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Abstract 
Researchers developed an earthquake prediction software and evaluated its 
performance. This earthquake prediction software is suitable for short-term 
earthquake prediction. This approach relies on the deep involvement of water 
vapors that occur just before an earthquake caused by a decrease in pressure 
and an increase in temperature, leading to a 70.5% prediction accuracy within 
a month in Japan. In addition, we have tried to develop a new practical me-
thod to warn earthquakes for not only Japan but also global scale. In other 
words, this paper is dedicated to improving the short-term earthquake pre-
diction software from Japan to global scale. In global scale, the prediction rate 
improved to 80.8%.  
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1. Introduction 
1.1. Earthquake Explosion Theory 

Researchers hypothesized that earthquakes are based on the following defini-
tions. Normally, the water of crystallization in the dissociation layer is stable. 
First, the position of the dissociation layer rises, and the degree of dissociation 
increases due to a decrease in pressure or an increase in ambient temperature 
(King, 1986; Goto, 1996; Ishida, 2013). When it rises sharply, a mixed gas of dis-
sociated hydrogen gas and oxygen gas (dissociated water, also called explosive 
gas in science experiments) accumulates inside the magma chamber and the 
pressure increases. This can cause microcracks in the bedrock, which can trigger 
an earthquake precursor. Second, if the dissected gas in the plasma state moves 
at a high speed, MHD power generation may occur, and the underground cur-
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rent may be causing an electromagnetic precursor. The precursors may be the 
generation of telluric current, abnormalities caused by electromagnetic waves, 
and light emission phenomena (Davis & Baker, 1965; Hayakawa, 1995; Arai-
za-Quijano & Hernández-del-Valle, 1996; Bernard, Pinettes, Hatzidimitriou, 
Scordilis, Veis, & Milas, 1997; Hayakawa & Hobara, 2010). Since the dissociation 
reaction is a reaction that takes heat away, the ambient temperature of the mag-
ma chamber drops locally. Third, when the dissociation is completed, the heat 
from the surroundings moves, so the ambient temperature returns to the origi-
nal temperature (Yamamoto, 2006). Then, when the explosion conditions of the 
roaring air are reached, it ignites and explodes. It can be said that this is the first 
stage of the earthquake. The direction of the explosion is determined by the 
shape of the magma chamber. After the explosion, the mixed gas returns to the 
supercritical water of crystallization, so the pressure drops, and the magma 
chamber collapses (Ishimoto, 1929). This is the second stage of the earthquake. 
The explosion releases heat and lowers the ionosphere to its pre-earthquake po-
sition. The seismic phenomenon has a peculiar phenomenon called push-pull 
phenomenon, but the first stage explosion creates a “push area” and the second 
stage creates a “pull area”. The larger the earthquake, the more scars of the earth-
quake, called faults, appear at the boundary. In addition, if the dissected gas in 
the plasma state moves at a high speed, MHD power generation may occur, and 
the underground current may be causing an electromagnetic precursor. The re-
searcher assumed that the clouds suggested by Manabe, Kagita, and Shou might 
be the gas caused by the decrease in pressure and increase in temperature (Ma-
nabe, 1981; Kagita, 1983; Shou, 1999). In addition, Aftershock activity is caused 
by repeated dissociation and detonation (Figure 1). 

As clearly indicated in Figure 2, the researcher affirmed earthquake occurs in 
the following order. First, the dissociation layer, which is normally stable, moves 
to the upper layer due to the decrease in pressure and increase in temperature 
(King, 1986; Goto, 1996; Ishida, 2013). Second, as the dissociation layer rises, the 
water dissociates and the surrounding temperature drops (electrical precursors 
to earthquakes due to changes in hydrogen ion concentration, ionosphere, etc. 
(Davis & Baker, 1965; Hayakawa, 1995; Araiza-Quijano & Hernández-del-Valle, 
1996; Bernard, Pinettes, Hatzidimitriou, Scordilis, Veis, & Milas, 1997; Haya-
kawa & Hobara, 2010). Third, when the temperature recovers, ignition occurs, 
followed by an earthquake (Yamamoto, 2006). Finally, magma rises because of 
depressurization caused by the binding reaction and the collapse of the magma pool  
 

 

Figure 1. Chemical bonding formula of H2O. 
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Figure 2. Mechanism of earthquake occurrence and its spectral phenomena. 
 
(Ishimoto, 1929). The researcher assumed that the clouds suggested by Manabe, 
Kagita, and Shou might be the gas caused by the decrease in pressure and in-
crease in temperature as described in the first step of earthquake occurrence 
(Manabe, 1981; Kagita, 1983; Shou, 1999). Due to the wide dissociation range of 
crystalline water, when the soil temperature rises, the dissociation layer rises and 
heats up, pushing steam to the surface (Manabe, 1981). This phenomenon can 
occur unexpectedly in places far from the epicentre, such as volcanic mountains 
and fault lines. Therefore, water vapor is easy to detect (Manabe, 1981; Kagita, 
1980; Kagita, 1983). This theory is consistent with Ishida’s theory that the nor-
mally stable dissociation layer moves to the upper layer as the pressure drops 
and the temperature rises (Ishida, 2013). Therefore, researchers sought to de-
velop this software based on this mechanism, where water vapor is caused by a 
decrease in pressure and an increase in temperature. 

1.2. Earthquake Prediction Software 

A lot of software for earthquake prediction has been developed. Many of these 
papers are based on geology and seismology in the last 15 years. For example, in 
2010, a study was conducted to model the behaviour of seismic time data based on 
seismic time data and non-parametric statistical tests to understand patterns useful 
for predicting medium to large earthquakes (Morales-Esteban, Martínez-Álvarez, 
Troncoso, Justo, & Rubio-Escudero, 2010). In 2013, Francisco used neural net-
works to perform earthquake prediction to predict earthquakes in Chile (Reyes, 
Morales-Esteban, & Martínez-Álvarez, 2013). This was an earthquake prediction 
method using statistical and geophysical models. In 2018, Amirul created a ma-
chine learning model for earthquake prediction that models the relationship 
between calculated seismic data and future seismic occurrences and calculates 
magnitude (Hoque, Raj, & Saha, 2018). A type of recurrent neural network called 
long short-term memory (LSTM) was also used to model seismic sequences 
(Bhandarkar, Satish, Sridhar, Sivakumar, & Ghosh, 2019). The overall feature of 
these latest studies was machine learning using training and test datasets, and 
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the data were based on qualitative seismology. In addition, there is a little soft-
ware research that explicitly mentions the relationship between earthquakes and 
weather. For example, Tan focused on and modeled a comprehensive analysis of 
shape and time series characteristics that could be used to identify pre-earthquake 
clouds from images of clouds from space (Tan, 2014). In addition, Shiraishi de-
vised a model connecting meteorology and seismology from the theory of Ishi-
moto, and then developed and evaluated software based on quantitative observa-
tion data using meteorology in 2022 (Shiraishi, 2022). However, this software 
was limited to Japan and needed to be expanded globally. Therefore, in this re-
search, we developed and evaluated the development of earthquake prediction 
software on a global scale. 

2. Method and Materials 
2.1. Study Area 

The study area can be easily expanded by using satellite images. Therefore, the 
researcher conducted the global scale. The area captured by Himawari-8 is the 
range shown in Figure 3. 

2.2. Research Design 

To understand the characteristics of water vapor, researcher conducted a litera-
ture survey on water vapor and created teacher data. According to teacher data, 
most of them were linear in the plane because they erupted along the mountains 
or from the boundaries of the faults. However, on the global scale captured by 
satellite images, it was found that the earth has a spherical shape, so it has a lin-
ear shape near the centre and a distorted shape around the sphere. Therefore, 
the water vapor that appeared before the earthquake was detected as teacher 
data. Based on the template matching of teacher data and satellite images, we es-
timated the areas with high similarity as the epicentre. For scale, we adopted 
“similarity” using normalized cross-correlation. 
 

 

Figure 3. Global scale map captured by Himawari-8. 
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2.3. Sampling Method of Teacher Data 

For the image data, video image data from the National Institute of Information 
and Communications Technology (NICT) was used to create the teacher data. 
Next, the satellite video was cut at 240-minute intervals, and moving clouds were 
extracted by motion detection. Finally, cloud images over a certain area were 
trimmed and visually deciphered, and then stored as the teacher data. 

2.4. Teacher Data Sampling Method 

In this study, the teacher data were created by machine learning based on Shi-
raishi algorithm (Shiraishi, 2022). The flowchart of the program to judge the 
water vapors when sampling the teacher data is shown in Figure 4. The teacher 
data is classified into training data and test data by deciphering fault-type or 
volcanic range-type water vapor on global scale with machine learning. Finally, 
supervised learning should be performed and the water vapor data with correct 
answers should be sampled as the teacher data. When performing template 
matching with supervised data, the larger the number of samples, the easier it is 
to decipher the data. However, for accurate extraction of water vapor, it is im-
portant to learn the definition of water vapors and their types before sampling 
the data.  

2.5. Input of Water Vapor Image Data 

The program accepts images of water vapor as data. Here, thermal infrared images 
were downloaded from the National Institute of Information and Communications 
 

 

Figure 4. Sampling method of teacher data. The algorithm has been described in Sections 4.2 - 4.6 below: (2.5) Input of water 
vapor image data, (2.6) Input image for teacher data, (2.7) Filtering, (2.8) Template matching, and (2.9) Magnitude estimation 
(Shiraishi, 2022). 
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Technology every 240 min. In addition to this, the researcher used 1 years’ data 
(from July 2015 to June 2016) to examine the correct response rate. Further, the 
researcher examined earthquakes that occurred around the world in 2022. Water 
vapor image data is shown in Figure 5.  

2.6. Image Input for Teacher Data 

Water vapor is defined as vapor with a temperature (pixel value) greater than a 
certain level as measured by thermal infrared images that stayed for a certain 
amount of time and are linear in shape, based on the theory of Manabe, Fan, that 
the closer water vapor is to the epicentre, the longer is the standstill time, and 
that they were found along fault lines and volcanic mountain ranges (Manabe, 
1981; Fan, Chen, Yan, Gong, & Wang, 2015) The examples of Water vapor over 
the ocean and land are shown in Figure 6.  

2.7. Image Input for Teacher Data 

Water vapor was filtered by separating them from ocean, lands, or normal 
clouds based on the brightness of the temperature. 

0 ≤ P ≤ 49 (Ocean or normal clouds); 
50 ≤ P ≤ 100 (Water vapor before earthquake); 
101 ≤ P ≤ 255 (Lands). 

2.8. Template Matching 

Template matching (Dong, Yongtao, & Yajing, 2008; Brunelli, 2009) was applied 
to 10 pieces of supervised data, and the water vapor with the maximum similar-
ity was extracted from the images. Normalized cross-correlation was used for 
calculating the similarity (Equation (1)). 
 

 

Figure 5. Water vapor image data before earthquake around Solomon Islands. 
 

 

Figure 6. Examples of water vapor on global scale. 
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2.9. Magnitude Estimation 

The normalized cross-correlation coefficient was used to estimate the magnitude 
(Equation (2)). 

1 2M C R C= × +                        (2) 

where M is the magnitude, R is the similarity in normalized cross-correlation, 
and C1 and C2 are the coefficients. Here, the researcher adopted C1 = 4 and C2 
= 3.85 (M ≥ 6.0), which were obtained through experiments. 

2.10. Statistical Methods 

For the calculation of the target rate, the matrix of prediction rate and success 
rate was used, which is very commonly used in statistics. 

3. Results 
3.1. Evaluation for Earthquake Predictions 

The researcher successfully assessed earthquake that occurred in the global scale 
from July 2015 to June 2016 within 31 days. The magnitudes were more than 
90% accurate with an error range of ±0.7, i.e., if the magnitude, place of occur-
rence, and time are considered, the accuracy is 42/52 = 0.8076 (80.8%). For the 
2021 earthquake, the researcher also succeeded in detecting precursors for sev-
eral earthquakes. This result is shown in Table 1 and Table 2. The magnitude 
estimate (M 6.0 ± 0.7) was correct, and it leads us to the location and time. 

3.2. Successful Prediction Example of the Taiwan Earthquake 

For the verification of water vapors, we utilized data from past satellite images. 
The verification example shown in Figure 7 is the result of analysis using satel-
lite images taken 18 days before an earthquake that struck Taiwan region in 
2011. In this study, to construct a global model, we developed and verified a 
global model based on the spherical Himawari-8. 
 
Table 1. Successful rate and prediction rate of earthquake prediction in 31 days (M ≥ 
6.0). 

 
Results 

Earthquake No Earthquakes Sum 

Water vapor 
0.81 

(42/52) 
0.19 

(10/52) 
(52/52) 

No water vapor 
0.40 

(27/68) 
0.60 

(41/68) 
(68/68) 

Sum (69/120) (51/120) (120/120) 
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Figure 7. Image capturing the Taiwan earthquake [M 6.0, March 2, 2011 (UTC)]. 

 
Table 2. Examples of earthquake predictions. 

 
Prediction Results Success 

or failure Date Magnitude Place Date Magnitude Place 

1 
1/7/2015 

- 
1/8/2015 

5.25 - 6.65 Indonesia 12/7/2015 5.5 Indonesia Success 

2 
12/10/2015 

- 
12/11/2015 

5.25 - 6.25 
Tohoku, 

Japan 
2/11/2016 5.4 

Tohoku, 
Japan 

Success 

3 
1/4/2016 

- 
1/5/2016 

5.55 - 6.95 Vanuatu 18/4/2016 5.9 Vanuatu Success 

4 
26/6/2016 

- 
26/7/2016 

5.35 - 6.75 
South 

of Japan 
30/7/2016 7.7 

Mariana 
Islands 

Fail 

5 
29/6/2016 

- 
29/7/2016 

5.35 - 6.75 
Kermadec 

Islands 
13/7/2016 5.9 

Kermadec 
Islands 

Success 

4. Discussion 
4.1. Difference between Japan and Global Model 

The big difference between the Japanese model and the global model is its form. 
The map of the Japanese model (local model) is flat, while the map of the global 
model is spherical. Machine learning was performed because it is very difficult to 
calculate a suitable image of water vapor in a spherical model. In addition, since 
the pixel threshold also differs depending on the image shooting method and 
generation method, a value significantly different from the Japanese version (lo-
cal version) was calculated. The difference between Japan and global model is 
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shown in Figure 8. 

4.2. Software Information 

This software inputs teacher data on satellite images of water vapor generated 
before an earthquake and automatically predicts the location (within the frame), 
time (within one month), and scale (magnitude error ± 0.7) of the earthquake. 
In addition, regarding the occurrence of earthquakes, we succeeded in improv-
ing the accuracy by involving thresholds and water vapor clouds in machine 
learning. The software in this study has the advantage that anyone can use it eas-
ily and even people who have no knowledge of earthquakes can predict earth-
quakes. In the future, we will work on disaster prevention from a global perspec-
tive so that the lives of many people, man-made objects, nature, etc. will not be 
lost by working to improve the software so that the damage caused by the 
earthquake can be mitigated as much as possible. This software has two types, a 
local version, and a global version. 

4.3. The Period from the Generation of Gas to the Occurrence of  
an Earthquake 

A histogram of the number of days it takes for an earthquake to occur after the 
gas is generated is shown in Figure 9. Earthquakes were most likely to occur 1 to 
8 days (about a week) after the gas was generated. It was also found that the 
longer the number of days, the lower the ratio to the total number of days. In  
 

 

Figure 8. The difference between Japan and global model. 
 

 

Figure 9. The period from the generation of gas to the occurrence of an earthquake. 
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addition, 13/42 (31%) within one week, 24/42 (57%) within two weeks, and 
34/42 (81%) within three weeks from the generation of water vapor to the oc-
currence of an earthquake. It is known that 40/42 (95%) earthquakes will occur 
within 4 weeks and 42/42 (100%) earthquakes will occur within 5 weeks. This 
suggests that the shorter the period of ignition after the release of water vapor, 
the more likely it is that an earthquake will occur.  

5. Conclusion 

Shiraishi’s Japan model found 70.5% prediction accuracy within a month using 
the water vapors software, which is comparable to Shou’s 68% accuracy and the 
VAN method with 60% accuracy in Greek geo-currents. In addition, in the glob-
al model, 80.8% accuracy was achieved. This is a very high prediction rate com-
pared to other studies. By combining the research results of the global model 
and Shiraishi’s Japan model (local model), it will be possible to comprehensively 
evaluate the predicted distribution of earthquakes from a micro perspective and 
a macro perspective. This is a revolutionary invention that contributes to disas-
ter-prone countries and is one of the ways to protect the lives and nature of 
many people. 
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