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Abstract 
The polar codes defined by the kernel matrix are a class of codes with low cod-
ing-decoding complexity and can achieve the Shannon limit. In this paper, a 
novel method to construct the 2n-dimensional kernel matrix is proposed, that is 
based on primitive BCH codes that make use of the interception, the direct sum 
and adding a row and a column. For ensuring polarization of the kernel matrix, 
a solution is also put forward when the partial distances of the constructed ker-
nel matrix exceed their upper bound. And the lower bound of exponent of the 
2n-dimensional kernel matrix is obtained. The lower bound of exponent of our 
constructed kernel matrix is tighter than Gilbert-Varshamov (G-V) type, and 
the scaling exponent is better in the case of 16-dimensional. 
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1. Introduction 

Polar codes can achieve the Shannon limit for binary-input discrete memoryless 
channels (BI-DMC) in theory and with low encoding and decoding complexity  

[1]. Polar codes employ the n-th Kronecker power of the matrix 2

1 0
1 1

G  
=  
 

  

to encode 2n  channels, where 2G  is called the polarizing matrix or kernel 
matrix. As the number of channels grows, sub-channel becomes either a noise-
less channel or a pure-noise channel, the proportion of the noiseless channels is 
close to the original channel capacity, and the noiseless channels transmit the 
information bits without error. 

The kernel matrix is an important part of polar codes, which determines the 
polarization property of polar codes. The kernel matrix 2G  is also called 2-di- 
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mensional kernel matrix, there are other kernel matrices, and different kernel 
matrices will have different polarization effects. In order to improve the polari-
zation of the polarization code, many researchers have done a lot of research on 
the kernel matrix. 

There are two extended research directions for the construction of the kernel 
matrix, one is to expand the field of the kernel matrix, the other is to increase the 
dimension of the kernel matrix. Generally speaking, the larger the field or the 
higher the dimension of the kernel matrix, the better the polarization effect of 
the polar codes. Şaşoğlu et al. [2] [3] [4] generalized the polar code to any dis-
crete memoryless channel and q-ary field, which expanded the field of the kernel 
matrix. Korada [5] proposed to construct a ( )2 1n − -dimensional kernel matrix 
with BCH codes, which increased the dimension of kernel matrix. E. Moskovs-
kaya et al. [6], based on [5] [7], put forward a method to construct a 2n -di- 
mensional kernel matrix with extended BCH codes, which further increased the 
dimension of kernel matrix. E. Moskovskaya et al. stacked the matrix blocks to 
construct a ( )2 2 1n n× −  matrix, and then added a column of parity bits to con-
struct a 2n -dimensional kernel matrix. Although the 2n -dimensional kernel 
matrix had a higher dimension and exponent, it did not consider the problem of 
partial distance’s upper bound. 

Therefore, based on [5] [6], we take advantage of the primitive BCH codes to 
design a higher-dimensional kernel matrix which meets the upper bound of par-
tial distance. Compared with the work in [5], the proposed construction enjoys 
two advantages, one is that the kernel matrix has a higher dimension, and the 
other is that the obtained kernel matrix is naturally lower triangular, guarantee-
ing the polarization property of kernel matrix. And compared with the work in 
[6], a solution is given to adjust these rows whose partial distances are beyond 
their upper bounds. The comparison result shows that the proposed 2n -dimen- 
sional kernel matrix has a tighter lower bound of the exponent than the Gilbert- 
Varshamov (G-V) type construction in [5], the scaling exponent is not very differ-
ent from [6], and 16-dimensional kernel matrix is even slightly better than [6]. 

2. Preliminaries 

This section reviews the knowledge of primitive BCH codes and background of 
polar codes, including the polarization condition, the scaling exponent, the par-
tial distance, and the exponent. 

2.1. Primitive BCH Codes 

Definition 1 (Primitive BCH Codes [8]). Let α  be the primitive element, and 
( )g x  be the lowest degree polynomial with 2 2, , , tα α α  as the roots in finite 

field ( )2GF . The code generated by ( )g x  is called a primitive BCH code, 
denoted as ( ), ,BCH N k t . It has a code length 2 1nN = − , encodes k symbols 
and corrects at most t errors. 

For example, if α  is the primitive element of polynomial ( ) 4 1g x x x= + + , 
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the finite field ( )42GF  can be generated by ( )g x , the minimum polynomial 
of all elements can be obtained as follows: 

( )2 4 8 4
1, , , 1x x xα α α α φ− − − + + = .                (1) 

( )3 6 9 12 4 3 2
3, , , 1x x x x xα α α α φ− − − + + + + = .           (2) 

( )5 10 2
5, 1x x xα α φ− − − + + = .                  (3) 

7 11 13 14 4 3, , , 1x xα α α α − − − + + .                 (4) 

If 1t =  and 15n = , then the generator polynomial of ( )15,11,1BCH  is 

( ) ( ) 4
1 1g x x x xφ= = + + .                    (5) 

If 2t =  and 15n = , then the generator polynomial of ( )15,7,2BCH  is 

( ) ( ) ( )( )
( )( )

1 3

4 4 3 2

8 7 6 4

,

1 1

1.

g x LCM x x

x x x x x x

x x x x

φ φ=

= + + + + + +

= + + + +

               (6) 

where ( )LCM ⋅  denotes the Least Common Multiple of its inputs. 
If 3t =  and 15n = , then the generator polynomial of ( )15,5,3BCH  is 

( ) ( ) ( ) ( )( ) 10 8 5 4 2
1 3 5, , 1g x LCM x x x x x x x x xφ φ φ= = + + + + + + .    (7) 

Lemma 1 (Minimum Distance [8]). For any positive integer ( )1, 3, 2nn t n t −≥ ≤ , 
if there is a cyclic code of length 2 1n − , the number of parity bits is N k nt− ≤ , 
and the minimum distance min 2 1d t≥ + . 

2.2. The Performance and Property of Polar Code 

Polar code can produce polarization phenomena, which can polarize channel 
into pure noise channel or noise-free channel. These matrices that can produce 
polarization phenomena are polarization matrices, and the kernel matrix actual-
ly is a polarization matrix. Given a l l×  matrix lG , the necessary and sufficient 
condition for judging whether it is a polarization matrix is that the matrix is 
non-singular, and the upper triangular matrix is not formed after any column 
transformation [3]. Therefore, kernel matrix lG  is non-singular, and lG  also 
can be called l-dimensional kernel matrix. 

The polar code polarizes the sub-channels capacity ( )I W  to 0 or 1, but there 
are some sub-channels whose channel capacity is between 0 and 1, these sub- 
channels are called unpolarized channels. The speed of unpolarized channel’s 
channel capacity tends to 1 is called the polarization speed. Fazeli et al. [9] [10] 
applied the scaling exponent to measure the polarization speed of polar code. 
The scaling exponent was proposed on the basis of the scaling assumption. The 
definition of the scaling assumption is as follows: 

Definition 2 (scaling assumption [11]). Given a kernel matrix lG  and binary 
discrete memoryless channel W, there exists 

( )
1number of unpolarized channelslim 0,

number of total channelsn
N µ

→∞
∈ +∞ .          (8) 
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where µ  denotes the scaling exponent, and ( )2 2lN l= ≥  denotes the length 
of polar code. 

The optimal value of scaling exponent is 2, the closer the scaling exponent of 
kernel matrix is to 2, the better the polarization effect. Most of the scaling expo-
nents of kernel matrices are between 3 and 5, but Yao et al. [12] proved that 
when the dimension of kernel matrix is 64, the scaling exponent can be less than 
2.9603. The scaling exponent can be calculated by 

( )1N C Rµ β− = ,                       (9) 

where ( )30.011 2 ePβ −= + , ,ep R  and C denote block error rate, ratio and chan-
nel capacity [9], respectively. 

The exponent is also an index to measure the speed of polarization. The value 
of the exponent is between 0 and 1. The larger the exponent, the better the pola-
rization of polar code. The exponent is determined by the partial distance se-
quence, which is defined as follows: 

Definition 3 (partial distance [5]). For the kernel matrix 
TT T T

1 2, , ,l lG g g g =   , 
its i-th partial distance iD  is 

( )1, , , , 1, 2, , 1i H i i lD d g g g i l+= = −  ,             (10) 

( ),l H lD d g= 0 .                       (11) 

where ( )1,2, ,ig i l=   denotes the row vector of length l, ( ),Hd a b  denotes the 
Hamming distance of the vector a and b, ( ) ( ), min ,H c C Hd a C d a c∈= ,  

1, , kg g  denotes the linear space generated by 1, , kg g , 0 denotes the zero 
vector of length l. 

According to the partial distance sequence, the definition of the exponent is as 
follows: 

Definition 4 (exponent [5]). The exponent of kernel matrix lG  is defined as 

( )
1

1 log i
l

D
l l

i
E G

l =

= ∑ .                     (12) 

In this paper, all operations on matrix elements are XOR on ( )2GF , i.e., 
( )1 0 1mod 2 1+ = = , ( )1 1 2mod 2 0+ = = . 

The size of the square matrix in this paper is described by the concept of order and 
dimension. For example, a 3*3 matrix can be expressed as a 3-dimensional matrix or 
a 3-order matrix in this paper. The 3-dimensional matrix indicates that the matrix is 
non-singular, and the 3-order matrix only indicates the size of the matrix. 

3. The Construction of 2n-Dimensional Kernel Matrix 

In this section, we employ the classification formula to construct a ( )2 1n − -order 
matrix, adding a column vector and a row vector of all 1s before the first column 
and below the last row of the ( )2 1n − -order matrix, and the 2n -dimensional 
kernel matrix can be obtained. 

3.1. The Construction of the ( )n2 1− -Order Matrix 

Definition 5 (Classification Formula [13]). According to the classification for-
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mula of cyclotomic coset, the integer set { }0,1, , 2 1n −  is classified as 

( ){ } ( )2 2

0 1
2 mod 2 1 :

n ck n
i j

S i k N v j−

= =
= ⋅ − ∈ =
 

.         (13) 

where ( )v i  denotes the elements in the i-th partitioned set with ( )1i i c≤ ≤ , 
and c denotes the number of cyclotomic cosets in S. 

According to the Definition 5, we can obtain the following theorem 1: 
Theorem 1. Let ( )l i  denotes the number of elements in ( )v i , and  
( )1 1l = , ( ) ( )2 3l l n= =  can be obtained. 
Proof. ( ) ( ){ } { }1 0 2 mod 2 1 , 0k nv k N= ⋅ − ∈ = ,  
( ) ( ){ }2 1 2 mod 2 1 ,k nv k N= ⋅ − ∈ , ( ) ( ){ }3 3 2 mod 2 1 ,k nv k N= ⋅ − ∈  can be  

known from Equation (13), therefore ( )1 1l = . for ( )2v , when k n= ,  

( ) ( )02 1 1 1 2 mod 2 1n n− = = ⋅ − , therefore ( ) { }12 1,2,4, , 2nv −=   and ( )2l n= . 
Similarly, ( ) { }13 3,6,12, ,3 2nv −= ⋅  and ( )3l n=  can be obtained. 

For example, 4n =  and { } { } { } { }{ }0,1, ,14 0 , 1, 2, 4,8 , 3,6,9,12S = = ,  
therefore, 5c = , ( )1 1l = , ( ) ( )2 3 4l l= = , ( )4 2l = , ( )5 4l = , ( ) { }1 0v = ,  
( ) { }2 1,2,4,8v = , ( ) { }3 3,6,9,12v = , ( ) { }4 5,10v = , ( ) { }5 7,11,13,14v = . 
According to the classification formula (13), we use c different sub-matrices to 

construct a ( )2 1n − -order matrix by stacking the matrix blocks from top to 
bottom. The specific construction process is as follows: 

1) The first layer sub-matrix is a zero matrix of dimension ( )1l . 
2) The second layer sub-matrix is a unit matrix with dimension ( )2l . 
3) The third layer sub-matrix is intercepting from the generator matrix of the 

primitive BCH code with dimension ( )3l  and 1 error correction capability. 
The interception criterion is that the rows of intercepted matrix are continuous, 
and the intercepted matrix can form a sub-lower triangular matrix with the pre-
vious two layers. 

4) If 3c > , looking for other generating matrices of the primitive BCH codes 
with length ( )2 1n −  and error correction capability ( )2,3, , 2t t c= −  in turn, 
then intercepting the matrix according to the ( )( )4,5, ,l i i c=   and intercep-
tion criterion. 

The above construction of the ( )2 1n − -order matrix is summarized in Figure 1. 

3.2. A Row and Column Addition 

Through adding a column and a row vector of all 1s before the first column and 
below the last row of the ( )2 1n − -order matrix, the 2n -dimensional kernel 
matrix is obtained. The 2n -dimensional kernel matrix is a lower triangular ma-
trix, which guarantees the polarization. 

For example, in order to construct the 16-dimensional matrix, the 15-order 
matrix should be constructed firstly. When 4, 1n t= = , the generator polynomial 
of the primitive BCH code is Equation(5), and 5c = , ( )1 1l = ,  
( ) ( )2 3 4l l= = , ( )4 2l = , ( )5 4l = . 
15-order matrix can be constructed with 5 layers sub-matrices, and the di-

mension of theses sub-matrices are 1, 4, 4, 2 and 4, and the construction of the  

https://doi.org/10.4236/cn.2022.141003


L. P. Lin 
 

 

DOI: 10.4236/cn.2022.141003 28 Communications and Network 
 

 

Figure 1. The construction of ( )2 1n − -order matrix. 

 
16-dimensional kernel matrix is as follows: 

1

0
1 0 0 0 0

0 0 1 0 0 0
1 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 1 1 0 0 1 0 0 0 0
0 0 0 1 0 0 1 1 0 0 1 0 0 0

0 0 1 1 0 0 1 0 0
0 0 0 1 1 0 0 1 0

t=

 
 
 
  
  
  
  →
  
  
  

   
 
 
   

2

0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 1 0 0 1 0 0 0 0
0 1 1 0 0 1 0 0 0
0 0 1 1 0 0 1 0 0
0 0 0 1 1 0 0 1 0
1 0 0 0 1 0 1 1 1 0 0
0 1 0 0 0 1 0 1 1 1 0

t=

 
 
 
 
 
 
 
 

→ 
 
 
 
 
 
 
  
   
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3

0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0 1 0 0 0
0 1 1 0 0 1 0 0
0 0 1 1 0 0 1 0
0 0 0 1 1 0 0 1
1 0 0 0 1 0 1 1 1 0
0 1 0 0 0 1 0 1 1 1
1 1 1 0 1 1 0 0 1 0 1 0 0 0 0
0 1 1 1 0 1 1 0 0 1 0 1 0 0 0
0 0 1 1 1 0 1 1 0 0 1 0 1 0 0
0 0 0 1 1 1 0 1 1 0 0 1 0 1 0

t=

 
 
 
 
 
 
 
 
 
 → 
 
 
 
 
 
 
 
 
 
 

 

a row and column addition

1 0
1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1
1 1 1 0 0 1 0 0 0
1 0 1 1 0 0 1 0 0
1 0 0 1 1 0 0 1 0
1 0 0 0 1 1 0 0 1
1 1 0 0 0 1 0 1 1 1 0
1 0 1 0 0 0 1 0 1 1 1
1 1 1 1 0 1 1 0 0 1 0 1 0 0 0 0
1 0 1 1 1 0 1 1 0 0 1 0 1 0 0 0
1 0 0 1 1 1 0 1 1 0 0 1 0 1 0 0
1 0 0 0 1 1 1 0 1 1 0 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1







→









 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Filling 0 in the remaining blank positions, and 16-dimension kernel matrix 
can be obtained. 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0
1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0
1 0 1 0 0 0 1 0 1 1 1 0 0 0 0 0
1 1 1 1 0 1 1 0 0 1 0 1 0 0 0 0
1 0 1 1 1 0 1 1 0 0 1 0 1 0 0 0
1 0 0 1 1 1 0 1 1 0 0 1 0 1 0 0
1 0 0 0 1 1 1 0 1 1 0 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

.      (14) 
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3.3. The Analysis of Construction 

From Lemma 1, ( )minN k n− =  and the lowest degree of the generator poly-
nomial ( )( )min

g x n∂ =  can be obtained. If α  is the primitive of ( )g x , then 
( )2nGF  is the n-th extension of ( )2GF  and ( )2nGFβ∀ ∈ ,  

2 1
0 1 2 1

n
na a a aβ α α α −
−= + + + + , ( 0 1 2, , na a F− ∈ ) [14]. Because  

( ) ( ) { }2 1 2 0n nGF GF− = , the element in ( )2 1nGF −  also can be expressed 
linearly by 2 11, , , , nα α α −

 . If the above process is extended to the matrix, a 
similar conclusion can be obtained. 

Marking 2 2 10,1, , , ,
n

α α α −
  above each column of the 2n -dimensional kernel 

matrix, and the construction analysis of the ( )2 1n − -order matrix is as follows: 
1) For the first layer sub-matrix, ( )1 1l =  and the field is ( )2GF , therefore 

the first sub-matrix is zero matrix. 
2) For the second layer sub-matrix, ( )2l n=  can be obtained from Theorem 

2, therefore, the second sub-matrix is a unit matrix, and row vectors correspond 
to 2 11, , , , nα α α −

 . 
3) For the i-th layer sub-matrix, 3 i c≤ ≤ . Because the i-th sub-matrix is 

composed of primitive BCH code, it is connected by the generator polynomial 
( )g x , and ( ) 0g α = , the column indicators corresponding to non-zero ele-

ments add up to 0. 
4) For the 2n -dimensional kernel matrix. Because the 2n -dimensional ker-

nel matrix is a lower triangular matrix and the first column’s indicator is marked 
as 0, the column indicators corresponding to the diagonal elements are the sum 
of the non-zero element before the diagonal elements 

Therefore, the diagonal elements of 2n -dimensional kernel matrix can be ex-
pressed linearly by 2 11, , , , nα α α −

 , The sub-diagonal elements of ( )2 1n −
-order matrix are equivalent to ( )2 1nGF − , and the diagonal elements of 2n

-dimensional matrix are equivalent to ( )2nGF . 
For example, the 7-th row vector in Equation (14), Since the 16-dimensional 

kernel matrix is a lower triangular matrix, only the elements before the diagonal  

are listed, it is 
( )

2 3 4 50 1
1 0 1 1 0 0 1

α α α α α
, ( ) 4 1 0g α α α= + + = , and 4 1α α= + , 

therefore, 5 2α α α= +  or 2 5 0α α α+ + =  can be obtained. 

4. The Partial Distance and Exponent 
4.1. The Upper of Partial Distance 

Equation (10) can infer 

( ) ( ) [ ]1 min max, , , min , , , 1i H i i l j i lj i
D d g g g D d g g d l l i+ ≥

= = = ≤ − +  . (15) 

where ( )min ,d a b  denotes the minimum distance for generating codeword from 
vector a and b, [ ]max , ,1d l k k l≤ ≤  denotes the maximum minimum Hamming 
distance attained by a code of length l and size k [15]. 

Therefore, the partial distance of kernel matrix cannot exceed its upper bound. 
Because [5] constructed a ( )2 1n − -dimensional kernel matrix from bottom to 
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top according to the definition of partial distance, the ( )2 1n − -dimensional ker-
nel matrix in [5] met the upper bound of partial distance. [6] also used a similar 
method to construct a matrix, but [6] obtained a ( )2 2 1n n× −  matrix, not a 
( )2 1n − -dimensional kernel matrix. Through adding a column of parity bits, [6] 
obtained a 2n -dimensional kernel matrix, but the added column vector would 
affect the partial distance, and which may cause the partial distance exceeded its 
upper bound. When 2532, 14l D= = , for example, 25D  exceeds its upper bound 
13 [15]. 

We take the opposite approach, through constructing ( )2 1n − -order matrix 
from top to bottom, and then adds a column vector and a row vector of all 1 s 
before the first column and below the last row of the ( )2 1n − -order matrix, and 
the 2n -dimensional kernel matrix can be obtained. Therefore, we only need to 
analyze the partial distance of ( )2 1n − -order matrix. The Definition of partial 
distance is proposed for the kernel matrix, but it can be applied to other square 
matrices, In order to analyze the partial distance of the 2n -dimensional kernel 
matrix, We use the definition of partial distance to analyze the ( )2 1n − -order 
matrix. because according to the Definition 3, the first column of 2n -dimen- 
sional matrix is all 1, and it will not affect the partial distance. The 2n -dimen- 
sional kernel matrix can meet its partial distance by appropriately adjusting the 
( )2 1n − -order matrix, the specific adjustment process is as follows: 

1) If iD  exceeds its upper bound, adjusting the codeword in the i-th row to 
the ( )1i − -th row by shifting one bit to the right. 

2) If iD  still exceeds its upper bound after a right cyclic shift., both the i-th 
row and the ( )1i − -th row are adjusted to the right cyclic shift of the ( )2i − -th 
row. this cycle continues until iD  meets its upper bound. 

This method can not only ensure that the ( )2 1n − -order matrix is composed 
of the primitive BCH codes, but also can ensure that it is still a sub-lower trian-
gular matrix, thereby ensuring the polarization of the 2n -dimensional kernel 
matrix. The process is demonstrated in Figure 2. 

 

 
Figure 2. Adjust the row exceeds the upper bound of the partial distance. 
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Through the above adjustment method, the 32-dimensional kernel matrix can 
be obtained as follows: 

32

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0

G =

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 1 1 0 1 1 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0
1 1 1 1 0 0 1 0 0 0 1 0 1 0 1 1 1 1 0 1 1 0 0 1 0 1 1 0 0 0 0 0
1 0 1 1 1 0 0 1 0 0 0 1 0 1 0 1 1 1 1 0 1 1 0 0 1 0 1 1 0 0 0 0
1 0 0 1 1 1 0 0 1 0 0 0 1 0 1 0 1 1 1 1 0 1 1 0 0 1 0 1 1 0 0 0
1 0 0 0 1 1 1 0 0 1 0 0 0 1 0 1 0 1 1 1 1 0 1 1 0 0 1 0 1 1 0 0
1 0 0 0 0 1 1 1 0 0 1 0 0 0 1 0 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 0 1 1 0 0 1 0 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

 (16) 

4.2. The Lower Bound of Exponent 

Definition 6 (Direct-Sum). Let 1C  be a [ ]1 1, , qn k d  linear code, 2C  be a  
[ ]2 2, , qn k d  linear code, and { }1 2 0C C = , if { }1 2 1 2| ,C C x y x C y C⊕ = + ∈ ∈ , 
then 1 2C C⊕  is called the direct-sum of 1C  and 2C . 

The construction of the ( )2 1n − -order matrix is direct-sum construction. 
Therefore, the relevant properties of the direct-sum construction can be used to 
analyze the partial distance of the 2n -dimensional kernel matrix. The minimum 
distance of direct-sum has the following relationship: 
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Lemma 2 (Minimum distance [16]). The minimum distance of 1 2C C⊕  is d. 
where 

{ }1 2min ,d d d≤ . 

Theorem 2. If the i-th row vector belongs to the j-th layer, then 2 3iD j≥ − . 
Proof. From Lemma 2 and Definition 3, iD  is only related to the layer where 

it belongs with and has nothing to do with the subsequent layers. Because the 
j-th layer is capable of correcting 2j −  errors, ( )2 2 1 2 3iD j j≥ − + = −  can 
be obtained. 

Remark. The primitive BCH codes with different error correction capabilities 
may have the same generator polynomial. For example, when constructing a 
31-order matrix, the generator polynomials of 5t =  and 6t =  are same, so 
the 6-th and 7-th layers matrix are intercepted from different rows of the same 
generator matrix. However, in order to construct a kernel matrix with larger ex-
ponent, the sub-matrices of each layer should be intercepted from different ge-
nerator matrices, because as the number of primitive BCH code error correc-
tions increases, the minimum distance of these sub-matrices increases, the par-
tial distance of the 2n -dimensional kernel matrix will increases, therefore the 
exponent will also increases. 

The partial distance lower bound sequence of 2n -dimensional kernel matrix 
can be obtained from Theorem 2, the partial distance lower bound sequence is 

{ }
( ) ( ) ( )

1,2, ,2
3 4

1, 2, , 2,3, ,3,5, ,5, , 2 3, , 2 3,2n
n

i i
n l l l c

D c c
=

  = − − 
  



    

   

.   (17) 

Therefore, 

( ) ( )

( ) ( ) ( )

( ) ( )

2

2
1

3 5 2 3
2 2 2

2 3
2

3

1 log
2
1 0 1 3 log 4 log log 1
2
1 12 log .
2

n

i
n

n n n

D
n

i

c
n

c
i

n
i

E G

l l l c

l i
n

=

−

−

=

=

 ≥ + + + + + + 

 = + ⋅  

∑

∑

  

Namely 

( ) ( ) ( )2 3
2

3

1 12 log
2

c
i

n
i

E G l i
n

−

=

 ≥ + ⋅  
∑ .               (18) 

5. Comparative Analysis 

Table 1 compares the scaling exponent of we proposed and [6], and the scaling 
index can be obtained according to Equation (9). Table 1 shows that the scaling 
exponent of the 32-dimensional kernel matrix is higher than that of [6], this is 
because we adjust these rows exceeding the upper bound of partial distance 
which has impact on the scaling exponent. The scaling exponent of 16-dimen- 
sional kernel matrix is slightly lower than [6]. Therefore, the 16-dimensional 
kernel matrix constructed by this paper is slightly better than [6] in terms of po-
larization speed. 
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Table 1. The sacling exponent of kernel matrix 

dimension 8 16 32 

The proposed 3.577 3.365 3.417 

Method used in [6] 3.577 3.396 3.122 

 
Table 2. The lower bound of kernel matrix’s exponent. 

dimension 8 16 32 64 

The proposed 0.4481 0.4721 0.4795 0.5265 

G-V construction [5] 0.3577 0.3888 0.4311 0.4792 

 
Table 2 compares the lower bounds of the exponent of the proposed and G-V 

construction. G-V construction takes advantage of ( )
1

0
max : 2

D
l i

i j
j

D D
−

=

 
= < 

 
∑   

to obtain the lower bound sequence of the partial distance, and the lower bound 
of the exponent can be obtained by definition 4. Due to the difficulty of calcula-
tion, Table 2 only gives the lower bounds of the exponent of 8, 16, 32, and 
64-dimensional kernel matrices. Table 2 shows that the lower bound of the ex-
ponent of the kernel matrix is higher than that of the G-V construction in these 
examples. 

6. Conclusions 

We use the primitive BCH codes to construct a 2n -dimensional kernel matrix. 
Firstly, the generator matrix of primitive BCH codes with different error correc-
tion capabilities is intercepted to construct a ( )2 1n − -order matrix, these sub- 
matrices are stacked from top to bottom, and then adding a column and row 
vector of all 1 s to form a 2n -dimensional kernel matrix. Aiming at the problem 
of partial distance, a solution is proposed to solve the problem of partial distance 
exceeding the upper bound, through right cyclic shifting, it becomes the right 
cyclic shift vector of the previous row, which makes the sub-matrix still a lower 
triangular cyclic structure, ensuring the polarization of 2n -dimensional kernel 
matrix, and the lower bound of 2n -dimensional kernel matrix’s exponent is ob-
tained. 

The comparison result shows that the lower bound of 2n -dimensional kernel 
matrix constructed in this paper is tighter than G-V construction, and the scal-
ing exponent is better than [6] in 16-dimensional kernel matrix. 
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