship have been made and modifications to improve 
soil moisture estimates have also been tested (Carlson, 2007; Hassan et al., 2007; 
Kimura, 2007). The approach of a simplified land surface dryness index, often 
referred to as the “triangle” method was chosen in this study (Haas, 2010). It in-
terprets the Ts/FCD space in terms of surface soil moisture status and is based 
on the assumption that remotely sensed surface temperatures are related to ve-
getation canopy cover. The TVDI was calculated with Equation (2): 

min

min

TVDI s s

fcd s

T T
a b T

−
=

+ −
                       (2) 
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where Ts = surface temperature;  
Tsmin = minimum surface temperature;  
bfcd = coefficient of vegetation index; 
a = the intercept. 
The dry edge was developed from Equation (3) 

s fcdT a b= +                           (3) 

Ts = surface temperature 
a, b define the parameters defining the dry edge of the triangle 
The forest canopy density fcd was derived using Equation (4) 

SVD 1C 1F D SSI∗ + −=                    (4) 

where SVD represents scaled vegetation index and SSI is the scaled shadow in-
dex calculated using a linear transformation function from normalized Advance 
vegetation index (AVI), Shadow index (SI) and Bare soil index (BI) (Agbor & 
Makinde, 2018). 

The surface dryness index known as the “triangle” method as proposed by 
Sandholt et al. (2002) was used in this study to interpret the Ts/Fcd space in 
terms of forest canopy status. Sandholt et al. (2002) adopted NDVI as the vege-
tation index, but this study used FCD instead because NDVI is unable to high-
light subtle differences in canopy density (Agbor et al., 2017). 

2.2.3. Topographic Wetness Index (TWI) 
The DEM was resampled to match the dimensions of Landsat images The DEM 
is the basis for TWI calculation and therefore requires the removal of spurious 
sinks and pits. TWI surface generation was performed using Equation (5) (Haas, 
2010). 

( ) ( )( )( )TWI Ln "FlowAcc_1" 30 0.00565 Tan "Slope" 57.29= ∗ +     (5) 

where Ln = natural log;  
FLOWACC = flow accumulationl 

2.2.4. Modified Normalized Difference Water Index  
The assessment of water status of vegetation canopies from spectral remote sens-
ing data is a major goal in ecology and agriculture. Over the past decades, vari-
ous studies have assessed whether soil water status, defined by leaf water content 
or canopy water content, can be measured using light reflected from leaves (Eq-
uation (6)) (Rokni et al., 2014). 

860 1240

860 1240

MNDWI
R R
R R

−
=

+
                     (6) 

where R860 and R1240 denote reflectance at 860 nm and 1240 nm, respectively 
(Komeil et al., 2014).  

2.2.5. Surface Classification 
In order to explore the distribution of soil moisture content in the area, the TWI, 
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MNDWI and TVDI surfaces were classified into five categories of very low, low, 
medium, high and very high values. Natural breaks classification was used here 
as there is no optimum classification method and the optimum number of classes 
for comparing the surfaces because of their unequal value distribution. The nat-
ural breaks classification after Jenks (Haas, 2010) distributes values into classes 
according to their natural breaks. This however means that values classified by a 
natural break in one surface do not belong to a natural break in the other sur-
face. The natural breaks classification result in different category boundaries as 
can be seen in Figures 2-11.  

2.3. Data Validation 

The sample points were compared to the corresponding pixel values from the 
generated surfaces using the regression analysis tool in SPSS. The SPSS was used 
to perform linear regression analysis by using the “least squares” method to fit a 
line through a set of observations. It explains how a single dependent variable is 
affected by the values of one or more independent variables. For example, it 
analyzes how tree volume is affected by soil moisture level. It also explains in this  
 

 
Figure 2. 1989 MNDWI. 
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Figure 3. 1989 TVDI. 

 

 
Figure 4. 1999 MNDWI. 
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Figure 5. 1999 TVDI. 

 

 
Figure 6. 2009 MNDWI. 
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Figure 7. 2009 TVDI. 

 

 
Figure 8. 2009 TWI. 
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Figure 9. 2019 TWI. 

 

 
Figure 10. 2019 TVDI. 
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Figure 11. 2019 MNDWI. 

 
study how closely measured soil moisture relates to the satellite-based soil mois-
ture level. The linear regression equations (Figures 2-11) output the regression 
coefficients for each of the independent variables and the intercept. The inter-
cept is the value for the dependent variable (e.g. tree volume) when the inde-
pendent variable is zero. The coefficients indicate the effects of the independent 
variable on the dependent variable (soil moisture). To check if the results are re-
liable (statistically significant), we looked at the Significance f values if they are 
less than 0.05. The result is accepted when the F value is less than 0.05 and re-
jected if greater than 0.05.  

2.4. Image Processing 

In raw remote sensing data, each pixel has digital number value that corresponds 
to a raw measurement required by the sensor (Giannini et al., 2015). To obtain 
quantitative information from images, there is a need to convert images from 
their raw state to reflectance measures, using Equation (7) (Chander et al., 2009). 

2

SUN sz

TOAr
cos

d
E
π⋅ ⋅

ρλ =
λ ⋅ θ

                      (7) 

where: 
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ρλ = Planetary TOA reflectance (unitless); 
π = mathematical constant approximately equal to 3.14159 (unitless); 
Lλ = Spectral radiance at the sensors aperture [w/(m2sr µm)]; 
d2 = The Earth-Sun distance (Astronomical unit); 
ESUN = Meanexo atmospheric solar irradiance [w/(m2sr µm)]; 
θSZ = the solar zenith angle (degree). The cosine of this angle is equal to the 

sine of the sun elevation θSE. therefore, θSZ = 90 − θSE. These are rescaling factors 
given in the metadata. 

2.4.1. Temperature Retrieval  
All the image bands are quantized as 8-bit data except Landsat 8 which is 16 bit, 
thus; all information is stored in DN which will then be converted to radiance 
with a linear Equation (8). The linear Equation (8) (Giannini et al., 2015; Ma-
kinde & Agbor, 2019) is given as: 

Y mx b= +                            (8) 

where 
Y = TOAr (Top of Atmosphere) radiance—the radiance measured by the sen-

sor; 
m = Radiance multiplicative value; 
x = Raw band; 
b = Radiance additive value. 
By applying the inverse of the Planck function, thermal bands’ radiance values 

will be converted to brightness temperature values using Equation (8) (Agbor & 
Makinde, 2018). 

2

1ln 1
273.1

T Ar

5

O

t
KB
K

= −
 + 
 

                    (9) 

where 
Bt = Kelvin; 
TOAr = Top of Atmosphere radiance; 
K1 = calibration constant 1 (607.76 for TM), (666.09 for ETM+) and (774.89 

for OLI band 10); 
K2 = calibration constant 2 (1260.56 for TM), (1282.71 for ETM+) and 

(1321.08 for OLI band 10). 

2.4.2. Tree Volume Estimation  
The volume of the trees was calculated using a common formula for volume 
computation, which includes; Newton’s, Huber’s, and Smalian’s formulae of vo-
lume computation. The volume obtained with formulae were compared with vo-
lume obtained by summing up all the bolt of each felled tree for significant dif-
ferences using SPSS 10.0 for window 
• Newton’s formula (Avery & Burkhart, 1983) 

( )4
6 b m t
hV A A A= + +                         (10) 
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where V = tree volume (m3); 
h = total height of the tree (m); 
Ab = Area at the base (m2); 
Am = Area at the middle (m2); 
At = Area at the top (m2). 

3. Results and Discussion 
3.1. Soil Moisture Distribution and Impacts on Tree Volume 

Results of the soil moisture calculated with varying settings as previously de-
scribed are shown in Figures 2-11. The presentation of soil moisture distribu-
tion in sub-pixels form is to establish the relationships between soil moisture 
from different models and calculated forest volume. Figures 12-17 describe the  
 

 
Figure 12. Relationship between TVDI and forest volume. 

 

 
Figure 13. Relationship between SMC and forest volume. 

 

 
Figure 14. Relationship between TWI and forest volume. 
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Figure 15. Relationship between MNDWI and forest volume. 

 

 
Figure 16. Relationship between TWI and SMC. 

 

 
Figure 17. Relationship between SMC and TVDI. 
 
impact of soil moisture on tree volume. They show the changes in soil moisture 
with respect to changes in tree volume. Soil moisture content increases with an 
increase in value for TWI and MNDWI while it decreases with an increase in 
value for TVDI. The predicted tree volume was higher in 2009 than in 2019 by 
about 129 m3. The only predicted tree volume was for 2009, because of the 
availability of the elevation (independent variable) data for that year shown in 
Table 2. The prediction of tree volume using TVDI was poor while that of 
MNDWI was not considered since it exhibits a poor correlation value. Figure 13 
and Figure 14 present the degree of similarity between soil moisture from field 
surface (SMC) and soil moisture derived from satellite images. The relationships 
were determined in SPSS with R2 of 0.91, 0.85, 0.75 and 0.033 between volume  
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Table 2. Tree volume and soil moisture level. 

Plot 
No. 

Field Tree 
Vol. for 

2019 

2019 2009 TWI predicted Volume 
2019 TDVI  

predicted Volume TVDI TWI TVDI TWI 2019 2009 

1 50931.6 0.06 2.10 0.04 2.10 24041.4 24041.4 877961.0 

2 53372.5 0.06 1.81 0.07 1.81 3439.8 3444.0 836119.0 

3 86480.04 0.06 3.35 0.10 3.35 111502.7 111636.3 758833.0 

4 103771.1 0.06 4.26 0.09 4.36 175231.5 182227.9 783289.0 

5 118757.5 0.05 4.26 0.11 4.26 175231.5 175231.5 753151.0 

6 170609.1 0.05 4.29 0.10 4.29 177059.0 177059.7 772777.0 

7 198645.5 0.05 5.22 0.09 5.22 242641.1 242650.9 782315.0 

8 228,425 0.05 5.29 0.60 5.29 247082.4 247058.6 847379.0 

9 239,379 0.05 5.72 0.10 5.72 277442.6 277409.0 761487.0 

10 239850.3 0.04 6.63 0.10 6.53 340811.8 333815.4 763831.0 

11 408616.7 0.04 7.16 0.10 7.16 378311.1 378311.1 768295.0 

12 600672.4 0.03 7.60 0.08 7.60 409064.5 409102.3 798989.0 

13 2,499,510.7 
    

2561859.4 2,561,988.1 9,504,426.0 

 
and TVDI, SMC, TWI, MNDWI respectively. The results also revealed strong 
relationships between ground soil moisture (SMC) data and satellite-based soil 
moisture (TWI and TVDI) data as 0.89 between SMC and TWI and 0.83 be-
tween TVDI and SMC. 

From Figures 2-11, it is obvious that the soil moisture decreased from the 
base year to the most recent year. The soil moisture content is highest in forested 
and water-logged areas (dark blue to light green) and low in bare surfaces (yel-
low to dark red). Figures 12-15 show the effect of soil moisture level on tree vo-
lume of the study area, and the results may not be unconnected to the lower tree 
volume in 2019 with lower soil moisture and higher tree volume in 2009 with 
higher soil moisture The soil moisture by TWI model was only produced for the 
year 2009 and 2019 because of the availability of field elevation data for 2019 and 
digital elevation image for 2009. This model gives the best prediction of tree vo-
lume in 2019 and was used to determine the tree volume status of the area in 
2009 (Table 1). Presenting soil moisture distribution in form of vegetation in-
dexes is to easily relate it with tree volume. The graphs indicate strong relation-
ships of tree volume and soil moisture with regression values of 0.91, 0.85, and 
0.75, except 0.033 with MNDWI. Check mating the activities of man as the ma-
jor cause of forest degradation around and within the forest reserve would save 
the forest ecosystem from sounding effects of climate change like excessive eva-
poration, transpiration and evapotranspiration that could reduce soil water level 
thereby affecting tree volume. 

The TWI increased along the lower surfaces, and no connection between TWI 
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distribution and TVDI could be detected. The TVDI values change with vegeta-
tion distribution. Areas indicated as wet by the TVDI are assigned lower vegeta-
tion class, while MNDWI increased with vegetation cover. In situ measured soil 
moisture did not agree well with MNDWI. This weak relationship between the 
index and both soil moisture and tree volume raises questions of the index valid-
ity, suitability and comparability. Here it should also be mentioned that the re-
sults are largely dependent on the actual data that were used. Higher resolutions 
and further variations in TWI calculation might produce different results. The 
TWI model was a good predictor for tree volume and soil moisture content. It 
can be reasoned that upslope areas are correctly identified as dry and low areas 
classified as wet. 

The Ts/Fcd values plotted against each other, as shown in Figure 18, result in 
a triangle whose edges represent either dry (low canopy and low evapotranspira-
tion) or moist (high canopy and high evapotranspiration) conditions. 

The dry edge was developed from Equation (10). 

s fcdT a b= +                       (10) 

Figure 11 indicates a strong relationship between SMC, which is field-based 
soil moisture content and tree volume. Interestingly the satellite-based soil mois-
ture level content relates strongly with field-based soil moisture content (Figure 
13 and Figure 14), and this made the prediction of tree volume possible. 
 

 
Figure 18. Simplified representation of the of Ts and Fcd relationships. (source: developed from the research 
results). FCD = forest canopy density. 
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3.2. Data Validation 

The sample points were compared to the corresponding pixel values in the gen-
erated surfaces. Regressions values are shown in figures are 0.90 for TWI and 
0.83 for the TVDI surface, respectively. Both correlation coefficients are rather 
high, although there seems to be a slightly higher correlation with the TWI sur-
face. P-values of 0.02 for the TVDI correlation and 0.04 for the TWI correlation 
show that the sample size was large to achieve a statistically significant result. It 
is important to note that weather conditions (dry) at the time the samples were 
collected are similar to the ones of the satellite image acquisition date in 2019. 

4. Conclusion and Recommendations  

This study assessed soil moisture distribution using three different methods: To-
pographic Wetness Index (TWI), Temperature-Vegetation Dryness Index (TVDI) 
and Modified Normalized Difference Water Indexes (MNDWI) for IITA forest 
reserve. In-situ soil moisture was carried out and co-located to the derived mois-
ture indices from satellite images. Index dependencies on in-situ soil moisture 
and tree volume were investigated and significant correlations were detected. 
Only MNDWI showed weak correlations with in-situ measured soil moisture 
and tree volume. However, since both TWI and TVDI indexes correlate strongly 
with in-situ measured soil moisture and that of tree volume, this suggests that 
both methods can be used to model soil moisture and tree volume for this area. 
The establishment of combined effective models for soil moisture determination 
over large areas requires more extensive in situ measurements and methods to 
fully assess the models’ capabilities, limitations and value for hydrological and 
tree volume predictions. 
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