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Abstract 
Changes in land use and land cover (LULC) influence hydrological processes 
in a watershed. This study analyses the dynamics of LULC in the Kimemi 
watershed from 1987 to 2021. GIS and remote sensing tools as well as land-
scape pattern analysis were used to achieve this purpose. The results reveal 
that the LULC change is globally marked by an increase in the bare land and 
building at the expense of the low vegetation (grassland). Between 1987 and 
2011, the bare land and buildings (Tg = 61.33%) and the woodland (Tg = 
34.2%) classes increased, whereas the grassland class decreased (Tg = −39.5%). 
On the other hand, between 2011 and 2015, the bare land and building class 
still increased (Tg = 29.9%) while that of grassland and woodland decreased 
with Tg = −37.3% and Tg = −4.9%, respectively. Finally, the dynamics ob-
served from 2015 to 2021 is marked by small changes between classes with 
Tg values of 2.1%, 1.9% and −8.9%, respectively, for the bare land and build-
ing, grassland and woodland classes, respectively. The main spatial transfor-
mation processes observed are creation and dissection for the bare land and 
building class, and the grassland class respectively. In particular, the wood-
land class underwent the creation process between 1987 and 2011 before 
undergoing attrition (2011-2015-2021). Reduced vegetated areas give rise to 
new planning decisions to mitigate the hydrological risks that could result 
from this situation. 
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1. Introduction 

Land use and land cover are the main drivers of environmental changes (Demis-
sie, 2022). Therefore, studying its dynamics is increasingly essential for land man-
agement (Djagnikpo, Boukpessi, & Tanzidani, 2016). It sheds light on the dif-
ferent trends in spatial transformation processes (Lambin et al., 2001) which are 
amplified by demographic pressures and over exploitation of available resources 
(Bamba, Sadaiou, Barima, & Bogaert, 2010). 

Currently, urbanisation is an undeniable phenomenon of enthronisation and 
landscape transformation in several regions (André, Mahy, Lejeune, & Bogaert, 
2014; Justine, 2012). The proportion of the world’s population living in urban 
areas is expected to reach 68% of the world’s population in 2050 according to 
projections made by the UN in 2018 (UN, 2019). Furthermore, Angel et al. (2011) 
claim that the urban population of developing countries will grow at a rate five 
times faster than the urban population of more developed countries, particularly 
in sub-Saharan Africa, followed by South and Central Asia. This demographic 
growth induces a rapid densification and expansion of the built-up area in urban 
and periurban zones (Forman, 2008) with the subsequent spatial expansion that 
remains detrimental to the natural environment with a series of harmful socio-
economic and environmental impacts (Burel & Baudry, 1999; Grimm et al., 2008; 
Sikuzani et al., 2018). 

In several African cities, rapid changes in land use reveal a lack of planning 
(Karolien, Anton, Maarten, Eria, & Paul, 2012). According to Bogaert et al. 
(2008), the human impact on the environment usually results in the replacement 
of natural vegetation covered by artificial vegetation or other anthropogenic 
structures. This situation results in soil sealing with consequent hydrological 
risks (Moeyersons et al., 2004). Butembo city is a typical case of demographic 
explosion (Sahani, 2011). This explosion is the result of the rural exodus in gen-
eral and, in particular, the displacement of populations fleeing insecurity in their 
areas. Most of the urban expansion resulting from the demographic explosion is 
taking place in the Kimemi River watershed. This basin is the preferred area for 
housing development due to its less steep terrain. Unfortunately, these lands are 
still facing several environmental problems such as gullying, flooding, pollution of 
water sources, ecosystem degradation, etc. (Sahani, 2011). A quantification of this 
urbanisation is necessary to mitigate the resulting consequences. Understanding the 
effects of urban expansion on landscape structure and ecological processes re-
quires knowledge of the land use dynamics (Grimm et al., 2008). 

Furthermore, these changes in land use and land cover also have implications 
for the dynamics of the hydrological process in watersheds (Ferreira et al., 2012). 
To quantify this change, landscape ecology analysis tools are used too (Dietzel, 
Hemphill, Clarke, & Gazulis, 2005). These tools allow for an interpretation of 
observed dynamics in land use and land cover (Justine, 2012). In addition, the 
development of geographic information systems and remote sensing supports 
landscape ecology in understanding more precisely the dynamics of land use and 
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land cover (Lunetta, Knight, Ediriwickrema, Lyon, & Worthy, 2006). This study 
is based on the hypothesis that land use has progressively changed from vege-
tated areas to built-up areas and bare soil. Therefore, this investigation was car-
ried out to quantify the changes that have occurred in land use and land cover of 
the Kimemi River watershed from 1987 to 2021 based on, remote sensing, Geo-
graphic Information System and landscape pattern analysis. 

2. Materials and Methods 
2.1. Study Area  

The Kimemi River watershed is located in Butembo city, eastern Democratic 
Republic of Congo. This watershed is located between latitude 0˚05' and 0˚12.5' 
North and longitude 29˚15' and 29˚20' East (Figure 1). The average altitude is  
 

 
Figure 1. Location of the Kimemi river watershed. 
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about 1788 m. Kimemi River is one of the main rivers that drain Butembo, along 
with Mususa and Lwira. It is the most important and crosses the city in a south- 
north direction. Its main tributaries are Wayimirya, Kanywangoko, Kavaghendi, 
and Kinyavuyiri. The Kimemi River watershed has an area of 64.54 km2 and a 
perimeter of 56.85 km. The Gravelius compactness index of 1.99 reflects its 
elongated shape. The outlet of this watershed is located where the Lwira River 
meets the Kimemi River at the northern exit point of Butembo city. Figure 1 
shows the location of the study area. 

Butembo city has a climate that would be equatorial if it were not contrasted 
by mountains with average temperatures of around 18˚C and average rainfall 
around of 1400 mm (Sahani, 2011; Vyakuno, 2006). However, this temperature 
is increasingly on the rise while the annual rainfall is almost regular. Three main 
types of rock are encountered in the Kimemi River watershed including 1) the 
Luhule-Mobisio basic complex, 2) the Luhule-Mobisio sedimentary bedrock, and 
3) the orthogeneissic complex. In the Kimemi watershed, the original vegetation 
has already been removed. The area has been reforested with fast-growing exotic 
species (Eucalyptus sp, Eurythrina sp, Grevillea robusta, etc.). The majority of 
the population living in the Kimemi watershed in particular and in Butembo in 
general belong to the Nande ethnic group traditionally called Yira (Mirembe, 
2005). Trade and agriculture are the main economic activities in the region 
(Kitakya, 2007). 

2.2. Data Acquisition 

The methodological approach of this study is essentially based on an analytical 
approach of satellite images accompanied by ground truth. The satellite images 
used were downloaded from the USGS Earth Explore website  
(https://earthexplorer.usgs.gov/) with 30 meters of spatial resolution. They come 
from the following sensors: Thematic Mapper (TM), Enhanced Thematic Map-
per (ETM), and Operational Land Imager (OLI). These images correspond to 
the years 1987, 2011, 2015 and 2021 and their characteristics presented in Table 
1. Coordinates of regions of interest were collected using a GPS receiver embed-
ded in a Smartphone using the Android system (with ± 4 m accuracy) and com-
plemented by Google Earth images. ENVI 4.6.1 software was used for image 
classification and QGIS 3.20 for map layout. Finally, MS Excel 2019 and R 4.1.2 
software under the Rstudio 1.2.5001 interface were used to compute the spatial 
structure indices and data visualisation of variables. 
 
Table 1. Characteristics of the images used. 

Sensor Path/Row Date Resolution 

LANDSAT_4 TM 173/060 08-August-1987 30 m 

LANDSAT_5 ETM 173/060 13-January-2011 30 m 

LANDSAT_8 OLI 173/060 08-January-2015 30 m 

LANDSAT_8 OLI 173/060 14-April-2021 30 m 
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2.3. Data Analysis 
2.3.1. Image Pre-Processing 
Satellite images were pre-processed prior to thematic classification. This included 
color composition, image enhancement, and extraction of the study area. The 
colour composition was done to obtain a single multispectral image since Land-
sat images are designed as individual bands (Djagnikpo et al., 2016). Finally, the 
extraction of the study area was performed from the obtained multispectral im-
ages, following the boundaries of the Kimemi watershed. 

2.3.2. Image Classification 
To perform image classification, the supervised classification approach was cho-
sen (Ali, 2016; Kabanyegeye et al., 2020; Pham & He, 2012; Salomon et al., 2020). 
In fact, this approach makes it possible to discriminate between different classes 
of land use and land cover (Ali, 2016). The Regions of Interest (ROI) were de-
termined on the basis of geographical coordinates collected in the field and a 
visual interpretation of Google Earth images guided by knowledge of the study 
area. Three relevant classes were selected for the classification namely 1) the bare 
land and building (houses, roads and bare land), 2) woodland (tree plantations) 
and 3) grassland (lawns, cropland, etc.). The classification was based on the Maxi-
mum Likelihood algorithm. This algorithm is based on the statistics of the train-
ing areas, calculating the probability of a pixel belonging to a given class rather 
than to another. Pixels are assigned to the class for which the probability is high-
est (Djagnikpo et al., 2016; Girard & Girard, 2010).  

2.3.3. Accuracy and Validation of the Classification  
The classification accuracy was assessed through the confusion matrix with the 
calculation of validation indices such as the overall accuracy and the Kappa in-
dex. This confusion matrix makes it possible to compare the predicted land 
use/land cover, i.e., that resulting from the classification, with the land use ob-
served in the field (Girard & Girard, 2010; Justine, 2012). Kappa values below 
50% indicate poor classification, while those between 50% and 75% and those 
above 75% indicate acceptable and excellent classification, respectively (Bogaert, 
Vranken, & Andre, 2014; Landis & Koch, 1977).  

2.3.4. Detection of Changes in the Spatial Pattern  
The spatiotemporal dynamic of the different land use/land cover classes was 
evaluated through the construction of the transition matrix, the calculation of 
the overall change rate, and the calculation of the spatial structure indices of the 
landscape. The transition matrix is a square matrix that allows to highlight in a 
condensed way the change of state undergone by the elements of a landscape 
during a given period (Bogaert et al., 2008; Djagnikpo et al., 2016). Three matrix 
(1987-2011, 2011-2015, 2015-2021) were produced by crossing the maps two by 
two for the periods considered. In addition, the overall change rate was also cal-
culated to detect changes for each land use class. The spatiotemporal evolution 
of these classes was evaluated through the relationship between the same class at 
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two different dates. This relationship made it possible to extract the stable, re-
gressive and progressive areas of the focused class. The overall change rate (Tg) 
were calculated using Equation (1) proposed by the FAO in 1996 (Djagnikpo et 
al., 2016): 

2 1

1

Tg 100
S S

S
−

= ×                         (1) 

With: 
S1: area of a class at date t1, in km2; 
S2: area of the same class at date t2, in km2; 
Tg: overall change rate. 
A value of Tg close to zero indicates the relative stability of the class, while 

positive values represent an increase in the area of the class during the period 
analysed. Negative values indicate the loss or regression of the area occupied by 
a class between the two dates.  

The next step in the analysis was the calculation of spatial pattern indices. These 
indices are indicators of human impact on landscape configuration (Bogaert et al., 
2008). In this study only considered the number of patches (n), the total area of 
patches (at), and the dominance index (D) computed after Bamba et al. (2008) as 
follows: 

1
jn

tj ijia a
=

= ∑                            (2) 

( ) max 100j
J

tj

a
D a

a
= ×                        (3) 

(2) Total patches area and (3) dominance index 
With: 
nj: Total number of patches; 
aij: area of patch (i) of class (j), in ha; 
atj: total area of the class (j), in ha; 
amaxj: area of the largest patch of the class (j), in ha; 
Dj(a): dominance index in %. 
The spatial transformation processes during the study period were identified 

using the decision tree proposed by Bogaert, Ceulemans and Eysenrode (2004). 
This tree is based on the evolution of the number of patches, the total area and 
the total perimeter of patches of the land use class. The choice between frag-
mentation and dissection were based on a predefined reference value t = 0.5. 

3. Results and Discussion 
3.1. Results 
3.1.1. Classification and Mapping 
Table 2 presents the different values of the precision index found in this study. 
The analysis of the accuracy of the supervised classification of the images re-
veals overall accuracy values of 99.2%, 99.9%, 100%, 98.5% and Kappa index of 
0.9871, 0.9981, 1, 0.9761, respectively, for the images of 1987, 2011, 2015, 2021.  
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Table 2. Overall accuracy and Kappa index for the different classification dates. 

date Overall accuracy (%) Kappa index 

1987 99.2 0.9871 

2011 99.9 0.9981 

2015 100 1 

2021 98.5 0.9761 

 
These values indicate a statistically reliable discrimination of the different land 
cover classes. 

3.1.2. Change in Land Use and Land Cover 
The evolution of land use between 1987 and 2021 is globally characterised by an 
increase in the area occupied by the bare land and building class on the expense 
of the grassland class. The woodland class, on the other hand, has evolved with 
less pronounced variations (Figure 2). 

Between 1987 and 2011, the class of bare land and building (Tg = 61.33%, 
from 18.5 km2 to 29.8 km2) and the woodland class (Tg = 34.2%, from 9.3 km2 to 
12.5 km2) increased, while the grassland class decreased (Tg = −39.5%, 36.7 km2 
to 22.2 km2). The increase in the class of bare land and building is due to the 
conversion of 19.2% of grassland and 3.2% of woodland. The woodland class in-
creased due to the conversion of 11.4% of grassland and 1.9% of bare soil (Table 
3). 

From 2011 to 2015, the class of bare land and building class increased at a rate 
7.5% per year (29.8 km2 to 38.7 km2), while that of grassland and woodland de-
creased from 22.2 km2 to 13.9 km2 (Tg = −37.3%) and from 12.5 km2 to 11.9 km2 
(Tg = −4.9%), respectively. During this period, the increase observed for the bare 
land and building class is justified by the conversion of 9.4% of grassland and 
5.7% of woodland (Table 3). 

The dynamics observed during the period spanning from 2015 to 2021 is 
rather marked by small changes between classes. The overall change rates corre-
sponding to each of the classes reveal a slight increase in the class of bare land 
and building (Tg = 2.1%), as well as in that of grassland (Tg = 1.9%). On the 
other hand, the woodland class decreased (−8.9%). In this period, 2.1% of the 
woodland class was converted to bare land and building and 4.3% to grassland. 
A portion (3.6%) changed from grassland to woodland, while 6.7% changed to 
bare land and building. Furthermore, 2.1% of the woodland area was converted 
to bare soil and built-up area (Table 3). Table 3 presents the transition matrix, 
and Figure 2 and Figure 3 illustrate the different changes in land use and land 
cover during the study period. 

3.1.3. Spatial Dynamics of Landscape Structure  
From 1987 to 2011, the most dominant process in the class of bare land and 
building is creation, explained by a simultaneous increase in the number of  
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Table 3. Transition matrices (1987-2011; 2011-2015; 2015-2021). 1% corresponds to 0.65 km2. 

 
Area (in %) 

year 2011 

Bare land and building Grassland Woodland Total 

year 1987 

Bare land and building 23.8 3.4 1.9 29.1 

Grassland 19.2 26.1 11.4 56.7 

Woodland 3.2 5.0 6.1 14.2 

Total 46.2 34.5 19.3 100.0 

 
Area (in %) 

year 2015 

Bare land and building Grassland Woodland Total 

year 2011 

Bare land and building 44.9 0.8 0.5 46.2 

Grassland 9.4 16.6 8.4 34.5 

Woodland 5.7 4.2 9.5 19.3 

Total 60.0 21.6 18.4 100.0 

 
Area (in %) 

year 2021 

Bare land and building Grassland Woodland Total 

year 2015 

Bare land and building 52.5 6.4 1.1 60.0 

Grassland 6.7 11.2 3.6 21.6 

Woodland 2.1 4.3 12.0 18.4 

Total 61.3 22.0 16.7 100.0 

 

 
Figure 2. Observed change in land use classes in terms of surface in km2. 
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Figure 3. Land use and land cover: (a) 1987, (b) 2011, (c) 2015, (d) 2021. 
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patches (Figure 4(a)) and their total area (Figure 4(b)). On the other hand, for 
the grassland class, the spatial transformation process was dissection following 
an increase in the number of patches followed by a decrease in their surface but 
with t value (0.61) higher than 0.5. On the other hand, for the woodland class, 
the creation of new patches was also observed. From 2011 to 2015, the dominant 
process in the class of bare land and building remains the creation resulting from 
the simultaneous increase in the number of patches and their surface during this 
period. Similarly, for the grassland class, the dominant process remains dissec-
tion. However, the woodland class underwent the attrition process (Table 4) 
following the simultaneous decrease in the number of patches (Figure 4(a)) and 
their area (Figure 4(b)). Finally, between 2015 and 2021 patches of the bare land 
and building class continued to be created while the grassland class underwent 
dissection (t = 0.99) and the woodland class continued to undergo attrition 
(Table 4). 
 

 
Figure 4. Evolution of spatial indices by land use and land cover class. (a): number of patches (b): total area of patches (ha), (c): 
dominance index (%). 

 
Table 4. Spatial transformation process identified through the decision tree proposed by Bogaert, Ceulemans and Eysenrode, 
(2004) for each of the land use classes from 1987 to 2021 in the Kimemi watershed. 

LULC classes 1987-2011 2011-2015 2015-2021 

Bare land and building Creation Creation Creation 

Grassland Dissection Dissection Dissection 

Woodland Creation attrition attrition 
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In general, the dominance values in the bare land and building class are high 
compared to other classes. The dominance increased from 75.89% in 1987 to 
90.32% in 2011 reflecting the increase of the largest patch of the class in the 
landscape. This value stabilised until 2021 at around 91.33%. For the woodland 
class, the value of dominance also increased during the study period with values 
of 11.43%; 19.03%; 23.18%; 29.30% in 1987, 2011, 2015 and 2021 respectively. 
However, the dominance values of grassland class decreased drastically from 
93.21% in 1987 to 10.55% in 2021. 

3.2. Discussion 

This study was carried out on a watershed scale in an urban context. Sow (2020) 
states that the watershed is an integrating territory of different physical-human 
processes (e.g., hydrological processes) evolving in time and space, under the ef-
fect of the influences of societies. To assess changes in land use and land cover, 
freely available Landsat satellite images have made it possible to achieve this ob-
jective. Although not very suitable for studies of urbanised environments, these 
images have been used by several researchers (Chen, Tabssum, & Nguyen, 2019; 
Dan-jumbo, Metzger, & Clark, 2018; Diallo & Bao, 2010; Karolien et al., 2012; 
Salomon et al., 2020; Song, 2019). In this kind of landscape, the surface of a sin-
gle pixel can cover different land uses (Kabanyegeye et al., 2020). 

No approach of satellite image classification is sufficient if it is not confronted 
with the ground truth, which also contributes to reducing the degree of confu-
sion between thematically related pixels (Foody, 2002, 2010; Mama & Oloukoi, 
2003). In this study, this evaluation was carried out using the confusion matrix 
and the calculation of the Kappa index and the overall accuracy. Foody (2002) 
stated that the confusion matrix and precision indices remain valid and useful in 
the case of the existence of a reliable land database. The values of the precision 
indices obtained in this study (Table 2) reveal an excellent classification. 

The urbanisation of Butembo city and specifically in the Kimemi river water-
shed is characterised by the replacement of grassland areas by the construction 
of new quarters. To refine the understanding of this phenomenon, much more 
adequate time scales must be considered (Bogaert et al., 2004). Nevertheless, this 
result is in line with results found in several cities in Africa where green spaces 
and/or urban fields are transformed into built-up areas: Kisangani (Justine, 2012), 
Lubumbashi (Sikuzani et al., 2017), Bujumbura (Kabanyegeye et al., 2020), and 
Bamako (Diallo & Bao, 2010). Furthermore, in other cities around the world, re-
searchers have observed a similar trend of reduction in vegetated areas: Shanghai 
(Liu et al., 2021), Cap-Haïtien (Salomon et al., 2020), Upper Dhaka (Byomkesh, 
Nakagoshi, & Dewan, 2012). According to Sahani (2011), the growth of Butembo 
was located preferentially along the main roads before being generalised to almost 
the entire city. These road axes for the development of the city are mainly lo-
cated in the Kimemi watershed. This situation explains the increase in the sur-
face of bare land and building observed in this study. The spatial transformation 
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process of the landscape observed for the bare soil and built class from 1987 to 
2021 was creation. In addition, the dominant spatial transformation processes 
for the woodland and grassland are mostly dissection and attrition. Both proc-
esses (dissection and attrition) are classified as land degradation processes (Bogaert 
et al., 2004; Forman, 1995). Furthermore, the decrease in the dominance index 
value for the grassland class confirms the degradation of this class, while for the 
woodland class the opposite is true. In fact, there is an increase in the dominance 
value for the woodland class followed by an extension of the surface between 
1986 and 2011, although less noticeable. This increase would be due, on the one 
hand, to the reforestation that the region has undergone (Sahani, 2011) and, on 
the other hand, to a weak confusion observed between this class and those of grass-
land during the classification. Turan, Ali Ihsan Kadıogulları and Günlü (2010) also 
observed an increasing forest area situation in their study of the response to ur-
banization in the Kastamonu region of Turkey. It should be noted that in their case, 
the increase in forests was justified by the abandonment of peri-urban land. Fur-
thermore, Phinzi and Ngetar (2019) also found an increase in the area occupied by 
forests in the Umzintlava basin in South Africa between 1989 and 2017. 

Furthermore, the trend of replacement of forests (woody vegetation) and/or 
grass by bare land, field, or buildings is common in several other watersheds in 
Africa and elsewhere, both urban and nonurban: Huluka in Ethiopia (Gebreslas-
sie, 2014), Umbulo in Ethiopia (Moges & Holden, 2009), Luzinzi in DRC (Chuma 
et al., 2021), Grand Port Harcourt in Niger (Dan-jumbo et al., 2018), Chongwe in 
Zambia (Tena, Mwaanga, & Nguvulu, 2019), Nashe in Ethiopia (Leta, Demissie, 
& Tränckner, 2021), Anzali in Iran (Aghsaei et al., 2020). This situation leads in 
some cases to an amplification of surface runoff water in the watershed. Salo-
mon et al. (2020) also reports that the increase in sealed areas in the city of 
Cap-Haitien could lead to hydrological risks such as gullying, flooding, land-
slides. Additionally, Kabanyegeye et al. (2020) reported similar situations in the 
city of Bujumbura in Burundi. In the Kimemi watershed these phenomena 
(gullying, flooding, landslides) are also visible (Sahani, 2011). Indeed, vegetation 
would have a protective effect against this phenomenon, although it remains ef-
fective up to a certain threshold (Rey, Ballais, Marre, & Rovéra, 2004). 

4. Conclusion 

This study is an analysis of the land use and land cover dynamics in the Kimemi 
watershed. A combination of remote sensing, GIS, landscape ecology tools and 
ground-truth approaches were used to quantify and identify the LULC changes. 
The results of this study underline that the LULC in the Kimemi river watershed 
has evolved globally by increasing the class of bare land and building on the ex-
pense of the grassland class. The woodland class has not changed much. Between 
1987 and 2011, the bare land and building class and the woodland class increased on 
the expense of the grassland class. In the following decades (2011-2015-2021), the 
area of bare land and building continued to increase, while that of grassland and 
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woodland decreased. The dominant spatial transformation processes observed 
are mainly creation for the bare land and building class and dissection and attri-
tion for the grassland and woodland class, respectively. This dynamic, character-
ised by the sealing and denudation of soils, would have an effect on the hydro-
logical processes in the catchment leading to more and more flooding, erosion 
and landslides. Despite the lack of some data, further research should focus on 
the driving factors of these changes and quantifying this risk to inform planning 
decisions that reduced the landscape degradation and promote the restoration of 
the ecosystem. 
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