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Abstract 
In the oil industry, the productivity of oil wells depends on the performance 
of the sub-surface equipment system. These systems often have problems 
stemming from sand, corrosion, internal pressure variation, or other factors. 
In order to ensure high equipment performance and avoid high-cost losses, it 
is essential to identify the source of possible failures in the early stage. How-
ever, this requires additional maintenance fees and human power. Moreover, 
the losses caused by these problems may lead to interruptions in the whole 
production process. In order to minimize maintenance costs, in this paper, 
we introduce a model for predicting equipment failure based on processing 
the historical data collected from multiple sensors. The state of the system is 
predicted by a Feed-Forward Neural Network (FFNN) with an SGD and 
Backpropagation algorithm is applied in the training process. Our model’s 
primary goal is to identify potential malfunctions at an early stage to ensure 
the production process’ continued high performance. We also evaluated the 
effectiveness of our model against other solutions currently available in the 
industry. The results of our study show that the FFNN can attain an accuracy 
score of 97% on the given dataset, which exceeds the performance of the 
models provided. 
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1. Introduction 

Equipment failure can occur one or more times during the operational lifetime 
of the oil and gas wells [1]. This can happen for multiple reasons, starting from 
natural disasters such as hurricanes and snowstorms up to harsh environments 
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or mechanical failures of the drilling components. When equipment functioning 
is disrupted, it might pose a threat to employees and other components. There-
fore, the number of wells that have had some sort of good barrier or integrity 
failure varies widely (between 1.9% and 75%) [2]. The most important safety 
precaution in oil facilities is isolating equipment and minimizing the effects of 
component failure processes [3]. However, due to the lack of knowledge on the 
equipment’s susceptibility to failure and the cause of failure, it might be difficult 
to determine when and how to isolate sensitive equipment. This reason itself 
calls for possible early-stage identification of the failure process. 

The statistics accumulated in the past decades in the oil- and gas industry have 
reported severe examples of component losses in wells, with significant conse-
quences, e.g., Phillips Petroleum’s failure in 1977 and Saga Petroleum’s under-
ground rupture in 1989 [4]. More than 40% [5] of these failures are directly (or 
indirectly) related to equipment failures during the operational process. 

Due to the mission-critical nature of these processes, the oil and gas industry 
has already implanted thousands of sensors inside and around the physical 
components of well equipment systems. Raw sensor data are continuously 
streamed via DCS and SCADA systems measuring temperature, pressure, flow 
rate, vibration, and depth of drills, turbines, boilers, pumps, compressors, and 
injectors [6]. As part of the ETL process, extracted data itself needs to be trans-
formed and passed from data quality tests before loading and using in models. 
Moreover, this process needs to run in real time due to future predictions of 
possible failures. 

These issues triggered researchers to find new solutions to boost the digital 
transformation process of the oil and gas industry. For this purpose, tools like 
the Internet of Things (IoT), Big Data, Artificial Intelligence, and Cloud systems 
proved to be irreplaceable in wells and refineries. Research has been focused on 
optimizing the use of these technologies to make the system and processes safer. 

Dhafer A. Al-Shehr presented a solution by implementing artificial neural 
networks (ANNs) and adaptive network-based fuzzy inference-based models for 
corrosion rate prediction. Using artificial intelligence (AI) approaches, he sought 
to develop an efficient, resilient, and accurate model for estimating the corrosion 
rate of the metal casing string. The artificial intelligence models were trained 
using a dataset of 250 data points culled from 218 wells [7]. 

Anomaly detection based on the sensorial data also was another research ob-
jective in [8], where researchers introduced a new combination of one-class sup-
port vector machine (SVM) and yet another segmentation algorithm (YASA). 
They conducted a series of empirical experiments by comparing their methodolo-
gy to other approaches and applied it to benchmark issues and real-world appli-
cations including the identification of anomalies in oil platform turbomachinery. 
The findings demonstrate that the combination of one-class SVM and YASA 
outperformed the other industry-standard techniques. 

Oil flow rate prediction error analysis was also a research scope of paper [9], 
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where the researchers evaluated the performance of the different algorithms: The 
following algorithms have been evaluated: Gene expression programming 
(GEP), Adaptive Neuro-Fuzzy Inference System (ANFIS), Radial Basis Function 
(RBF), Least Squares Support Vector Machine (LSSVM) and Multilayer Percep-
tron (MLP) on the dataset of 1037 data records. The investigation of prediction 
performance demonstrates that all applied algorithms obtain acceptable levels of 
accuracy in their forecasts; however, the MLP algorithm generates the most ac-
curate predictions. 

IoT was also implemented for pipeline leakage detection, as a real-time alert-
ing system [10]. To compare current solutions where automation of the leakage 
detection was performed by using PLCs (which communicated through SCADA), 
in this research, a new system was introduced in order to achieve the same func-
tionality via the real-time monitoring of the pipelines. The research was per-
formed in the lab environment by measuring of flow rate (rate of flow of the liq-
uid) and by using a flow sensor. The main advantage of this system it can detect 
even small leakage over a remote distance, which is hard to achieve through the 
PLCs due to the complexity of the system. The system also can use real-time in 
order to make a decision for critical conditions, which makes it unique to com-
paring other existing systems. The implementation of this in oil and gas indus-
tries will prevent accidents and due to real-time analysis of the data, the deci-
sion-making period will be significantly reduced. 

It is impracticable and inefficient to analyze and process all the raw data re-
motely on the cloud server due to network latency and limited cloud computing 
capabilities. Major production safety issues may arise if abnormal data is not de-
tected. To address this issue, a machine-learning-based edge-cloud system was 
presented by Feng Shi, Liping Yan, Xiang Zhao, and Richard Xian-Ke Gao [11]. 
For anomaly identification, the framework uses isolation forest and robust ran-
dom-cut forest algorithms. The preprocessed time-series data are transmitted to 
cloud services for data trend prediction and missing data completion using the 
long short-term memory recurrent neural network technique feed along with the 
original sequence of historical data combined with the first-order forward dif-
ference data. 

“Petroleum Analytics Learning Machine” (PALM) is a “brutally empirical” 
analytical system for controlling upstream and midstream oil and gas operations 
via IoT devices [12]. It was designed for the emerging unconventional shale oil 
and gas plays, in which simultaneous analysis of hundreds of IoT attributes from 
hundreds of horizontal wells with thousands of hydraulic fracture phases must 
be performed in near real-time. PALM’s predictive and prescriptive solutions 
combine Support Vector Machine learning, signatures, and real-time Random 
Forest and decision trees to drive hydraulic fractures toward becoming high ra-
ther than low oil and gas producers during the completions of horizontal shale 
wells. It utilizes hundreds to thousands of geological, geophysical, and engineer-
ing variables recorded in the field by the IoT and analyses their significance us-
ing a variety of ensemble learning algorithms like Support Vector Regression, 
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logistic regression, Bayesian models, nearest neighbors, neural networks, and 
deep learning networks. Companies actively use it in the petroleum industry for 
various tasks, including 4D seismic monitoring of production changes over time 
and reservoir simulation models. 

To develop a monitoring system for the specific domain of the petroleum in-
dustry was the scope of many research works [13]. It was more attractive to in-
troduce new solutions to a particular area of the industry than a full-scale solu-
tion itself. Such as one of the recent research works a new Q-learning-based 
pipeline monitoring system was introduced [14] to determine the activity time 
of sensor nodes based on their overlapping, energy, and distance to the base sta-
tion. Same as the previous works, current research also concentrated on the par-
ticular issues related to sensor nodes, to predict the death time of sensor nodes 
and replace them at the right time. 

Predictive maintenance (PdM) together with the Internet of Things (IoT) is 
widely used in the industry (especially in the manufacturing industry). It usually 
uses sensor data to optimize maintenance activities. While the topic of predictive 
maintenance (PdM) itself as well as machine learning (ML) for industrial sys-
tems have both been covered in various, separate papers, there is a research gap 
in petroleum industry. 

In contrast with previous research works, in this paper, a new prediction 
model is introduced to determine possible failures in petroleum wells’ surface 
and downhole equipment during the operation. This new model proves to pro-
vide better prediction performance than the traditional algorithms based on mi-
nimizing the mean square error. Our approach is mainly focused on historical 
data (time series dataset) which was collected from sensors around the equip-
ment on both sides (downhole and surface) and based on this data predict that 
in the next steps (step represents time period) the equipment will fail or not. The 
prediction is given on the basis of estimating the probability of the correspond-
ing events by using an FFNN where the training set is appropriately encoded to 
solve the problem. 

2. Problem Formalizing 

PDM is basically concerned with collecting data and estimating the operability 
of the system under observation. By PDM the system lifecycle can be maximized, 
and a significant reduction of maintenance cost can be achieved. To attain these 
objectives, it is essential to develop efficient methods to predict when a failure 
will happen. This prediction is based on estimating the probability that failure 
will not yet occur after M steps. The discussion below provides such an estima-
tion method by using the predictive power of feed-forward neural networks. 

Definition of the Model 

In order to formalize our task, let us assume that ( ) kx t ∈  is a time series of k 
observations and any time series x X∈ , where X (physical information both on 
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the surface and below the ground for each failure event) is a large set of N time 
series of the length k. Based on the observations at the dataset:  
( ) ( ) ( )1 , 2 , , 1x t x t x t L− − − +  the underlying challenge is to estimate the 

probability that the system is still fully operational in the next M steps, where is 
the probability is: 

( ) ( ) ( ) ( )(
( ) )

1 2, 1 , , | 1

, , 1
nP x t M a x t K a x t a x t

i x k L j

+ ≤ + − ≤ ≤ −

= − + =





     (1) 

or 

( ) ( ) ( ) ( )(
( ) )

1 2: , 1 , , | 1

, , 1 1
nM P x t M a x t K a x t a x t

i x t L j ε

+ ≤ + − ≤ ≤ −

= − + = ≥ −





    (2) 

Let us classify our data in two groups: ( )x t−  represents the training data, 
( )x t+  validation data: 

( ) ( ) ( ) ( )( ): , 1 , ,x t x t M x t M x t+ = + + −                (3) 

and 

( ) ( ) ( )( ): 1 , , 1x t x t x t L− = − − +                  (4) 

By introducing these two notations (2) can be formalized as 

( ) ( ) ( )( ): | , , 1M P x t A x t i j ε+ −∈ = ≥ −

 
Encoding the outcomes by the following two vectors: 

( ) ( ) ( )( ) ( )1 1 1
1 2, 1,0s s ha A+= = → ∈s x

 
( ) ( ) ( )( ) ( )2 2 2

1 2, 0,1s s ha A+= = → ∉s x
 

The labelled time series ( ) ( ){ },x t s t , ( ) ( ){ }1 2,∈s s s  is referred to as an in-
stance, and the ordered set of ( ),X S  as data set: 

( ) ( )( ){ } ( ) ( ) ( ){ }1 2, ,1, , , ,k x t s t N s t s sτ −= ∈

 
The task described above is a multi-label binary classification problem that 

maps the time series s(t) to a probability of a class ( ) , 0,1ip s s i= =  based on 
the training data kτ . As ( ) ( )11ip s s p s s= = − =  we simply write p(s) instead 
of ( )1p s s=  for simplicity. If we will accept that A is a set of the thresholds, 
where { }1 2, , , nA a a a=  , then for the sake of an example, the evaluation of the 
system state can be summarized as follows: if ( ) , 1, ,np s aζ ζ =>



 then the system 
is malfunctioning, and urgent maintenance action is required while if 
( ) , 1, ,np s aζ ζ =≤



 then the system operates normally. We use a Feed Forward 
Neural Network (FFNN) to predict the probabilities given above. In order to 
achieve this, we need a special encoding technique to obtain the serried proba-
bilities at the output of the network after learning. To optimal weights can be 
learned by minimizing the objective function 

( )( )
1

1: min , ,
N

opt i iw i
l s Net

N =
∑w x w                  (5) 
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where loss function ( )( ), ,i il s Net x w  will be 

( )( ) ( ) 2
, , ,i i i il s Net s Net= −x w x w                 (6) 

As part of the SGD optimization back-propagation can be used in order to 
find the minimum of (6) [15] [16]. With the implementation, BP algorithm optw  
will yield 

( )( ) ( )
2

1

1: , , ,
N

opt i i i
i

l s Net E x Net
N

−

=

→ −∑w x w x w           (7) 

where 

( ) ( ) ( )
( )
( )

( ) ( )

2
: min , , ,

|1 0
| |

0 1 |

opt w i

i c
i ic

i

E x Net Net x w E s x

P x X x
P x X x P x X x

P x X x

− − −

+ −

+ − + −

+ −

− → =

 ∈  = = ∈ + ∈    ∈ 

w x w

     (8) 

and 

( ) ( )1 2| ; |c
i iE P x X x E P x X x+ − + −= ∈ = ∈

 
To summarize (8) can be written as 

( )
2

1 2: min ,opt w iE x Net E E− − → +w x w              (9) 

As a result, after learning, at the output of the FFNN one can obtain the esti-
mated conditioned probabilities once the past observations are given in the in-
put. The system is regarded to be reliable if there are at least M steps until the 
failure with the probability of 

( )| 1iP x X x p+ −∈ > −                     (10) 

Algorithm 1 is a pseudocode1 of our model. It also describes how the cost 
function search was defined for our model. 

For the given multi-label binary classification task, the architecture of FFNN 
was described in Figure 1, where can be seen Input, Output and Hidden layers. 

3. Experiments 

This section will describe the experimental design and the training details. The 
results of the experiments were also presented in this section. 

3.1. Training Data 

In order to train our model, we used the “ConocoPhillips” data set from Kaggle 
[17], where a total of 172 features are given in this dataset, which consists of Id, 
target, and sensor data. Total of 100 sensors have single readings, and the re-
maining 7 sensors have time-based readings (each sensor among these 7 has 10 
time-based readings). The actual dataset was introduced for the binary classifica-
tion task where the “target” column has a value of 0 or 1 (“target” value 0 indi-
cates surface failures and value 1 indicates downhole failure). We took this dataset  

 

 

1Actual code of the model: https://github.com/agilyol/ffnn_kagle.git. 
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Algorithm 1. Pseudocode for FFNN algorithm. 

Procedure FFNN: 

Input Data: 
• x(t) is a time series of k observations 
• y(t) input-output mapping value 

Define Hyper-Parameters: 
• Epoch 
• Learning rate (η) 
• Batch Size 
• Class weight 
• Callbacks 
• Dense layer 
• Dropout layer 

Initialize Weight 
• wi: Initial input weight to random value 

Define the Cost Function: 
• Same as in Equation (9) 

For i in Range(Epoch): 
• Calculate E for all inputs. If E is smaller than tolerated value then exit 

from the loop with raising an exception 
• For each input, calculate gradients for all weights, included bias weights 

• If length of gradient vector is smaller than given minimum 
border value, then raise an exception and exit from the loop. 

• Else modify all weights by adding a negative multiple of the 
gradient to the weights, calculate accuracy and loss for the given 
epoch. 
End if 

End loop 

End Procedure 

 

 
Figure 1. FFNN architecture for multi-label binary classification. 
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as a base for our task and eliminated from it, single reading metrics in order to 
predict possible failure date/time. After the cleaning process, we had a 
time-based historical dataset from the sensors: [“sensor7”, “sensor24”, “sen-
sor25”, “sensor26”, “sensor64”, “sensor69”, “sensor105”]. 

The FFNN model is trained for a maximum of 50 epochs, and we stop the 
training if the validation loss does not improve after ten consecutive epochs. 
Given the imbalanced nature of the data, we utilize an imbalanced dataset 
sampler to re-balance the training class distributions. The model has been 
trained with the SGD [18] optimizer (initial learning rate = 10−2) with a mo-
mentum rate 0 based on the validation loss. We use the default parameters for 
the SGD optimizer. The batch size is 16. The presented models were imple-
mented in Keras [19] deep learning framework with TensorFlow backend in Py-
thon programming language. We use a validation dataset (20% source data) for 
hyper-parameter selection and early stopping. The hyper-parameters that we use 
for the FFNN include: the dense layer unit number is {32}, and the dropout rate 
{0.3}. 

To obtain our results we used two workstations which have an i7 processor, 16 
GB of RAM and 12 GB of NVidia Titan XP and Titan X GPUs. Both of the 
workstations use Ubuntu 20.04 operation systems with Cuda 10.1 and cuDNN 
8.0. 

3.2. Experiment Metrics 

For evaluating the performance of our model, we used below metrics: 
Accuracy score: is the metric which represents the fraction of correctly classi-

fied data instances over the total number of data instances: 

( ) ( )Accuracy TP TN TP TN FP FN= + + + +  
Precision score: is a metric which has a positive predictive value and calcu-

lates fraction of relevant instances among the retrieved instances: 

( )Precision TP TP FP= +  
Recall: represents percentage of actual positives which are correctly identified: 

( )Recall TP TP FN= +  
F1 score: is a metric which is the harmonic mean of both: precision and recall 

( ) ( )F1score 2 Precision Recall Precision Recall= ∗ ∗ +  
Reliability probability: represents estimated prediction result based on the 

experiments. 
Actual probability: represents exact probability from actual dataset. 

3.3. Results of the Experiments 

During our experiments with multiple epochs, we found that FFNN yielded the 
best results after 50 epochs. As the result of the tests, we determined that after 50 
epochs accuracy [20] of the FFNN reached 0.970 (the good accuracy score for 
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the models is at least 0.90 out of 1 [2]) where the loss was 0.030 only. Figure 2 
and Figure 3 shows how the accuracy and loss changed over 50 epochs on the 
train and validation dataset. 

When the performance of the FFNN was evaluated, our approach was to 
compare the results of the model with similar architectural concepts. To accom-
plish this, we opted to utilize the “Decision Tree Classifier” (DTC) [21] and 
“Random Forest Classifier” (RFC) [22] algorithms. Both FFNN and DTC me-
thods can model data that have nonlinear relationships between variables, and 
both can handle interactions between variables. On the other hand, RFC com-
bines the predictions of many decision trees into a single model similarly. 

As a first step, we chose to evaluate the accuracy and F1 scores of our model in 
comparison to the aforementioned models. Table 1 displays the results of the 
compared accuracy and F1 scores for the FFNN, DTC, and RFC algorithms. 

 

 
Figure 2. FFNN accuracy after 50 epochs. 

 

 
Figure 3. FFNN loss after 50 epochs. 
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For evaluating the effectiveness of FFNN, we also examined both precisions 
and recall our model for the provided data set. Evaluation results are summa-
rized in Table 2 included macro average and weight overage of the given model. 

During the second stage of testing, we aimed to assess the actual and reliability 
probability of our model by comparing the performance to other earlier men-
tioned models. Our test results revealed that all models performed similarly in 
terms of fluctuations in reliability probabilities, and all three models performed 
well. Figure 4 and Figure 5 illustrate the changes in both actual and reliability 
probabilities, as well as the evolution of reliability probabilities across the nine 
stages for all proposed models. 

 
Table 1. FFNN, RFC, DTC F1 and accuracy score. 

Model Name 
Metrics 

ACCURACY SCORE F1 SCORE 

FFNN 0.970 0.520 

RFC 0.949 0.474 

DTC 0.932 0.612 

 
Table 2. FFNN precision, recalla. 

Indicator 
Predictions 

0 1 Mavg Wavg 

Precision 1.00 0.36 0.68 0.99 

Recall 0.97 0.92 0.94 0.97 

Support 11788 212 12000 12000 

aMavg = Macro Average; Wavg = Weighted Average.  
 

 
Figure 4. FFNN actual and reliability probability change after 9 steps. 
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Figure 5. Reliability probability change after 9 steps. 

 
The outcomes revealed that similar to other models FFNN had good perfor-

mance on the provided time series data. This could be attributed to the data-
set’s dimensionality, as Neural Networks and Tree-based algorithms perform 
well on one-dimensional datasets. However, this may not hold for mixed mul-
ti-dimensional datasets. In the future, we plan to conduct additional research by 
applying our model to complex multi-dimensional datasets. The results and data 
presented in the tests indicate that FFNN can be used in various industries to 
detect potential malfunctions at an early stage. 

4. Conclusions 

In this paper, we introduced an FFNN-based prediction model for petroleum 
wells equipment failure. The proposed model can predict possible failure based 
on historical data. The results were compared with two different models which 
use “Random Forest” and “Decision Tree” classifiers. The evaluated accuracy 
and F1 scores, and the outcome of the proposed model are very competitive with 
previous state-art results. We also provided compared results of actual and relia-
bility probability change over steps, which shows that for the given multi-label 
binary classification task, FFNN performed well. Our solution achieved these 
results without explicit alignments. 

For the evaluation of the model’s accuracy, we used the actual “ConocoPhil-
lips” data set from the industry. To clean from this set of the data single reading 
metrics and created a new time-based series data set. We grouped this dataset 
into two subgroups (training and validation data sets) and validated the perfor-
mance of all three models on a validation data set. 

The results presented in this paper can be applied in real-time IoT systems; 
however, because of the rapid development of Machine Learning and IoT tech-
nologies, further aspects will need to be investigated. 

In the next stage of our research, we are planning to extend our prediction 
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model for multiclass classification tasks, where we are going to predict when the 
possible equipment failure will occur on specific parts of the petroleum wells, 
e.g. based on the data set from the pipeline pressure when the next incident can 
happen. Considering the importance of the industry, predicting possible failures 
in the early stages, can be a vital solution for avoiding incidents. 

We will also evaluate the performance of the different prediction methods as 
part of our future research. Moreover, we are going to investigate the perfor-
mance of the different models on different real-world tasks. 
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