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Abstract 
This article compares the isotropic and anisotropic TV regularizations used 
in inverse acoustic scattering. It is observed that compared with the tradition-
al Tikhonov regularization, isotropic and anisotropic TV regularizations per-
form better in the sense of edge preserving. While anisotropic TV regulariza-
tion will cause distortions along axes. To minimize the energy function with 
isotropic and anisotropic regularization terms, we use split Bregman scheme. 
We do several 2D numerical experiments to validate the above arguments. 
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1. Introduction 

Inverse acoustic scattering problem is to get the refractive index from measure-
ments of the scattered field or its far field pattern data. It has wide applications 
in many aspects such as radar, sonar, geophysical exploration, medical CT im-
aging and nondestructive testing [1]. 

Inverse acoustic scattering problem is typically non-linear and ill-posedness. 
To be precise, the small disturbance of the measurement data could cause severe 
error in the inversion results. For nonlinearity, the most common way is to 
adopt linear or optimization method. The regularization method can approx-
imate the ill-posed problem to the well-posed problem to estimate the refractive 
index distribution. Therefore, iterative regularization method is a typical way to 
deal with such problems. For example, simplified Newton method [2], modified 
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gradient method [3], quasi-Newton method [4], Gauss-Newton method [5] [6]. 
In addition, other research results on this issue include: Dual-space method [7], 
linear sampling method (LSM) [8] [9] structure recognition function zg , which 
is the solution of the far-field equation ( ),

zgF z∞= Φ ⋅ , factorization method  

[10] is solved by ( ) ( )
1
4 ,zF F g z∞∗ = Φ ⋅  in place of the far field equations, multiple  

signal classification (MUSIC) [11] [12] constructs a non-iterative solution func-
tion, level set method [13] is to determine the regional boundary method. 

In this article, we use the isotropic and anisotropic TV regularizations to 
overcome the ill-posed of inverse acoustic scattering, and the split Bregman al-
gorithm to overcome the non-differentiability of the reconstruction problem and 
accelerate the inversion process. Finally, the numerical experiment is carried out 
to verify. 

2. Forward Problem and Inverse Scattering Problem 

For a given time harmonic incident wave ei i tu ω= , the mathematical model of 
its propagation in inhomogeneous medium can be given by the following 
Helmholtz equation 

2 2 0 in .t tu k n u∆ + = dR                     (1) 

Here, 0k >  is the wavenumber, the refractive index function n 

1 \ ,
otherwise ,

n


= 


dR D
D  

t i su u u= +  is the total field where su  represents the scatter field. To ensure 
the uniqueness of the solution, we require Sommerfeld radiation condition 

( )
1

2lim 0
d

sik u
−

→∞

 ∂
− =  ∂ x

x x
x

                  (2) 

uniformly in all directions ˆ = xx
x

. The forward problem is to derive a solution 

using the Equations ((1), (2)). The forward problem is governed by the following 
Lippmann-Schwinger equations [1]. 

( ) ( ) ( )( ) ( )2 2, 1 d , \ .t i t
D

u u k n u= + Φ − ∈∫ dx x x y y y y R D        (3) 

Here, Φ  is the fundamental solution of the Helmholtz equation i.e. 

( )
( )1 2

0

3

, if , ,
4

,
1 e ,     if , ,

4

ik

i H k
x y −

 − ∈ ≠
Φ = 
 ∈ ≠
 − π

x y

x y x y R x y

x y R x y
x y

 
where ( )1

0H  denotes the zero-th order Hankel function of the first kind. Note 
that for the sake of solving, we assume that the contrast 2 1q n= −  is satisfied 
( ) 1qℜ > −  and ( ) 0qℑ ≥  in this article and ( )D 2,3∈ =dR d  is a bound 

domain where contain the support of the contrast q. For simplicity, we assume 
that the volume potential V is given by 
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( )( ) ( ) ( )2V , d ,
D

u k u= Φ∫x x y y y                  (4) 

so (3) can be described as the following equation 

( )V .t i tu u q u= + ⋅                        (5) 

Hence, ( )( ) 1
Vt iu Id q u

−

Γ
= − ⋅  and ( )( )( )1V Vs iu q Id q u−

Γ
= − ⋅ . 

The forward operator F is defined via: 

( ) ( )( )( )1
F : V V .iq q Id q u

−
= − ⋅                   (6) 

The problem of Inverse acoustic scattering can be recast contrast q by the 
measured data of (6). But, it is well known that (6) is nonlinear about q, which 
may cause additional complexity in reconstruction methods, so we consider li-
nearizing the above equation. Given the known fixed value q0, we linearize the 
forward operator F with Taylor polynomial at q0 as the following equation 

( ) ( ) ( )[ ]0 0 0F F F ,q q q q q′≈ + −                   (7) 

where ( )0F q  is measured scattered fields at q0, ( )0F q′  is Fréhet derivative of 
( )0F q . For the purpose of computerized reconstruction, we discretize the do-

main D as 1
DN

ii
D T

=
=


, where iT  is a rectangle element, then 
iTq  can be consi-

dered as a constant iq , q can be approximated by the vector ( )T

1 2, , ,
DNq q q q=  . 

We consider minimization of the discretized functional 

F .meas G qδ δ≈                          (8) 

Here, t r DN N NG ×∈R  is the jacobian matrix of ( )F q , 0
DNq q qδ = − ∈R , 

( ) ( )0F F F t rN N
meas q qδ = − ∈R ,where tN , rN  represents the number of trans-

mitters, receivers on Γ . Noting that the measurement data Fmeasδ  may have 
some error due to perturbed measurements or errors, Intuitively, the problem of 
inverse acoustic scattering can be recast into the following least square error 
problem to better approximations of the exact solution. 

2

21arg min ,
2 measq

q G q F
δ

δ δ δ∗ = −


                 (9) 

where DNq Cδ ∗ ∈  is the searched-for exact contrast, t r DN N NG C ×∈ ,  
t rN N

measF C∈ . However, the solution (9) is a complex valued function, so it is 
difficult to use regularization methods. Thus, we convert a complex-valued 
functional (9) to a real-valued functional (10) as following 

2

21arg min .
2 measδ

δ δ δ∗ = −
q

q G q F                 (10) 

Here, 2 2t r DN N NG G
G G

×ℜ −ℑ 
= ∈ ℑ ℜ 

G R , 2 DNq
q

δ
δ

δ
ℜ 

= ∈ ℑ 
q R ,  

2 t rN Nmeas

meas

F
F

δ
δ

δ

 ℜ
= ∈ 

ℑ 
measF R . However, (10) solely minimizing the discrepancy  

causes numerical instabilities. Thus, we incorporate a-priori information about 
the solution to avoid instable results. The most commonly used regularization 
method is Tikhonov regularization (TR), which is to solve 
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12

21arg min F
2

δ

δ
δ δ λ δ∗ = − +





measq
q G q q              (11) 

with a positive regularization parameter λ . However, it has an excessively 
smooth effect on the solution, which will blur the edge of the reconstructed im-
age. To preserve the shape, we use the isotropic TV 

2
1

2 221arg min F
2 x y

δ

δ
δ δ λ δ δ∗ = − + +





measq
q G q D q D q       (12) 

and anisotropic TV method 

1 12

21arg min
2 x y

δ

δ
δ δ λ δ λ δ∗ = − + +






measq
q G q F D q D q       (13) 

with respectively the first-order difference operators along the x and y directions 
of 2 2, D DN N

x y
×∈D D R . However, (12) is non-differentiability. So, we use the 

Split Bregman algorithm to solve the non-differentiability problem, i.e. by in-
troducing new variable 2, N

x y ∈u u R , (12) needs to be converted to minimiza-
tion problem: 

2 1

2 2 21arg min
2

s.t. .

x y

x x y y

δ

δ
δ δ λ

δ δ

∗ = − + +

 = =





measq
q G q F u u

D q u D q u
          (14) 

The minimization of subproblems in (14) can be separated into the minimiza-
tion of three simple subproblems dq  and ,x yu u . Therefore, the following 
split bregman iteration stages are proposed: 

( )
( )
( )

2 22

2 21

2 221

221 1 2 2

1

1

1arg min
2 2 2

, arg min
2 2

.

k
x x x y y y

k k
x y x y x x x y y y

k k
x x x x

k k
y y y y

δ

δ

α αδ δ δ δ

α αλ δ δ

α δ

α δ

+

+ +

+

+

 = − + − − + − −

 = + + − − + − −



= + −


= + −












measq

u

q G q F D q u b D q u b

u u u u D q u b D q u b

b b D q u

b b D q u

(15) 

The (13) is non-differentiability. Similarly, (13) needs to be converted to 

1 12

21arg min
2

s.t.

x y

x x y y

δ

δ
δ δ λ δ λ δ

δ δ

∗ = − + +
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q G q F D q D q

D q u D q u
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2

2 21

2

1arg min
2 2
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2

k
x x x

y y y

δ

δ

αδ δ δ

α δ

+ = − + − −


+ − − 








measq
q G q F D q u b

D q u b
      (16) 

2
1

21 arg min ;
2

k
x x x x x

αλ δ+ = + − −




u
u u D q u b            (17) 

1 2

21 arg min ;
2

k
y y y y y

αλ δ+  = + − − 
  u

u u D q u b           (18) 

( )1 ;k k
x x x xα δ+ = + −b b D q u                    (19) 
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( )1 .k k
y y y yα δ+ = + −b b D q u                    (20) 

The first-order optimality condition of (16) is 

( ) ( ) ( )T T T 1 Tk k k k k
x x y y x x y y

δα α δ α α++ + = − + − + measG G D D D D q u b u b G F   (21) 

The minimization of ((17), (18)) can be found by the soft threshold formula 

[ ] ( ) [ ] [ ]

[ ] ( ) [ ] [ ]

1
11

1
11

1, 2, , 2 .

1, 2, , 2 .

k
k xk

x D
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y D
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k h q k k N
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k h q k k N
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ρ

λ
ρ

δ
ρ

δ
ρ

+
++

+
++

 
= + =  

 
 

= + =  
 





b
u D

b
u D

       (22) 

Here, [ ] [ ]1 1,k k
x yk k+ +b b  and [ ] [ ]1 1,k k

x yk k+ +u u  are respectively the k-th ele-
ment of ,x yb b  and ,x yu u , ( )gh ⋅  is the soft-thresholding operator defined as 

( ) ( )sgn ,
0,          otherwise,g

g g
h

⋅⋅ − ⋅ >⋅ = 


                 (23) 

where ( )sgn ⋅  is the sign function. We summarize the above procedures as the 
following algorithm in the form of pseudocode. 

3. Numerical Experiments 

To validate the proposed method, we demonstrate the reconstruction quality of 
isotropic TV, anisotropic TV, and Tikhonov regularization methods using some 
synthetic data. Firstly, we solve the forward problem (3) using the Integral equa-
tion to obtain the near field of su  as measured data. 

All tests were conducted on an Intel Core i7 3.40 GHz CPU and 16 GB of 
RAM. To avoid “inverse crime,” the discrete computational region of the grid in 
the forward problem is finer than that in the inverse problem. We show the test 
set for synthetic data in Figures 1(a)-(f). Here, we choose the domain D as 
( ) ( )0,1 0,1× , wavenumber 200k =  and 35 transmitters, receivers on Γ . we 
add 1% random noise to measured data for test the stability of method. 

In Figure 1, we depict the test set of synthetic data. We apply Tikhonov  
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regularization, isotropic TV and anisotropic TV methods, respectively, to carry 
out the numerical simulation. The parameters of the three methods are set to be 
optimal empirically. It can be seen from Figure 2 that the location of isotropic 
TV and anisotropic TV reconstruction is more accurate, the shape is closer, and 
the reconstruction effect is better than the usual Tikhonov regularization (TR) 
reconstruction. 

 

 
Figure 1. The 2D numerical model. 

 

 
Figure 2. The first row (a)-(f) shows that the inversion result of Tikhonov regularization method; the second row (g)-(l) shows the 
that the inversion result of isotropic TV method; the Third row (m)-(r) shows the that the inversion result of anisotropic TV me-
thod. 
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There are several observations from the two figures. Firstly, all three regulari-
zation methods can well capture the main feature of the inner object, including 
position and shape. From Figures 2(a)-(f) shows that using SB to solve the 
Tikhonov regularization problem; from Figures 2(g)-(l) show that the images 
reconstructed by isotropic TV have an obvious ladder effect; from Figures 
2(m)-(r) shows that using split Bregman to solve the anisotropic TV regulariza-
tion problem can obtain an accurate image. The edges of the reconstructed im-
ages using the anisotropic TV distort along the coordinate axes. 

The numerical experiment shows that the effect of method isotropic and ani-
sotropic TV regularization in inverse acoustic scattering reconstructions is better 
sharpen the edges and is more robust against data noise than that of method 
Tikhonov regularization. But, in the anisotropic numerical simulation, the in-
version image is distorted along the edge of the coordinate axis alignment, which 
indicates that there is a large geometric distortion. In order to simplify the oper-
ation process and save the running time, we apply the split Bregman algorithm 
to inverse acoustic scattering problem. 

4. Conclusion and Future Work 

In this article, we use isotropic TV and anisotropic TV regularization by the split 
Bergeman method to solve the inverse acoustic scattering problem. These two 
methods were compared with the Tikhonov method. The simulation results of 
the measured data show that the isotropic TV regularization can cause a stair-
case effect; the anisotropic regularization can cause geometric distortion along 
the coordinate axis. However, these two methods can well preserve boundaries 
more than Tikhonov regularization. In future work, we will focus on a method 
that can avoid the distortions along the coordinate axis and does not depend on 
the selection of regularization parameters. 
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