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Abstract 
Telegraph equations are derived from the equations of transmission line 
theory. They describe the relationships between the currents and voltages on 
a portion of an electric line as a function of the linear constants of the con-
ductor (resistance, conductance, inductance, capacitance). Their resolution 
makes it possible to determine the variation of the current and the voltage as 
a function of time at each point of the line. By adopting a general sinusoidal 
form, we propose a new exact solution to the telegraphers’ partial differential 
equations. Different simulations have been carried out considering the para-
meter of the 12/20 (24) kV Medium Voltage Cable NF C 33,220. The curves 
of the obtained solution better fit the real voltage curves observed in the elec-
trical networks in operation. 
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1. Introduction 

Electrical transmission lines conduct single-phase, two-phase, or three-phase 
electrical voltage and current in opposite directions to each other [1] [2] [3]. 
They are generally modeled by a succession of identical quadrupoles or linear 
filters, each quadrupole comprising a linear resistance R, a linear inductance L, a 
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linear capacitance C, and a linear conductance G. These lines are interconnected 
in the form of wire networks using distribution source stations. The wave 
transmission equations on a power line describe the evolution of the current and 
voltage as a function of time and space. They are also called telegrapher’s equa-
tions [4]. Several solutions have been proposed to solve these equations among 
which we can note analytical solutions [5] [6] and numerical ones [7] [8] [9]. 

M. K. Smail [8] proposed a finite differences numerical method for solving 
these equations based on the time domain. M. Franchet [9] modeled and solved 
the problems of multiconductor lines by numerical matrix methods. A. Fall [10] 
used a frequency-domain method to study the propagation of the optical signal 
on a multimode coupler. In the same way, J. Biazar et al. [7] proposed an itera-
tive method to solve the telegrapher’s equations.  

Other authors have proposed analytical solutions, notably C. R. Paul [5] and J. 
Ahmed et al. [6]. 

All of the above solutions have given interesting results in their respective 
fields of application. As for the studies presented in [8] [9] [10], the objective 
was to determine a solution to the telegrapher’s equations to achieve fault detec-
tion and location in electrical networks. 

Many of the analytical solutions are more mathematical than physical. Their 
representative curves do not always fit the actual voltage and current curves seen 
on power system control and supervision systems. 

To this end, a new exact solution could improve electricity management by 
minimizing energy losses on the lines.  

This paper proposes a new exact solution of telegraph equations for better 
electricity management. This solution describes, at a given location, the time- 
variation of the voltage amplitude in an electric cable. It is suitable for sin-
gle-phase, two-phase, and three-phase voltage. The resulting solution allows the 
generation of the electrical wave and the monitoring of its propagation along the 
line. It allows following the variation of the wave as a function of time, space, 
and phase. Its curves better fit the shape of the instantaneous voltage in an elec-
trical network in operation than those of the previous solutions. This new solu-
tion presents the variation of the signal shape as a function of time and the angle 
of the phase shift between the voltage and current signals in the network.  

The remainder of the paper is structured in three parts: The first part presents 
the methodical approach adopted to describe the electrical model and the dif-
ferent equations. The second part deals with formulating the proposed exact so-
lution of the telegraph equations and presents and discusses simulation results. 
The third part presents the conclusion and perspectives for further work. 

2. Methodological Approach 

Electrical transmission lines interconnect a source to an electrical charge by at 
least two conducting wires composed of a charge wire and a neutral one. The 
charge wire conducts the electrical signal while the neutral wire is used to form a 
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circuit loop. 
A portion of a two-wire line is usually modeled by a quadrupole as shown in 

Figure 1. At a given time, the voltage ( )v x  and the current ( )i x  vary with 
position x. These variations take into account the linear resistance R, the linear 
conductance G, the linear inductance L, and the linear capacitance C. 

In the quasi-steady state, the equations relating voltage and current will be of 
the partial derivative type concerning time and space. Thus, by applying Kir-
chhoff’s laws to Figure 1 we find the Relations (1.1) and (1.2): 

( ) ( ) ( ) ( )
,

, , , 0
i x t

v x t R dx i x t L dx v x dx t
t

∂
− ⋅ ⋅ − ⋅ ⋅ − + =

∂
        (1.1) 

( ) ( ) ( ) ( )
,

, , , 0
v x t

i x t G dx v x t C dx i x dx t
t

∂
− ⋅ ⋅ − ⋅ ⋅ − + =

∂
        (1.2) 

By introducing the notion of finite differences, Equations (1.1) and (1.2) be-
come (1.3) and (1.4): 

( ) ( ) ( ) ( ), , ,
,

v x dx t v x t i x t
R i x t L

dx t
+ − ∂

− = ⋅ + ⋅
∂

           (1.3) 

( ) ( ) ( ) ( ), , ,
,

i x dx t i x t v x t
G v x t C

dx t
+ − ∂

− = ⋅ + ⋅
∂

           (1.4) 

Assuming that dx is infinitesimal, we obtain Equations (1.5) and (1.6): 

( ) ( ) ( ), ,
,

v x t i x t
R i x t L

x t
∂ ∂

− = ⋅ + ⋅
∂ ∂

                (1.5) 

( ) ( ) ( ), ,
,

i x t v x t
G v x t C

x t
∂ ∂

− = ⋅ + ⋅
∂ ∂

                (1.6) 

The second derivative of Equations (1.5) and (1.6) concerning space gives 
Equations (1.7) and (1.8): 

( ) ( ) ( )2 2

2

, , ,v x t i x t i x t
R L

x x tx
∂ ∂ ∂

− = ⋅ + ⋅
∂ ∂ ∂∂

              (1.7) 

( ) ( ) ( )2 2

2

, , ,i x t v x t v x t
G C

x x tx
∂ ∂ ∂

− = ⋅ + ⋅
∂ ∂ ∂∂

              (1.8) 

By combining Equations (1.1), (1.5), and (1.7), respectively (1.2), (1.6), and 
(1.8), we find Equations (1.9) and (1.10) below. These equations correspond to 
the one-dimensional wave equations called the telegraph equations of voltage 
(1.9) and current (1.10). 
 

 
Figure 1. Model of a transmission line. 
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( ) ( ) ( ) ( ) ( )
2 2

2 2

, , ,
,

v x t v x t v x t
L C R C L G R G v x t

tx t
∂ ∂ ∂

= ⋅ ⋅ + ⋅ + ⋅ ⋅ + ⋅ ⋅
∂∂ ∂

    (1.9) 

( ) ( ) ( ) ( ) ( )
2 2

2 2

, , ,
,

i x t i x t i x t
L C R C L G R G i x t

tx t
∂ ∂ ∂

= ⋅ ⋅ + ⋅ + ⋅ ⋅ + ⋅ ⋅
∂∂ ∂

    (1.10) 

In this paper, we propose an exact solution to Equation (1.9). This latter solu-
tion depends on time, position, and phase. It can be used to simulate the varia-
tion of single-phase, two-phase, or three-phase voltage on electrical power lines. 

3. Results and Discussions 
3.1. Proposed Solution for Telegraph Equations 

Equations (1.9) and (1.10) have similar forms. They well describe the propaga-
tion of voltage and current in electric cables.  

For Equation (1.9), we propose a solution of the form: 

( ) ( ) ( ), , , e j tv x t u x ω ϕϕ ϕ − +=                     (1.11) 

where t is the time variable, x is the position and ϕ  is the phase. ( ),u x ϕ  is 
the wave amplitude and ω  is the wave pulsation. 

The solution of Equation (1.10) can be deduced from the expression: 

( ) ( ) ( ), , , , ,v x t Z x i x tϕ ϕ ϕ=                    (1.12) 

where ( ),Z x ϕ  is the characteristic impedance of the transmission line. There-
fore, finding the solution to one of the equations allows us to deduce the other 
solution.  

Let’s pose a = LC; b = RC + LG and c = RG, then Equation (1.9) becomes: 

( ) ( ) ( ) ( )
2 2

2 2

, , ,
,

v x t v x t v x t
a b cv x t

tx t
∂ ∂ ∂

= + +
∂∂ ∂

            (1.13) 

Let ( ), ,v x tϕ  given by Equation (1.11) be the general form of the solution of 
Equation (1.9). By derivating two times ( ), ,v x tϕ  according to space and time, 
we obtain: 

( ) ( ) ( )
2

2
2

,
 , 0

u x
a c b j u x

x
ϕ

ω ω ϕ
∂  + − + = ∂

             (1.14) 

Equation (1.14) is a second-order differential equation without a second 
member whose characteristic equation is given by (1.15) 

( )2 2r c a jbω ω= − −                       (1.15) 

Let r jα β= +  such that 2 2 2 2r jα β αβ= − + , and 2 2 2r α β= + . 
We derive the system of equations given by: 

( ) ( )

2 2 2

2 22 2 2

(a)

(b)

2 (c)

c a

c a b

b

α β ω

α β ω ω

αβ ω

 − = −

 + = − +


= −

 

whose solution is given by: 
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( ) ( )
2 22 2

2

c a c a bω ω ω
α

− + − +
= ±                 (d) 

( ) ( )
2 22 2

2

a c c a bω ω ω
β

− + − +
= ±                 (e) 

The product 0
2

bwα β⋅ = − < . Since α  denotes the attenuation coefficient  

we choose 0α <  and 0β > . We derive a real solution of Equation (1.14) giv-
en by 

( ) ( ) ( )( ) ( ), cos sin e xu x A x B x α ϕϕ β ϕ β ϕ ⋅ −= ⋅ + + ⋅ +          (1.16) 

Then a solution to Equation (1.9) is: 

( ) ( ) ( )( ) [ ], , cos sin e x j tv x t A x B x α ωϕ β ϕ β ϕ ⋅ −= + + +          (1.17) 

where A and B are time-dependent parameters to be determined with boundary 
conditions on position, phase, and time. 

3.1.1. Determination of Parameters A and B 
The parameters A and B are time-dependent. To determine them let us apply the 
boundary conditions to x and ϕ . When 0x =  and 0ϕ = , the line is discon-
nected from the distribution source, therefore the voltage is equal to that of the 
production source which is ( )0v t . 

Similarly, if 0x = , and 0t = , the voltage depends on the phase and is noted 
( )0v ϕ . 
Thus the expressions of the parameters A and B are determined as follows: 

• If 0x =  et 0ϕ =  then ( ) ( ) ( )0, , 0,0, e j tv x t v t v t A ωϕ −= = =  therefore 
( )0 e j tA v t ω=  

• If 0x =  et 0t =  then 

( ) ( ) ( ) ( )2 2
0 cos sin cosv A B A Bϕ ϕ ϕ β ϕ= + = + +  

with  

( )
2 2

cos A

A B
β =

+
 et ( )

2 2
sin B

A B
β =

+
 

Also 
( ) ( ) ( )0d

sin cos 0
d

v
A B

ϕ
ϕ ϕ

ϕ
= − + =  therefore 

( ) ( )0 cosBv A
A

ϕ ϕ = + 
 

 

Assuming that β  is very small compared to ϕ , we have:  

2 2BA A B
A

+ = + , hence 

( )
( )

2 22
0

2 2 2
0

2 e2
1 e 1

j t

j t

v tAB
A v t

ω

ω

⋅
= =

− ⋅ −
. 
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Given A and B the expression of the voltage is: 

( ) ( ) ( ) ( )
( )

( )
2
0

0 2 2
0

2 e
, , cos sin e

e 1

j t
x

j t

v t
v x t v t x x

v t

ω
α

ωϕ β ϕ β ϕ ⋅ ⋅
= + + + 

⋅ −  
    (1.18) 

3.1.2. Finding an Exact Real Solution 
To find a real solution to the telegraph equations, we decompose Equation (1.18) 
into its real and imaginary parts. To do this, we write the expression of e j tB ω−  
in its real and imaginary forms. 

( ) ( )
( )

( )

2 2
0 0

2
0

2
0

cos cos sin sin
e

1 cos 2
2 2

j t
v t t t j v t t t

B
v t

t
v t

ω
ω ω ω ω

ω

−
 − − + =

+ −
⋅

        (1.19) 

By replacing this expression of e jwtB −  in Equation (1.18) we deduce that: 

( ) ( ) ( )
( ) ( )

( )
( )

( )
2 2
0 0

0 2
0

2
0

cos cos sin sin
, , cos sin e

1 cos 2
2 2

x
v t t t j v t t t

v x t v t x x
v t

t
v t

α
ω ω ω ω

ϕ β ϕ β ϕ
ω

⋅

 
  − − ⋅ +  = + + + 
 + −

⋅  

 

(1.20) 

When we decompose the voltage expression into its real part ( [ ]Re v ) and 
imaginary one ( [ ]Im v ) where ( ) [ ] [ ], ,v x t Re v jIm vϕ = + , we identify:  

[ ] ( ) ( ) ( )
( )

( )

2
0

0 2
0

2
0

cos cos
cos e

1 cos 2
2 2

xv t t t
Re v v t x

v t
t

v t

αω ω
β ϕ

ω

 
 

− = + + 
 + −

⋅  

 

[ ] ( )
( )

( )

( )
2
0

2
0

2
0

sin sin
sin e

1 cos 2
2 2

xv t t t
Im v x

v t
t

v t

αω ω
β ϕ

ω

⋅+
= − +

+ −

 

From this solution, we run simulations on [ ]Re v  and [ ]Im v  as a function 
of cable length, time, and the angle θ  of the cosine of the electrical network. 

3.2. Simulation Results 

The solution of the telegraph equations depends on the linear constants R, C, L, 
and G of the power line. In this paper, we consider the Medium Voltage Cables 
NF C 33,220 standards of 12/20 (24) kV. It is an aluminum cable of a nominal 
cross-section of 150 mm2 (square millimeter), whose linear constants in AC 
transmission current of frequency 50 Hz and temperature 90˚C are R = 0.265 
Ω/km, C = 0.24 μF/km, L = 0.41 mH/km and G = 1/R Siemens/m. In the litera-
ture the phase shifts often considered are: φ = 60˚; 90˚; 120˚. 

For simulations, the source voltage ( )0v t  considered is 

( ) ( )0 max sinv t V tω θ= + . 

where: 
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- maxV  is the maximum voltage on a medium voltage transmission power line. 
In Burkina Faso the effective voltages used for medium voltage transmission 
are 15,000 V; 20,000 V and 33,000 V with a tolerance of ±5%. For this study, 
we consider the RMS voltage of 20,000 V i.e. a maximum voltage 

max 20000 2 V 1000 2 VV = ± . 
- θ  is the phase shift between voltage and current in the power system. It is 

determined by the cosine of the network which is cos 0.8θ =  or 0.20θ = π  
rad. 

- The pulsation is 100 rad sω = π  with a transmission frequency 50 Hzf = . 
Three situations are considered for the simulations: 
Situation 1: Single-phase signal in three dimensions (3D) space. 
We plot here the variation of the real and imaginary parts of the voltage 
( ), ,v x tϕ  as a function of time and length.  
Situation 2: Single-phase, two-phase, and three-phase signals in the plane. 
Firstly, we plot ( ), ,v x tϕ  according to the position x, when the time is set to 

3 st = . 
Secondly, we plot ( ), ,v x tϕ  as a function of time. For this purpose, we set 

the wave speed to 5 m sv =  and fix the length x of the cable at 0.05 km.  
Situation 3: Single-phase, two-phase, and three-phase signals in three dimen-

sions projected on the plane. 
In this third part, we vary ( ), ,v x tϕ  as a function of time and length simul-

taneously and then plot a projection in the time plane. This corresponds to the 
curves visualized by electrical network supervision systems. 

3.2.1. Simulation Results for the First Situation 
Figure 2 shows the voltage curve in the first situation. 
 

 
Figure 2. 3D representation of voltage in a single-phase case 
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Figure 2 shows a sinusoidal shape as a function of length and time. This dual 
sinusoidal behavior shows that the founded voltage solution ( ), ,v x tϕ  is realis-
tic. Indeed, in the literature, most of the proposed solutions give sinusoidal func-
tions of time. 

3.2.2. Simulation Results for the Second Situation 
Figure 3 and Figure 4 show respectively the variation of the electric voltage as a 
function of length and time, for single-phase, two-phase and three-phase signals. 

These two figures show a sinusoidal character of the voltage according to the 
length and time.  
 

 
Figure 3. Voltage versus length for 3 st = . 

 

 
Figure 4. Voltage versus time for 0.05 kmx =  and 5 m sv = . 
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3.3. Simulation Results for the Third Situation 

Figure 5 and Figure 6 show the voltages inside the cables in normal operation 
(Situation 3) for frequencies 50 Hzf =  and 25 Hzf =  respectively. 

Figure 5 and Figure 6 show that, whatever the frequency, the amplitude of 
the voltage tends to decrease with time. This can be explained by the fact that the 
linear resistance of the cable is nonnull. This corresponds well to the real beha-
vior of the voltage in electrical cables in operation. 

 

 
Figure 5. Projection in the plane of the voltage variation for the frequency 50 Hzf = . 

 

 
Figure 6. Projection in the plane of the voltage variation for the frequency 25 Hzf = . 
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4. Conclusions 

This paper proposes an exact solution to telegraph equations. For the founded 
solution, the amplitude of the voltage varies with position and time. By taking 
the phase into account, the proposed solution allows the simulation of sin-
gle-phase, two-phase and three-phase voltages. The choice of the initial condi-
tion of the voltage is a factor that influences the shape of the solution. The simu-
lations showed that the voltage variation corresponds well to the patterns ob-
served by electrical network supervision systems.  

This work could be extended to a multi-branch power line section to describe 
the voltage behavior in the medium voltage (MV) and low voltage (LV) net-
works. Also, this exact solution could be explored to study the stability of an 
electrical network in the case of an energy mix. The a priori knowledge of the 
voltage level as a function of position and time, provided by the proposed solu-
tion, could also be exploited to detect and locate faults on a power line. 
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