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Abstract 
Standard automatic dependent surveillance broadcast (ADS-B) reception al-
gorithms offer considerable performance at high signal-to-noise ratios (SNRs). 
However, the performance of ADS-B algorithms in applications can be prob-
lematic at low SNRs and in high interference situations, as detecting and de-
coding techniques may not perform correctly in such circumstances. In addi-
tion, conventional error correction algorithms have limitations in their ability 
to correct errors in ADS-B messages, as the bit and confidence values may be 
declared inaccurately in the event of low SNRs and high interference. The 
principal goal of this paper is to deploy a Long Short-Term Memory (LSTM) 
recurrent neural network model for error correction in conjunction with a 
conventional algorithm. The data of various flights are collected and cleaned 
in an initial stage. The clean data is divided randomly into training and test 
sets. Next, the LSTM model is trained based on the training dataset, and then 
the model is evaluated based on the test dataset. The proposed model not on-
ly improves the ADS-B In packet error correction rate (PECR), but it also 
enhances the ADS-B In terms of sensitivity. The performance evaluation re-
sults reveal that the proposed scheme is achievable and efficient for the avio-
nics industry. It is worth noting that the proposed algorithm is not dependent 
on conventional algorithms’ prerequisites. 
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1. Introduction 

The use of ADS-B, a new surveillance technology, is increasing globally. An air-
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craft broadcasts its own aviation parameters spontaneously and on a regular ba-
sis to air traffic ground stations and other nearby aircraft in order to improve air 
traffic monitoring and management, in contrast to the secondary surveillance 
radar that operates on an interrogation-reply principle [1] [2]. Numerous ad-
vantages have been brought about by the introduction of ADS-B, including bet-
ter situational awareness, increased traffic capacity and efficiency, and decreased 
fuel consumption [3] [4]. As a result, many nations, including those in North 
America, Europe, and Australia, are encouraging the modernization of air traffic 
management technology and attempting to swap traditional radar systems with 
ADS-B technology [5] [6] [7]. 

ADS-B receiver sensitivity level and robustness to interference are key factors 
in ADS-B performance. On the one hand, the ADS-B robustness has been ad-
dressed by the multi-sample method described in [8] [9]. In the event of high 
SNRs, this approach performs well [9]. On the other hand, satellite-based ADS-B 
technology, which is required to detect ADS-B signals with low SNR, has recent-
ly gained much attention. This multi-sample technique’s performance deteri-
orates dramatically due to the high bit error rate (BER) at low SNRs. While some 
research has been conducted to enhance the BER and error correction, such er-
ror correction approaches are limited by the number of low-confidence bits. 
More specifically, all the incorrect bits must be classified as low-confidence bits 
to have successful error correction. In addition, the number of low confidence 
bits is restricted to threshold 5 for the brute force approach, and this number is 
limited to 12 for the conservative approach [10]. 

This research covers the design and implementation of an LSTM error correc-
tion model based on actual flight test data. This work involves the extraction of 
ADS-B data features, the design of a new error correction architecture based on 
the LSTM model, and presents the results achieved using the proposed scheme. 
The motivations for writing this article are two-fold: 
• Most of the error correction solutions are still highly dependent on the 

number of low-confidence bits and their distribution;  
• Considering ADS-B message correlation and serial correlation features, ma-

chine learning algorithms, particularly the LSTM model, can help to enhance 
error correction performance. Therefore, ADS-B sensitivity in low SNR situ-
ations and high interference events will be improved. 

This study illustrates the advantages of the LSTM-based error correction 
model and its implementation. In addition, algorithm evaluation was conducted 
under real flight data to have a comprehensive observation of the algorithm’s 
and the proposed model’s performance. 

2. Literature Review 

The sliding window error correction technique operates by assessing consecutive 
24-bit windows. The selected window starts from bits 89 - 112 of the ADS-B 
messages. If any of the bits within the window is declared as low confidence, 
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then its complementary value applies. Otherwise, the window is shifted down-
ward till it reaches the start of the ADS-B messages. In addition, if the number of 
low-confidence bits within the window is greater than 12, then error correction 
is not attempted. This approach is useful in low-level interference events; how-
ever, its performance is drastically degraded in high False Replies Unsynchro-
nized In Time (FRUIT) environments [10]. 

A more straightforward strategy called the conservative technique is applied 
to severe FRUIT circumstances. The prerequisites for the success of error cor-
rection by this approach are that there are no more than 12 low-confidence bits, 
and all the low-confidence bits are contained inside a 24-bit window. Although 
the computation load is minimal, the error correction rate is low [10]. 

Another error correction technique is known as the Brute Force approach. As 
implied from its name, every possible combination of a low confidence bit’s er-
ror syndrome is computed, and based on the results, the relative correction is 
applied. This method correction is successful provided that the declaration rule 
is applied correctly to every bit, however, it has a high computational load [8] 
[10] [11]. 

As described in [12], a matching filter algorithm is used for decoding ADS-B 
signals. In addition, a new error correction algorithm is proposed based on the 
combination of the Brute Force approach and an N-confidence level. The thre-
shold of confidence declaration is determined by the received signal energy per 
bit to noise power spectral density ratio (Eb/N0) rather than the fixed value. Ac-
cording to the simulation result, BER is improved by applying both match filter 
detection and the offered error correction algorithms. The proposed error cor-
rection solution is based on the confidence bit declaration of the matching filter. 

The authors of reference [13] exploited different matching filter schemes to 
detect ADS-B data. The proposed approach uses leading and trailing chip energy 
to estimate bit and confidence levels. Therefore, the threshold of confidence level 
is dynamic. The conservative approach is used for error correction. 

In telecommunication systems, both transmitters and receivers that are Artifi-
cial Intelligence-based have been studied. AI models pave the way for individuals 
to optimize a whole transceiver as an autoencoder without prior knowledge of 
channel coding and modulation [14]. A recurrent neural network (RNN) was 
also applied to optimize the encoding and decoding together for Additive white 
Gaussian noise (AWGN) channels with feedback [15]. Additionally, it was found 
that even when the code structure is not explicitly taught, the NN-based decoder 
for structured codes can generalize to some untrained codewords. The complex-
ity of an NN-based system is inversely correlated with the number of codewords 
to be classified. Therefore, the strict latency constrains the NN-based decoder, as 
the code space increases exponentially with code length. Since the code length of 
ADS-B data is limited to 112 bits, which is much shorter than the wireless tele-
communication data package length, it is feasible to use the NN-based error 
correction model for real-time purposes. 
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Recently, a hybrid Convolutional Neural Network (CNN) with a Gated Re-
current Unit (GRU) model was proposed to predict flight trajectory based on 
ADS-B data [16]. According to the experimental results, the prediction error rate 
is improved considerably. Based on reference [17], the prediction of airplane po-
sitioning information, including latitude, longitude, and altitude, by various 
ADS-B messages is performed based on the deep learning model. The results 
show that all the positioning element prediction error rates are improved signif-
icantly compared to conventional approaches. However, these approaches are 
not examined for the correction of ADS-B data errors. 

3. Methodology and Solutions 

This section describes the data preparation process and ADS-B data features and 
explains the LSTM-based proposed model error correction and its implementation. 

Figure 1 illustrates an ADS-B receiver in terms of functional blocks. It con-
sists of a 1090 MHz RF front end, preamble detection, bit detection, parity check, 
and bit error correction functional blocks [18]. The output is an ADS-B message, 
which must be sent to a decoder to be transformed into real data. As mentioned 
earlier, the main goal is to improve the bit error correction block performance 
by applying the LSTM scheme. 

The proposed solution is classified into the following three major categories: 
• Data preparation; 
• LSTM cell and LSTM network architecture;  
• Implementation of LSTM algorithm for ADS-B error correction. 

3.1. Data Preparation 

The database used here consists of over 400 flight data items for various types of 
airplanes from flights performed in different locations, including North America 
and Europe. The database contains over 2000 hours of flight data. Figure 2 illu-
strates a sample flight in the USA. 

In the initial stage, data cleaning is done to remove blank data as well as out-
liers. The flight data were collected from the GPS of each airplane. The flight da-
ta include positioning and velocity information. ADS-B data is generated from 
the flight data according to ADS-B airborne data format and transmission rate. 
ADS-B data is generated almost every 250 milliseconds. The ADS-B positioning 
message (Latitude, Longitude, and Altitude), the velocity message (speed, head-
ing, and vertical rate), and the aircraft identity message are then generated. It is 
worth noting that the messages are generated based on the ADS-B airborne 
message transmission rate. Therefore, the positioning and velocity messages’  

 

 
Figure 1. ADS-B Receiver functional blocks. 
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Figure 2. Flight route sample from the dataset. 

 
generation rate is two messages per second, and the aircraft identity message 
generation rate is one message every 5 seconds [10]. In addition, the ICAO of 
each flight is generated randomly to maintain diversity. The ICAO data is 
created according to a 24-bit address format [10]. Other control information and 
CRC parity bits are generated according to their standard formats. After the 
generation of ADS-B messages, bit errors are applied to messages according to 
the following scenarios: 

1) Bit errors 5: errors made randomly in five bits among the 112 bits of ADS-B 
messages; 

2) Bit errors 10: errors made randomly in ten bits among the 112 bits of 
ADS-B messages; 

3) Bit errors 12: errors made randomly in twelve bits among the 112 bits of 
ADS-B messages; and 

4) Bit errors 15: errors made randomly in fifteen bits among the 112 bits of 
ADS-B messages. 

The generated dataset is split randomly into two parts, training and test data-
sets, via the Scikit-learn library function [19]. The training dataset is used to 
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train the proposed LSTM model and the test data set is deployed to evaluate the 
trained model performance. 

3.2. LSTM Cell and LSTM Network Architecture 

An LSTM cell is the basic building block of an LSTM network. It consists of sev-
eral components, including: 
• An input gate: Determines what proportion of the input to allow into the cell; 
• A forget gate: Defines how much of the previous cell state to forget; 
• An output gate: Decides how much of the cell state to output; 
• A cell state: Where the “memory” of the cell stores information over time; 
• A hidden state: Where the output of the cell is passed to the next cell in the 

sequence. 
Overall, an LSTM cell is designed to selectively store and retrieve information 

from the input and previous states, allowing it to capture long-term dependen-
cies in the sequence data. An LSTM cell is considered a major element of an 
LSTM network. 

As illustrated in Figure 3, a typical multilayer LSTM network architecture for 
serial data modeling is composed of numerous LSTM and fully connected (FC) 
layers. The input layer, two LSTM layers, two FC layers, and the output layer are 
all components of this LSTM architecture. Here, q1 and q2 represent the count 
of nodes for the two FC layers, whereas p1 and p2 represent the number of 
nodes (units) for the LSTM1 and LSTM2 layers, respectively. 

To create the necessary amount of output features, the LSTM layers are 
linked to the target output layer using the FC layers. As their name would imply, 
FC layers have complete connections to all of the activation nodes in the pre-
vious layer. This structure allows the network to capture complex patterns in the 
data. 

In general, LSTM models are a powerful tool for sequence prediction prob-
lems, as they can capture long-term dependencies in the data and handle varia-
ble-length sequences. However, training LSTMs can be computationally expen-
sive and may require considerable computational resources, especially for large 
datasets and deep networks. Additionally, it can be challenging to tune the 
hyperparameters of an LSTM network to achieve good performance, and over-
fitting can be a common problem. 

3.3. LSTM Model Implementation for ADS-B Error Correction 

This section describes the design and implementation of the LSTM model for 
ADS-B In error correction and offers a solution for how to utilize the model in 
ADS-B In technology. An ADS-B reception error correction system based on an 
LSTM model could involve using LSTM neural networks to analyze and correct 
errors in the data received from ADS-B transmitters. The LSTM model can be 
trained on a dataset of known, correct ADS-B transmissions and corresponding 
receiver errors, and then used to predict and correct errors in real time as new  
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Figure 3. A typical multilayer LSTM architecture. 

 
ADS-B data is received. This approach would improve the accuracy and reliabil-
ity of the ADS-B system. 

There are three types of messages in ADS-B airborne. The characteristics and 
features of each message as below: 
• Positioning message: the message consists of control bits, latitude, longitude, 

and altitude information. It broadcast every 0.5 second. With taking into 
consideration that the position information changes in real-time smoothly, 
these series of messages are highly correlated with each other. Therefore, po-
sitioning messages logs could provide prediction for possible next messages 
which can be useful for error correction. 
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• Velocity message: The message includes the aircraft’s ground speed, Heading 
and vertical rate, which provides information about the aircraft’s direction 
and speed of travel. It broadcasts every 0.5 second. In real operational envi-
ronment, the velocity information changes smoothly. They are considered as 
time series data which is highly correlated with each other. Thus, with having 
sequential data of velocity, it is possible to predict next data. As a result, these 
features can leverage the prediction of possible errors. 

• Aircraft identification message: The message includes a unique identifier for 
the aircraft, which allows for accurate tracking and identification of the air-
craft. The same message is emitted by ADS-B every 5 second. 

Overall, ADS-B messages provide series of data which broadcast according to 
transmission rate. Time series features and high correlation among the messages 
make ADS-B message to be predictable by LSTM model. 

Figure 4 illustrates ADS-B’s airborne major messages structure and related 
features. As indicated, MSG1 gives the positioning information, which consists 
of the downlink format and capability field (8 bits), the International Civil Avia-
tion Organization (ICAO) address (24 bits), the payload (56 bits), which con-
tains altitude, latitude, and longitude data, and a 24-bit cyclic redundancy check 
(CRC). The periodicity of the “even” and “odd” compact position reporting 
(CPR) messages is 0.5 seconds. MSG1’s format and ID fields are the same for all 
messages, while the payload and CRC fields change according to the positioning 
information and maintain a considerable correlation with previous messages. 
MSG2 offers velocity information, which contains the downlink format and ca-
pability field (8 bits), the ICAO address (24 bits), the payload (56 bits), which in-
cludes the speed, heading and vertical rate, and a 24-bit CRC. MSG2 periodicity 
is two messages per second. 

MSG2’s first 32 bits of data are repeated for every message, whereas the payl-
oad and CRC bits are gradually modified based on the velocity data. Therefore, 
every message is highly correlated with previous messages. MSG3 indicates air-
craft identification information; it contains the downlink format and capability 
field (8 bits), the ICAO address (24 bits), the payload (56 bits) which includes 
the aircraft category and identification (8 characters), and a 24-bit CRC. The  

 

 
Figure 4. ADS-B’s Airborne major messages structure and features. 
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MSG3 message data is always consistent and is repeated every 5 seconds. 
ADS-B messages are considered as time series data. Given that the complexity 

of a time series makes time series prediction challenging, it is not possible to 
formulate ADS-B data prediction. Considering all the above-mentioned features 
and specifications of ADS-B messages, neural network models, specifically LSTM 
models, can help an ADS-B receiver system to correct a possible error. 

Figure 5 illustrates the LSTM-based ADS-B message error correction struc-
ture and signal processing procedure. 

In the initial stage, ADS-B reception detects the ADS-B bust of a signal with-
out applying any error detection and correction. ADS-B’s bust of the messages 
are categorized based on ICAO matching and correlation, and then placed in 
buffers whose size should be a multiplication of 5 seconds duration messages. 
Therefore, the buffer size should be a multiplication of 21 messages that consist 
of 10 successive positioning messages, 10 sequential velocity messages, and one 
aircraft identification message. It is worth noting that the longer the buffer size 
(or window size), the better the performance of the LSTM model. However, such 
a longer size leads to an increase in the processing time as well as CPU load. 
Upon completion of each buffer, the newest message’s CRC error will be eva-
luated. If there is no CRC error, then the oldest message will be sent to the 
ADS-B decoding block for further decoding and displaying. If an error is de-
tected, the whole buffer data including the error data are injected into the 
LSTM-trained model. The function of the LSTM-trained model is to estimate 
and correct possible errors. The output of the LSTM model is evaluated in terms  

 

 
Figure 5. LSTM-based ADS-B message error correction architecture. 
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of the CRC error check. If an error is corrected, then the bust of the message will 
be sent to ADS-B decoding block for further processing. It is also expected that 
the trained model will reduce the number of error bits in comparison to the in-
put data. If there is an error in the message after the LSTM output, the brute 
force or conservative error correction algorithms can be applied make the mes-
sage free of errors. 

The proposed LSTM model is not dependent on the confidence level factor. 
However, legacy algorithms such as the conservative and brute force approaches 
are dependent on the confidence declaration of each message’s bits during the 
bit detection phase. 

4. Experimental Results and Discussion 

After outliers and inconsistences were removed, the dataset contained over 2000 
hours of clean flight data. LSTM networks are mainly used for the prediction of 
data series, which follow patterns. In ADS-B messages, ADS-B positioning mes-
sages are a series of aircraft coordinate information that indicate an aircraft’s 
trajectory. Similarly, ADS-B velocity messages contain sequences of data that 
reveal horizontal and vertical speeds and heading information. Therefore, serial 
correlation is extracted from a complete dataset to measure the correlation be-
tween consecutive messages. Table 1 gives the serial correlation mean values for 
three major airborne messages for the whole database, which show that the 
messages are highly correlated with each other. 

Figure 6 illustrates the flow of actions for the implementation of ADS-B error 
correction based on the LSTM model. The following five steps (in blocks on the 
left side of Figure 6) must be executed in sequence: 

1) Target data preparation: The input data has to be transformed into ADS-B 
Out format according to each type of message transmission rate. These data are 
considered as the LSTM model target values, as they are free of error. Since the 
LSTM model works with time-series data, the sequences of these data need to be 
maintained. 

2) Input data preparation: Various types of error must be applied randomly 
for the whole dataset that is generated in step 1. Therefore, the input data of the 
LSTM model contains various types of errors. 

3) Training and test datasets’ classification: Target and input data is divided 
randomly into training and test sets in a ratio of 70 and 30 percent, respectively. 

4) Train the model: The proposed model is trained according to the training 
dataset’s input and target data. The Adam optimizer and the root mean squared 
error (RMSE) loss function are deployed during the training phase. Using the  

 
Table 1. Serial Correlation of airborne messages. 

Serial Correlation 

Message Type Positioning message Velocity message Aircraft Identification message 

mean value 0.666 0.845 1 
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Figure 6. ADS-B error correction with LSTM implementation flow graph. 

 
training data, the model is trained by calling the fit method and providing the 
training data and target values. During training, the model adjusts its weights to 
minimize the loss function. 

5) Performance evaluations: After training, the model’s performance must be 
assessed on both training and test data. This is done by calling the evaluate me-
thod and providing the input data and the target values. The outcome provides 
an estimate of the model’s generalization performance, which determines 
whether a model is overfitted or underfitted. 

The loss value produced by the LSTM model during training represents the 
difference between the predicted outputs and the true outputs. The smaller the 
loss, the closer the predictions are to the true values. The trained dataset is split 
into 90 and 10 percent for training and validation sets to avoid the overfitting 
phenomena. Figure 7 reveals the losses of training and validation data sets for 18 
epochs. As the trends demonstrate, both the losses’ values converge as more 
epochs are run. Additionally, the deployment of an early stopping function pre-
vents the trained model from the overfitting phenomenon. 

In addition to the loss metric, the packet error correction rate (PECR) is also 
used to measure the model performance. A measure of the ability of the trained 
LSTM model to correct errors in packets of data, it represents the proportion of 
packets that have been corrected by the LSTM model compared to the total 
number of packets that have errors. Figure 8 shows the model performance in 
training and test datasets in various scenarios. To be more specific, Figure 8(a) 
indicates the PECR for packets that have 5 bits of error. The PECR values at axis  
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Figure 7. Trend of trained model loss and validation loss. 

 

 
Figure 8. Packet error correction rate of training and test datasets for various test cases. 

 
“0” reveal that about 94 and 85 percent of the corrupted packets in the training 
and test datasets are corrected without any bit error, respectively. Similarly, the 
PECR value at axis “1” demonstrates that about 4 and 10 percent of the training 
and test datasets bit errors, respectively, are reduced from 5-bit errors to 1-bit 
errors. Figures 8(b)-(d) demonstrate the model performance for 10-, 12-, and 
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15-bit error messages respectively. Figure 8(d), the worst case, with a high 
number of bit errors and testing sets, shows that the trained model is able to 
correct over 60 percent of the packets with errors. In addition, over 92 percent of 
the test dataset packets fall below 5 bits of error, which makes it possible to cor-
rect them with the brute force algorithm. Overall, the trained model perfor-
mance is quite promising. It can improve ADS-B In performance and sensitivity 
in high interference situations as well as low SNR conditions. 

Moreover, a detailed investigation was performed on bit error distributions 
and their correction. Figure 9 shows the error counts for each bit over a 112-bit 
span before and after correction. It reveals that errors are distributed randomly 
over the 112-bit span. As explained earlier in the section on serial correlation 
and ADS-B data specification, the error correction performs better on bits of 
over 1 to 60 and 72 to 81 segments which contain control and message type data 
as well as ICAO information, but the error correction is not as good as the first 
bits in the payload field. This is because the payload field, including the CRC 
data, is varying in relation to the real data. However, the bit error correction rate 
is still over 73% for the worst cases, which is quite promising. 

Due to the nature of radio signal transmission, errors often occur in the data 
transmitted via ADS-B. These errors can affect the accuracy of the aircraft’s po-
sition and other information, such as altitude and velocity, and are caused by a 
variety of factors, such as multipath, interference, and atmospheric conditions. 
The CRC technique adds a check value to the transmitted data that can be used 
to detect errors at the receiver. The primary goal of this research is to propose a 
novel mechanism to improve error correction and enhance ADS-B In sensitivity. 

ADS-B messages are considered time series data due to their statistical fea-
tures like serial correlation. Time series prediction is a challenging problem in  

 

 
Figure 9. Error distribution and error correction rate before and after correction over the 112-bit span. 
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the field of machine learning due to its temporal dependencies and non-stationary 
nature. LSTM networks have been shown to be effective in addressing some of 
these challenges. LSTMs are able to capture and retain important information 
from the past and use it to make predictions or error corrections, making them 
well-suited for time series prediction. Additionally, LSTMs can handle mul-
ti-step forecasting by making predictions one time step at a time, and they can 
also handle multivariate time series data by using multiple parallel memory cells. 
However, careful feature extraction and parameter tuning are still necessary to 
achieve good performance on time series prediction tasks with LSTMs. 

In the context of ADS-B error correction, the Brute force and Conservative 
approaches refer to two different strategies for correcting errors in the received 
data. In the Brute force approach, the receiver uses all available information to 
correct errors in the received data, regardless of the amount of processing re-
quired. This approach is more computationally intensive but can provide higher 
error correction performance by exploiting all the available information. In the 
Conservative approach, the receiver only uses a subset of the available informa-
tion to correct errors in the received data, thereby reducing the processing re-
quirements and the computational complexity. While this approach may result 
in lower error correction performance, nonetheless, it is typically more suitable 
for real-time applications where computational resources are limited. The choice 
between a brute force and a conservative approach depends on the specific re-
quirements of the ADS-B system, such as the error rate, the transmission rate, 
and the available computational resources. In some cases, a hybrid approach that 
uses elements of both approaches may be used to achieve a balance between er-
ror correction performance and computational complexity. In addition, both 
approaches are dependent upon confidence bit declaration, the number of error 
bits, and the error distribution window. Thus, if these conditions are not met, 
the error correction will fail and the message will be discarded. 

In contrast, the proposed LSTM-based error correction solution is not re-
stricted to the number of error bits or an error distribution window, nor does it 
depend upon a confidence bit declaration. After the training phase, the model 
can be utilized in real-time applications, as it can process and correct thousands 
of packet errors in less than one second which is quite sufficient for real-time 
usage. In addition, computational load and the complexity are far less than those 
of the brute force approach. Thus, implementation of the LSTM-based error 
correction model not only improves error correction performance, it also reduc-
es computational load and processing time. 

Root Mean Squared Error (RMSE) criteria are used for the measurement of 
loss during the training phase. The smaller the loss, the better the model is 
trained. However, it is important to note that a low loss value does not necessar-
ily mean that the model has good performance. The model may be overfitting to 
the training data, meaning that it has memorized the training examples but 
cannot generalize well to new examples. In this case, the model would perform 
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well on the training data but poorly on the test data. In addition, to determine 
whether a model is overfitted to the data, the model’s performance is evaluated 
on a separate validation set, which is a portion of the data that the model has not 
seen during training. The loss value on the validation set can provide an estimate 
of the model’s generalization performance. Furthermore, early stopping is a 
technique to prevent overfitting in machine learning. In the case of LSTMs, early 
stopping is implemented by monitoring the performance of the model on a va-
lidation set during training. If the performance on the validation set stops im-
proving or starts to degrade, this is taken as an indication that the model has 
started to overfit and so the training should be stopped [20]. 

ADS-B In sensitivity refers to the ability of a receiver to detect ADS-B out 
signals with high accuracy [10]. The sensitivity of an ADS-B In receiver is di-
rectly impacted by low SNR, particularly at long ranges or in challenging envi-
ronments, such as when there are high levels of interference or overlapping. Er-
ror correction is an important aspect of ADS-B In systems, as it helps to ensure 
the accuracy of the data received from aircraft. Overall, the performance and 
accuracy of ADS-B receivers are dependent on both the sensitivity of the receiver 
and the effectiveness of the error correction techniques used. Taking advantage 
of the proposed LSTM model can help to achieve sensitivity requirements and 
improve effectiveness. 

5. Conclusions 

Error correction plays a pivotal role in ADS-B receiver performance and is key 
to meeting sensitivity requirements. Although a few algorithms, including the 
brute force and conservative approaches, have been proposed for performing 
error correction, they have the limitations of requiring a bit error distribution 
window, a limited number of error bits, and a confidence level declaration. The 
novel proposed error correction model, the LSTM model, performs without any 
restrictions in real-time cases and with less computational load. In contrast to 
legacy solutions, LSTM-based model accuracy for packets with over 12 bits of 
error is over 60%, while these sorts of packages are simply discarded in legacy 
algorithms. Additionally, the LSTM-based error correction model is quite com-
patible with SDR-based ADS-B receivers and it can enhance the performance of 
ADS-B In, enabling it to detect more sensitive data [9]. 

The proposed model is designed based on ADS-B’s various messages’ features 
and their transmission periods. In addition, data cleaning and the removing of 
outliers are done during the data preparation period. The model is trained based 
on the training dataset and cross-validation and early stopping techniques are 
deployed to avoid the overfitting phenomenon. The model has been evaluated 
for various test datasets with different numbers of error bits, and the results are 
quite promising. 

It is essential to have a sufficient amount of training data to adequately learn 
the patterns in data. Although the dataset contains over 2000 hours of flight da-
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ta, providing more data and flight information from every part of the world and 
for different types of aircraft will add more patterns to the model for training. 

Whole datasets including Training and test sets are limited to 2000 hours 
flight data in north America. Exposing the system to new data from other area of 
the world may lead to degradation of the system performance. Feeding the sys-
tem with variety of data can cause to have more robust trained system. 

Bi-LSTM (Bidirectional Long Short-Term Memory) and LSTM are both types 
of recurrent neural networks that are commonly used for modeling sequential 
data. While they share many similarities, there are also some key differences 
between Bi-LSTMs and LSTMs. It’s important to note that the effectiveness of 
the Bi-LSTM for error correction depends on the quality and size of the training 
data, as well as the specific error correction task being performed. The main dif-
ference between the two is that Bi-LSTM processes the input sequence in both 
forward and backward directions, whereas LSTM processes the input sequence 
only in the forward direction. This means that Bi-LSTM can capture both past 
and future dependencies in the input sequence, whereas LSTM can only capture 
past dependencies. 

Applying Bi-LSTM model offers error correction based on past and future 
data. It is expected to improve the model performance; however the Bi-LSTM 
model implementation is more complex than LSTM model. 

The proposed model offers a solution for high interference conditions and low 
SNR situations, such as high-range aircraft signal detection, as well as a space-based 
ADS-B signal identification which requires more sensitivity. 
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