
Engineering, 2021, 13, 463-471 
https://www.scirp.org/journal/eng 

ISSN Online: 1947-394X 
ISSN Print: 1947-3931 

 

DOI: 10.4236/eng.2021.138033  Aug. 20, 2021 463 Engineering 
 

 
 
 

Hermite Finite Element Method for a Class of 
Viscoelastic Beam Vibration Problem 

Ying Tang, Zhe Yin 

School of Mathematics and Statistics, Shandong Normal University, Jinan, China 

  
 
 

Abstract 
Beam equation can describe the deformation of beams and reflect various ben- 
ding problems and it has been widely used in large engineering projects, bri- 
dge construction, aerospace and other fields. It has important engineering pra- 
ctice value and scientific significance for the design of numerical schemes. In 
this paper, a scheme for vibration equation of viscoelastic beam is developed 
by using the Hermite finite element. Based on an elliptic projection, the errors 
of semi-discrete scheme and fully discrete scheme are analyzed respectively, 
and the optimal L2-norm error estimates are obtained. Finally, a numerical ex-
ample is given to verify the theoretical predictions and the validity of the sche- 
me. 
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1. Introduction 

Consider the following viscoelastic beam vibration problem:  
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where ( ),u x t  represents the transverse displacement of the beam, also known 
as the deflection, EI is the bending stiffness, 0ρ  is the density, S is the cross-sec- 
tional area, 0µ >  is the damping coefficient, L is the constant, ( ) ( ),x xϕ ψ  and 
( ),f x t  are smooth functions which are given known. 
Beam is the most common component of mechanical equipment and enginee- 

ring structure. Beam equation can describe the deformation of beams and reflect 
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various bending problems. It has been widely used in large engineering pro- 
jects, bridge construction, aerospace and other fields. Its theoretical and num- 
erical methods have been paid much attention. In [1], the viscoelastic dynamic 
beam model was studied by using the finite element method and Newmark me-
thod. Pierro [2] not only studied the transverse vibration of the viscoelastic beam, 
but also enlightened the damping characteristics of the structure. Huang, Koua-
mi, et al. [3] [4] presented the finite element scheme for viscoelastic sandwich 
beam in 2019 and 2020 respectively. Snchez [5] proposed a finite element for-
mulation for thick arbitrarily laminated beams. In [6] the Faedo-Galerkin me-
thod was used to solve beam vibration equation with nonlinear tension, a vis-
coelastic damping and distributed delay term. Wu [7] studied the viscoelastic 
string-beam coupled system in detail. In [8], the one-dimensional finite element 
method and analytical method were used to study Euler-Bernoulli beams equa-
tions resting on multi-layered viscoelastic soil. A new numerical method was 
considered in [9] for the equations of fractional-order viscoelastic Euler-Ber- 
noulli beams. Among the aforementioned methods, the finite element method 
has the characteristics of flexible mesh generation, wide application area and 
high calculation accuracy. The cubic Hermite element can guarantee the conti-
nuity of the first derivative of the interpolation function, and at the same time, 
the displacement value u and the angle value u' can be calculated [10]. Howev-
er, there is little work about the Hermite finite element method for viscoelastic 
beam vibration problem. Therefore, in this paper, a finite element calculation 
scheme is established for problem (1) based on Hermite element. Using elliptic 
projection operator, the error analysis is carried out and the convergence order 
of the scheme is proved to be ( )4O hτ + . Finally, a numerical example is given 
to demonstrate the correctness of the theoretical analysis and the validity of the 
scheme. 

The rest of the paper is arranged as follows. In Section 2, we give the semi- 
discrete finite element scheme and fully discrete finite element scheme for prob-
lem (1) and conduct convergence analysis. A numerical example is given in Sec-
tion 3. In section 4, we present conclusions and some future works. 

2. Finite Element Approximation 

When finite element method is used to solve this kind of equation, time variable 
t is usually treated as parameter. Let [ ]0,I L= , introducing the Sobolev space 
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( ) ( )2

0v x H I∈  and for fixed t, multiply both sides of equation (1) by ( )v x  and 
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conditions and the value of ( )v x . Based on (2), we can obtain the weak formu-
lation of (1): find 2

0u H∈ , satisfying 
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2.1. Error Estimation of Semi-Discrete Finite Element Schemes 

Let 0 1: 0h MI x x x L= < < < =  be an uniform partition of the interval [ ]0, L ,  
Lh
M

= , jx jh= , 0,1,2, ,j M=  . Let hV  be a finite-dimensional subspace of  

( )2
0H I  constituted by piecewise cubic Hermite type polynomials on hI . We 

can define the semi-discrete Galerkin finite element approximation of (4): find 

h hu V∈  satisfying  
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In order to estimate the error, we first define the elliptic projection  
( )2

0:h hR H I V→  such that  
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A well known error estimate (see [11]) is the following. 
Lemma 2.1. 1 3k≤ ≤  denotes the degree of finite element space hV , for any 

2 1
0

ku H H +∈  , we have  
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Now, we prove the estimate for the error between the solutions of the semidi-
screte and continuous problems. Denote hu R uρ = −  and h hR u uθ = − , the first 
important conclusion of this paper is as follows.  

Theorem 2.1. Let u and hu  be the solutions of (1) and (4), respectively.  
2 4
0u H H∈  . Then  
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where C is a constant, independent of L and h. 
Proof. We can obtain easily by Lemma 2.1 that  

 4
4 .hu R u Ch uρ = − ≤                     (8) 

Combining (3) and (4), we get the following error equation  
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tθ  belongs to hV . Thus, choosing h tv θ=  in (9), we conclude that  
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Using ε-Cauchy inequality gives  
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Integrate the above inequality over [ ]0, t   
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Here the first and the second are nonnegative, setting ( )0 0xxθ = , ( )0 0tθ =  
yields  
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It follows as above that  
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By the triangle inequality, we deduce that  

 .h h h hu u u R u R u u ρ θ− = − + − ≤ +             (14) 

Combing (8) and (13), we complete the proof. 

2.2. Error Estimation of Fully Discrete Finite Element Schemes 

Let 0 10 Nt t t T= < < < =  be an uniform partition of the interval [ ]0,T ,  
T
N

τ = , nt nτ= , 0,1,2, ,n N=  . Replacing the first and the second time de- 

rivative in equation (4) by backward difference quotient and central difference 
quotient respectively, full-discrete finite element form of problem (1) can be de-
fine: find n

h hu V∈  such that  
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Denote 1 1 1n n n
hu R uρ + + += −  and 1 1 1n n n

h hR u uθ + + += −  in analogy with defini-
tions before. We obtain theorem 2.2 which estimates the error between the solu-
tions of the fully discrete and continuous problems. 

Theorem 2.2. Let u and hu  be the solutions of (1) and (15), respectively.  
2 4
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where C is a constant, independent of T and τ . 
Proof. Minusing (3) and (15), we get 

( ) ( )
1 1 1

1 1
, 0 2

2, , , ,
n n n n n

n n
xx h xx h h hEI v S v v k vθ θ θ θ θθ ρ µ θ

ττ

+ − +
+ +   − + −

+ + +   
   

 

https://doi.org/10.4236/eng.2021.138033


Y. Tang, Z. Yin 
 

 

DOI: 10.4236/eng.2021.138033 467 Engineering 
 

1 1 1 1
1

0 02 2

1 1
1

2 2, ,

, , .

n n n n n n
n
tt h h

n n n n
n
t h h

u u uS u v S v

u u u v v

ρ ρ ρρ ρ
τ τ

ρ ρµ µ
τ τ

+ − + −
+

+ +
+

    − + − +
= − −         

    − −
+ − −         

   (17) 

Setting 
1n n

hv θ θ
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=  in (17) and using ε-Cauchy inequality, we observe that  
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Next, we will estimate the right end of equation (18) one by one. By using Taylor 
expansion, we deduce  

 1

1

2 21 1 3
1

2 3

2 33 d .
10

n

n

n n n tn
tt t

u u u uu s
t

τ
τ

+

−

+ −
+− + ∂

− ≤
∂∫                (19) 

 ( )( ) ( )( )1

1

2 21 1

1 12 2

2 1 d d .n n

n n

n n n t t
tt n tt nt t

s t s s s s t sρ ρ ρ ρ ρ
τ τ

+

−

+ −

+ −
− +  = − + −  ∫ ∫  (20) 

 ( )( )1

2 21
1 1 d .n

n

n n tn
t tt nt

u u u u s t s s
τ τ

+
+

+−
− = −∫                (21) 

 ( )1

2 21 1 d .n

n

n n t
tt

s sρ ρ ρ
τ τ

+
+ −

= ∫                      (22) 

Therefore, from (19), it is immediate to realize that  
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Using Schwarz inequality we can verify  

 ( ) ( )
2 2, d d .

b b

a a
f x t t b a f t≤ −∫ ∫                    (24) 

Then, we observe that (20), (24) and Lemma 2.1 yield  
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Combining (21) and (24) and Lemma 2.1, we have  
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Now we combine (23), (25), (26) and (27) to have  
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Multiplying equation (28) by τ  and taking the sum of n, we derive  
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That is  

 ( )1 4 .n C hθ τ+ ≤ +                       (30) 

On the other hand, by Lemma 2.1, we have  
1 4 .n Chρ + ≤  

Using triangle inequality and the above estimates gives the proof. 

3. Numerical Experiment 

In order to prove the validity of the theoretical analysis, we give the problem for 
which the exact solution is given. We apply the full-discrete scheme proposed above 
to solve this problem. 

Example. Let the variables 0, , , , ,EI S k Lρ µ  and T in problem (1) be equal to 
1. Consider the following initial-boundary value problem:  
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      (31) 

The exact solution is ( ) ( ) ( ), sin cosu x t x t= π π . 
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Table 1. Errors and convergence order of Example.  

h τ  L2-error order 
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1
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 0.00252081 - 
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 0.0001626 3.9545 
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1
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20

1
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 4.01086e-08 3.9993 

 

 

Figure 1. Exact solution with 
5

1
2

h = . 

 

 

Figure 2. Solution of fully discrete finite element schemes with 
5

1
2

h = . 
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We use the finite element fully discrete scheme to solve the problem. In Table 
1, by choosing 4hτ = , we give the L2-error and the order of spatial convergence. 
The results show that the space convergence order of the scheme is fourth order. 
Surface plots of the exact solution and the numerical solution are presented in Fig-
ure 1, Figure 2. 

4. Conclusions 

Based on Hermite finite element method, the vibration of viscoelastic beam is ana-
lyzed numerically. Semi-discrete and fully discrete Hermite finite element formats 
are given. By means of a numerical example, the L2-error and the convergence 
order between the exact solution of the original equation and the finite element 
solution are given. The validity of the proposed scheme in theoretical applications 
is verified. 

Since the equations in this paper are one-dimensional in space, high-order fi-
nite element method such as finite element method for two-dimensional plate 
vibration problem will be the direction of our future research. 
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