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Abstract 
This paper addresses the problem of the opportunistic spectrum access in 
Cognitive Radio. Indeed, most spectrum sensing algorithms suffer from a 
high computational cost to achieve the detection process. They need a prior 
knowledge of signal characteristics and present a bad performance in low 
Signal to Noise Ratio (SNR) environment. The choice of the optimal detec-
tion threshold is another issue for these spectrum sensing algorithms. To 
overcome the limits of spectrum detectors, we propose in this paper, a blind 
detection method based on the cyclostationary features of communication sig-
nals. Our detector evaluates the level of hidden periodicity contained in the 
observed signal to make decision on the state of a bandwidth. In order to re-
duce the computational cost, we take advantage of the FFT Accumulation 
Method to estimate the cyclic spectrum of the observed signal. Then, we gen-
erate the Cyclic Domain Profile of the cyclic spectrum which allows us to 
evaluate the level of the hidden periodicity in the signal. This level of peri-
odicity is quantified through the crest factor of Cyclic Domain Profile, which 
represents the decision statistic of the proposed detector. We have established 
the analytic expression of the optimal threshold of the detection and the 
probability of detection to evaluate the performance of the proposed detector. 
Simulation results show that the proposed detector is able to detect the pres-
ence of a communication signal on a bandwidth in a very low SNR scenario. 
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1. Introduction 

In this paper, we propose the Cyclostationary Features based Detection (CFD) 
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algorithm based on a spectral analysis of the cyclostationarity of digital com-
munications signals. By definition, a cyclostationary process is a random 
process in which the statistical characteristics are periodic or quasi-periodic 
[1] [2] [3]. The strategy of detection based on cyclostationarity consists of de-
veloping algorithms to detect hidden periodicities of the observed signal. In 
digital communications, this cyclostationarity is due to coding, multiplexing 
and modulation techniques, which generate hidden frequencies in the spec-
trum of the transmitted signal [4] [5]. Since the detection of an unoccupied 
frequency band amounts to detect the presence or absence of a communication 
signal on this frequency band, a spectral analysis of the cyclostationarity of the 
received signal can then help in the detection of unoccupied spectral bands. 
The CFD acts in a non-cooperative context [6] [7]. It does not require a prior 
knowledge of the characteristics of the PU signal and remains effective in a 
very low SNR channel. Our cyclostationary detection approach is divided into 
two main stages: 
 First, we adapt the Fast Fourier transform Accumulation Method (FAM) al-

gorithm to estimate the cyclic spectrum of the observed signal. 
 Then, we generate the Cyclic Domain Profile (CDP) which allows us to eva-

luate the level of the hidden periodicity in the signal. This level of periodicity 
is quantified through the Crest Factor (CF) of CDP, which represents the de-
cision statistic of CFD. 

During the detection phase, the CFD compares the CF of the received signal 
to a predetermined threshold. The simulations which we carried out through the 
Receiver Operating Characteristic (ROC) curves show the robustness of our de-
tection method. 

The rest of this paper is organized into five sections. In Section 2, we briefly 
present the properties of cyclostationary processes. Section 4 presents the FAM 
algorithm used to estimate the cyclic spectrum. The principle of the detector is 
presented in Section 5. We end this paper with Sections 6 and 7 which respec-
tively present the results of our simulations and the conclusion. 

2. Cyclostationnarity 

The first works on the cyclostationarity of communication signals were pub-
lished in 1958 by Bennett [5] [8]. Subsequently, Gudzenko [9], Markelov [10] 
and Gladyshev [11] will be interested in the theory of cyclostationarity and study 
various aspects including the non-parametric spectral analysis of processes Cyc-
lostationnaire (CS) [9], the study of CS processes in a Gaussian context [10] and 
the analysis of processes Almost Cyclo-Stationnary (ACS) [11]. In a series of 
publications, Herbst provides tools for analyzing periodic or nearly periodic va-
riance processes [12] [13] [14] [15]. Kampé de Férier [16] and Parzen [17] [18] 
for their part are interested in the spectral analysis of the cyclostationarity of 
natural phenomena and Monin [19] proposes the use of cyclostationarity in the 
analysis of weather data. One of the pioneers of cyclostationarity since the 1980s 
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is William Gardner who, apart from the probabilistic theory of cyclostationarity 
developed by Gladyshev [20] [21] [22], lays the foundations of the non-probabilistic 
theory of cyclostationarity [1] [2] [3] [5] [23] [24]. This non-probabilistic theory 
consists of extracting sinusoidal components by a quadratic transformation of 
the cyclostationary signal. However, the two approaches (probabilistic and non- 
probabilistic) give similar results and are linked by the cyclo-ergodicity of cyc-
lostationary processes. This cyclo-ergodicity states that the limits of the temporal 
averages and the statistical averages of the cyclic characteristics converge towards 
the same values [25]. 

Today, cyclostationarity is exploited in various fields including telecommuni-
cations [5], mechanics [26] [27] and astronomy [28]. 

The cyclostationarity is defined as an extension of the concept of stationarity 
or as a special case of non-stationarity. Such a signal is defined by a periodicity 
at order n of its statistics [29]. A CS or ACS process is defined in the strict sense 
or in the broad sense. 

Let ( )X t  be a real-value continuous-time stochastic process. The process ( )X t  
is said to be Cyclo-Stationary (CS) with period T0 in the strict sense of the order 
n if and only if its probabilistic characteristics are T0-periodic [5]. Which means 
in other words that: 0, , ,nt k x T +∀ ∈ ∀ ∈ ∀ ∈ ∃ ∈    : 

( ) ( ) ( ) ( )
0X t X t kTF x F x+=                      (1) 

When the process ( )X t  contains several periodicities, the process is named 
a polycyclostationary process. Thus, ( )X t  is said to be polyclostationary in the 
strict sense with the periods 0 1, , , PT T T  if and only if its statistical properties 
are periodic in time with the periods 0 1, , , PT T T  [5] [25]. 

Let ( )X t  be a real-value continuous-time stochastic process. The process 
( )X t  is said to be CS of period T0 in the broad sense if and only if its statistics 

of order 1 (its mean) and of order 2 (its autocorrelation function) vary periodi-
cally over time with a period T0. 

In the rest of this paper, we will focus on cyclostationarity in the wide sense to 
develop our CFD detector which only exploits the statistical properties of second 
order of the digital communications signal. 

The theory of second order cyclostationarity is based on the autocorrelation 
function of the stochastic process. Considering that in practice, the observed 
signal is only one realization of the cyclostationary process, we will deal in the 
continuation with the second order cyclostationarity of digital communications 
signals. 

A centered signal ( )x t  is said to be second-order cyclostationary, in the 
wide sense, if its autocorrelation function ( ),xR t τ  defined by: 

( ) *,
2 2xR t E x t x tτ ττ     + −        

                 (2) 

is a T0-periodic function for each τ ; which means in other words that: 
*k∀ ∈ , 
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( ) ( )0 , ,x xR t kT R tτ τ+ =                     (3) 

where τ  denotes the time offset (correlation variable). T0 is called the cyclic 
period. It is a period hidden in the signal ( )x t ; [ ].E  denotes the expectation 
[30].  

Since the auto-correlation function ( ),xR t τ  is T0-periodic in t for each shift 
τ , then it can therefore be decomposed into Fourier series in the form: 

( ) ( )0 02

1
, e

K
k j k t

x x
k

R t R α ατ τ π

=

= ⋅∑                  (4) 

where 0 01 Tα =  denotes the fundamental cyclic frequency and K the number 
of harmonics.  

The quantity ( )0k
xR α τ  is called the cyclic correlation function [24]. Accord-

ing to [24], ( )0k
xR α τ  is given by:  

( ) ( )
0

0 0
0

22

0 2

1 , e d
T

k j k t
x xTR R t t

T
α ατ τ − π

−
⋅∫                (5) 

When its autocorrelation function contains several cyclic periods (hidden pe-
riodicities) 0 1 2, , ,T T T  , the signal ( )x t  is said to be polycyclostationary [5] 
[31]. The polycyclostationary model is most suitable for digital communications 
signals. Thus, by adopting the polycyclostationary model for the signal ( )x t , 
the autocorrelation function ( ),xR t τ  of ( )x t  becomes [31] [32]: 

( ) ( ) 2, e j t
x xR t Rα α

α
τ τ

∈

π⋅∑


                   (6) 

where { }0 1, , , Nα α α=   is a numbered set containing all the possible cyclic 
frequencies α  and the Fourier coefficients ( )xRα τ . 

( ) ( ) 22

2

1lim , e d
T

j t
x xTT

R R t t
T

α ατ τ −

→∞

π

−
⋅∫                (7) 

denote the cyclic autocorrelation function. 
By analogy with the Power Spectral Density, the Fourier transform of the cyc-

lic autocorrelation function is called density function of the cyclic correlation or 
cyclic spectrum [24]: 

( ) ( ) 2e dj
x xS Rα α ντν τ τ

+∞ −

−

π

∞
⋅∫                   (8) 

The estimation of the quantities defined by Equations (7) and (8) constitutes 
the cyclic spectral analysis. 

3. Cyclic Spectral Analysis 
Let ( )w t  be a sliding window of unit area and not zero over the interval 

,
2 2
T T− 

  
. The adequate estimator of the cyclic autocorrelation function ( )xRα τ   

of the observation ( )x t  for [ ]0 02, 2t t T t T∈ − +  is the cyclic correlogram 
( ) ( ),T
xR tα  defined by [31]: 

( ) ( ) ( ) ( ) ( ) 2
0, e dT j t

xR w t t x t x t tαα τ τ − π− +∫ 
            (9) 
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x  represents the conjugate of ( )x t . The cyclic correlogram ( ) ( ),T
xR α τ  is a 

consistent estimator of ( )xRα τ  [31]. The letter T superscript of ( ) ( ),T
xR α τ  de-

notes the width of the sliding window ( )w t . 
Assuming ( ) ( )w t rect t T T= , we show that the cyclic autocorrelation func-

tion is equivalent to [3] [33]: 

( ) ( ) 22

2

1, e d
2 2

T
T j t

x TR x t x t t
T

ατ τα τ
−

π+ −   = + − ⋅   
   ∫            (10) 

By introducing 2 2e 1
j τ τα  − − 

 
π

=  into the equation eqref Equation Autocor Cyc-
lic2, we end up with: 

( ) ( )

( ) ( ){ }

2 2
2 22

2

1, e e d
2 2

1 , ,

T j t j tT
x TR x t x t t

T

z z
T

τ τα ατ τα τ

α τ α τ

   − + − −   
   

−

π π   = + −   
   

= ∗ −

∫
     (11) 

where ( )
2

2, e
2

j t
z x t

τατα τ
 − +


π  
 = + 

 
 and * denotes the convolution product op-

erator. 
The Fourier transform of the cyclic correlogram ( ) ( ),T

xR α τ  gives the cyclic 
periodogram ( ) ( ),TI α ν  [31]:  

( ) ( ) ( ) ( ){ }
( ) ( ){ }

1, ; ,

1 , ,

1 , ,
2 2

T T
x

T T

I t TF R
T

TF z z
T

X t X t
T

α ν α τ

α τ α τ

α αν ν

= ∗ −

   = + −   
   



           (12) 

where ( ),TX t ν  is the Short Term Fourier Transform of ( )x t  defined as fol-
lows: 

( ) ( ) 22

2

, e d
Tt j u

T Tt
X t x u uνν

+ −

−

π∫                  (13) 

,
2TX t αν + 

 
 is named the complex demodulate [5] [34]. 

The cyclic periodogram ( ) ( ), ;TI tα ν  is a non-consistent estimator of the 
cyclic spectrum ( )xSα ν . As in the case of stationary processes, consistency can 
be obtained by temporal or frequency averaging of ( ) ( ), ;TI tα ν . We then obtain 
two estimators of the cyclic spectrum: the frequency-averaged cyclic periodo-
gram ( ) ( ), ,t

xG ν α ν∆ ∆  and the time-averaged cyclic periodogram ( ) ( ), ,t
xS ν α ν∆ ∆  

[31]: 

( ) ( ) ( ) ( )2,

2

1, , ; dt t
xG I t

ν νν

ν ν
α ν α λ λ

ν
+∆∆ ∆ ∆

−∆
=
∆ ∫            (14) 

( ) ( ) ( ) ( )0

0

2, 1

2

1, , ; d
t tt

x t t
S I t t

t
ν να ν α ν

+∆∆ ∆ ∆

−∆
=
∆ ∫            (15) 

with t∆  the duration of observation of the signal ( )x t  and ν∆  the fre-
quency resolution. 

( ) ( ), ,t
xS ν α ν∆ ∆  and ( ) ( ), ,t

xG ν α ν∆ ∆  are defined by a frequency resolution ν∆  
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and a cyclic frequency resolution α∆ .  
t∆  denotes the duration of observation of the signal ( )x t  and T the dura-

tion (or width) of the sliding window (apodization window), we have [5] [23] 
[31]: 

1
t

α∆ =
∆

                         (16) 

1
T

ν∆ =                          (17) 

To obtain a fine estimate of the cyclic spectrum, the Grenander uncertainty 
condition must be respected [35]: 

1t ν∆ ⋅∆ 
                       (18) 

It states that for a better estimate of the cyclic spectrum, the duration T of the 
apodization window ( )w t  must be much less than the observation duration 

t∆  of the signal ( )x t  to analyze [35].  
The estimators ( ) ( ), ,t

xS ν α ν∆ ∆  and ( ) ( ), ,t
xG ν α ν∆ ∆  of ( )xSα ν  are asymptoti-

cally equivalent [31]:  
( ) ( ) ( ) ( ) ( ), ,

0 0
lim lim , lim lim ,t t

x x xt t
S G Sν ν α

ν ν
α ν α ν ν∆ ∆ ∆ ∆

∆ → ∆ →∞ ∆ → ∆ →∞
= =       (19) 

However, in [34] [35] [36], the authors show that the cyclic spectrum estima-
tors based on temporal smoothing are more efficient in terms of computation 
time and provide a finer estimate.. Consequently, we will focus in the rest of our 
work in methods based on temporal smoothing. The most used temporal 
smoothing algorithms are: 
 FAM [36] [37] algorithm; 
 Spectral Correlation Algorithm (SSCA) algorithm [36] [37]. 

The FAM algorithm is faster and more efficient than the SSCA algorithm. Our 
detection model therefore uses the FAM algorithm to estimate the cyclic spec-
trum of the observed signal. 

4. FFT Accumulation Method 

Let ( ) ,x n n∈  be the discrete signal obtained by uniform sampling of the 
continuous signal ( ) ,x t t∈ . Let N be the number of samples observed during 
the duration t∆ , et NT∆ =  and PN  the number of samples contained in the 
sliding window ( )w n ; P eT N T= ; eT  denotes the sampling period. The cyclic 
spectrum estimator by time averaging is written [5] [6] [38]:  

( )

( ) ( )
( )

( ) ( )
( )

1 1,

0

1 2
2

0

2
2

1 1, , ,
2 2

1 1 e

e

P

e

e

NN
N

x T
n P

N j n k T

n P

j n k T

S X n X n
N N

TF w k x n k
N N

TF w k x n k

α

α

α αα ν ν ν
 

− 
 

=

 − − − 
 

=

 + −

π

π 
 

   = + −   
   

  = − 
  

   −    

∑

∑      (20) 
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The FAM algorithm for Fast Fourier Transform Accumulation Method, based 
on Equation (20), takes advantage of the advantages of the Fast Fourier Trans-
form (Fast Forier Transform (FFT)) to reduce the computational cost of the 
spectrum cyclic. It divides the dual-frequency plane ( ,ν α ) into sub-blocks  

( ,i iν α ), then calculates the estimates of the cyclic spectrum ( )
1,

,P
N

N
x i iS α ν
 
 
   of 

each sub-block using the FFT. It is constitued of three main stages: 

1) The computation of complex demodulates ,
2TX n αν + 

 
 and of their 

conjugates ,
2TX n αν − 

 
 to obtain the spectral composition of the signal. 

2) The two-by-two product between complex demodules and their conjugates 
corresponds to the calculation of the cyclic correlogram 

( ) ( ) 1, ; , ,
2 2

T
T TI n X n X n

T
α αα ν ν ν   = + −   

   
. 

3) The computation of FFT of ( ) ( ), ;TI nα ν  to obtain the estimation of cyclic 

spectrum ( )
1,

,P
N

N
xS α ν
 
 
  . 

Figure 1 summerizes the different stages of FAM algorithm. 

5. Detection Modeling 

Let ( )s t  be the signal of the primary user (PU) and ( )y t  the signal observed 
by the secondary user (SU): 

( ) ( ) ( ) ( )y t h t s t b tθ= ⋅ +                    (21) 

where ( )h t  denotes the impulse response of the channel, θ  a Boolean varia-
ble and ( )b t  a Gaussian white noise of variance 2

bσ . 
The hypotheses 0  and 1  are as follows:  

 0 : no communication signal; 0θ = ; 
 1 : communication signal presence; 1θ = . 

The fundamental idea of detection consists in measuring the level of hidden 
periodicity in the signal ( )y t . 
 

 
Figure 1. Synotic diagram of the FAM algorithm inspired by [35]. 
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To measure this hidden periodicity, we first define the Cyclic Domain Profile 
or CDP ( )D α  which contains the maximum values of the cyclic spectrum 

( )ySα ν : 

( ) ( )max yD Sα

ν
α ν=                      (22) 

Next, we define the crest factor cF  of the CDP ( )D α  which will serve as 
the decision statistic CFD  of the CFD: 

( )

( )2 2
1

max 

1
2

CFD c
N

kk

D
F

D
N

α
α

α
=

= =

∑
                  (23) 

The detection criterion is given by: 

1

0
CFD CFDλ




                          (24) 

CFDλ  is the detection threshold predetermined according to the desired faP  
[39]. 

In order to analytically approach the optimal detection threshold CFDλ , we 
must estimate the Probability Density Function (PDF) of the crest factor cF  
under 0 . Equation (23) shows that the calculation of cF  is based on a max-
imization function; we can therefore approach the PDF of cF  both under 0  
and under 1  by the PDF ( )Zf z  of generalized extreme value or Generalized 
Extreme Value (GEV) of parameters ( , ,µ σ ξ ) defined by [40] [41] [42]: 

( )
1 1 11 1  exp 1  Z

z zf z
ξ

ξµ µξ ξ
σ σ σ

 
− − − 
   − −   = + − +    

     
         (25) 

with µ  location parameter; σ  the scale parameter and ξ ∈  the shape pa-
rameter. 

Figure 2 shows us the evolution of cF  under 0  and under 1  for a SNR 
= −11 dB. We define the probability of false alarm faP  by: 
 

 
Figure 2. Approximation of the distribution of cF  under 0  and under 1 . Under 

1H , the signal to noise ratio is SNR = −11 dB. cF  can be approximated by the PDF of 
generalized extreme values (GEV for Generalized Extreme Value). Depending on the 
probability of false alarm for the detector, we can set the detection threshold 

0cF . 
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( )
0/ d

CFD

fa Z HP f z z
λ

+∞

= ∫                       (26) 

with: 

0 0

0 0

0 0

µ µ
σ σ
ξ ξ

=
 =
 =





                         (27) 

faP  becomes as follows: 

0
0

1 1 1
0 0

0 0
0 0 0

1 1 exp 1 d
CFD

fa
z z

P z
ξ

ξ

λ

µ µ
ξ ξ

σ σ σ

− − −+∞     − −
 = + − +  
     

∫        (28) 

Using the change of variable 0
0

0

1
z

u
µ

ξ
σ
−

= + , we obtain:  

0
0

00 00
0 00

0

1

1
0

1

1
0

0
0

1 1 d exp
1exp

1 exp 1  

CFD

CFD

fa

CFD
fa

P u u
u u

u

P

ξ
λ µ

ξξ σλ µ
ξ ξσ

ξ

ξ

λ µ
ξ

σ

+∞ +∞−
 −
+   −  +  

 

−

  = = −   
 
 

  −
 = − − + 
   

∫

   (29) 

From Equation (29), we determine the optimal detection threshold CFDλ  as 
follows: 

0

0
0

0

1ln 1
1CFD

faP

ξ
σ

λ µ
ξ

−     = − +    −   
                 (30) 

With: 

1 1

1 1

1 1

H
H
H

µ µ
σ σ
ξ ξ

=
 =
 =

                           (31) 

the probability of detection dP  can be defined by: 

( )
1

1 1
1

1
1

/

1  

d

1 e

d Z H

d

P f z z

P

ξ

λ

λ µ
ξ

σ

−

+∞

 −
− + 
 

=

= −

∫
                       (32) 

Equations (29) and (32) allow to establish the relation between dP  et al. faP : 
1

0
1

0
0 1

0

1
1

1ln 1
1

1 exp 1  
fa

d

P
P

ξξ
σ

µ µ
ξ

ξ
σ

−−        − + −       −     = − − +          

     (33) 

A delicate part in this approximation is the estimation of the parameters 
, ,kξ σ  of the probability density function GEV. To do this, we use the Optimal 

Biased Robust Estimator (OBRE) algorithm proposed in [40] to estimate the pa-
rameters ,µ σ  and ξ . OBRE is a robust estimator based on Maximum Like-
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lihood or gls mle. Table 1 gives some values of the parameters ,µ σ  and ξ  of 
the GEV probability density function of cF  under 1  obtained for different 
values of SNR. 

6. Simulations and Results 

In order to compare the theoretical and experimental results, we generate the 
performance curves dP  as a function of Signal Noise Ratio (SNR) and the Re-
ciever Operating Characteristics (ROC) curves. These simulations are performed 
on different types of signals (16-QAM, QPSK, BPSK, 4-ASK). We group the si-
mulation parameters in Table 2. 

Figure 3 shows a concordance between the theoretical and experimental per-
formance curves dP  as a function of SNR for a 16-QAM signal. We generated 
the theoretical curve from Equation (33) and the experimental curve using 
Monte Carlo simulations (1000 iterations). Thus according to the theory, our 
detector is able to detect a communication signal in a Gaussian channel as soon 
as the signal to noise ratio SNR ≥ −11 dB with a detection probability 0.9dP =  
for a 0.05faP = . These results are consistent with those obtained experimentally. 

To analyse the evolution of the dP  as a function of the faP , we use the roc 
curves. Figure 4 gives the theoretical and experimental ROC curves of the CFD 
on a 16-QAM signal in a Gaussian channel with a SNR = −11 dB. The theoretical 
curve is generated by Equation (33) and the experimental curve is obtained by 
Monte Carlo simulations. We can note through these results the similarity be-
tween the two curves. 
 

 
Figure 3. Pd performance curve as a function of SNR. The theoretical curve obtained 
according to Equation (33) and the experimental one coincide. 
 
Table 1. Value of ,µ σ  and ξ  under 1H  based on the SNR. 

SNR (dB) −14 −12 −10 −9 −8 −7 −6 

1ξ  −0.033 −0.104 −0.098 −0.124 −0.1016 −0.0804 −0.1286 

1σ  0.439 0.528 0.557 0.627 0.647 0.663 0.718 

1µ  5.76 6.326 7.126 7.673 8.19 8.839 9.533 
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The detector based on the cyclostationary characteristics of the signal acts in a 
quasi-blind context. It has no knowledge of the characteristics of the signal 
emitted by the PU. Therefore, we compare it to the classic detector based on the 
energy level. We notice that the probability of detection of the CFD is almost 
identical to that of the Energy-based Detection (ED). For a false alarm probabil-
ity set at 0.05faP = , we obtained (Figure 5) 0.99

CFDdP =  and 0.97
EDdP =  in 

a channel where the SNR = −10 dB.  
 

 
Figure 4. Receiver Operating Characteristic (ROC) of Cyclostationary Features based 
Detector (CFD) in Gaussian channel with SNR = −11 dB for 16-QAM signal. 
 

 
Figure 5. Comparison of cyclostationary feature based detector and energy detector. For 

0.05faP = , we obtain 0.99
CFDdP =  and 0.97

EDdP =  in a channel where SNR = −10 dB. 

 
Table 2. Simulation parameters of CFD. 

64-QAM, 16-QAM, BPSK, 4-ASK Signal 

User Parameters Values 

Primary 

Sampling rate eF  128 kHz 

Data rate 16 kHz 

bandwidth W 21.6 kHz 

Secondary 
Observation duration t∆  16 ms 

Number of samples N 2048 

Frequency resolution 
α∆  62.5 Hz 

ν∆  1 kHz 
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7. Conclusion 

Detecting the Primary User (PU) signal, in a very weak SNR condition, is one of 
the most difficult tasks in cognitive radio. In this paper, we have proposed a 
non-cooperative detection model which is able to detect the signal of PU in low 
SNR scenario. This detection model exploits the cyclostationary features of 
communication signals. This cyclostationarity can be revealed through cyclic 
spectral analysis. Thus, after the estimation of the cyclic spectrum using the FFT 
Accumulation Method (FAM) algorithm, we generate the Cyclic Domain Profile 
(CDP). Then, we quantify this level of periodicity using the CDP crest factor. We 
use the CDP crest factor as the decision statistic to detect the state of the channel 
(busy or not). We approached the probability density function of the crest fac-
tor, which allowed us to analytically determine the optimal detection threshold, 
the probabilities of false alarm and detection. The simulations carried out sub-
sequently show a strong similarity between the theoretical results and the expe-
rimental results. Cyclostationary Feature based Detection is an efficient detector. 
In low SNR scenario, it is able to detect a digital communication signal up to 
SNR = −11 dB. Our work on CFD shows that the CDP makes it possible to vi-
sualize the hidden frequencies of the observed signal on the one hand and on the 
other hand that the CF is a characteristic quantity of the modulation technique. 
We propose, in future works, to exploit these two tools (the CDP and the Crest 
Factor) to develop an algorithm, which is able to detect the signal of the PU and 
also to distinguish the signal of a PU from the signal of a SU, by using the prin-
ciple of modulation recognition. 
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List of Abbreviations 

CDP: Cyclic Domain Profile 
CFD: Cyclostationary Features based Detection 
COR: Caractéristique Opérationnelle du Récepteur 
CS: Cyclostationnary 
ED: Energy based-Detection 
FAM: Fast fourier transform Accumulation Method 
CF: Crest Factor 
FFT: Fast Forier Transform 
GEV: Generalized Extreme Value 
MLE: Maximum Likewood Estimator 
OBRE: Optimal Biased Robust Estimator 
OFDM: Strip Spectral Correlation Algorithm 
PU: Primary User 
ROC: Receiver Operating Characteristic 
SNR: Signal Noise Ratio 
SU: Secondary User 
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