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Abstract 
DNA methyltransferase 1 (DNMT1), one of the main epigenetic targets, is 
involved in the duplication of the DNA methylation pattern during replica-
tion, and it is essential for proper mammalian development. Small molecule 
DNMT1 modulators are attractive for biochemical epigenetic studies and have 
the potential to become drugs. So far, more than five hundred small mole-
cules have been reported as DNMT1 inhibitors. However, only a limited 
number of DNMT1 activators have been disclosed because, at least in part, 
DNMT1 activators are typically regarded as negative data in virtual screening 
campaigns or optimization projects. This manuscript aims to report the chem-
ical structures and biological activity of small molecules that increase the enzy-
matic activity of DNMT1. Results of the biochemical experimental assays are 
discussed. It was found that small molecule activators have a large variety of 
chemical scaffolds but share pharmacophore features. Visual analysis of the 
chemical space and multiverse based on molecular fingertips supported that 
activators are structurally diverse. This is the first report of eight small mole-
cules that increase the enzymatic activity of DNMT1 by more than 400% in 
an enzymatic-based assay. The outcome warrants further investigation of the 
epigenetic activity of the compounds in a counter-screen assay, e.g., cell-based 
and in vivo context. 
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1. Introduction 

Epigenetic drug discovery is a promising strategy for treating cancer and other 
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complex diseases. Over the past twenty years, several small molecules with novel 
chemical scaffolds have been investigated with high affinity and selectivity against 
specific epigenetic targets [1]. DNA methyltransferases (DNMTs) are amongst the 
clinically validated epigenetic targets. The DNMT enzyme family includes two 
de novo methyltransferases, DNMT3A and DNMT3B, and the maintenance 
methyltransferase, DNMT1, the most abundant. DNMT1 duplicates the pattern 
of DNA methylation during replication, which is essential for proper mamma-
lian development. Since DNA methylation is a key epigenetic mechanism for gene 
regulation, developing inhibitors of DNMTs represents promising perspectives 
for new therapies. DNMT inhibitors are well-known, and there are more than 
seven hundred compounds with reported activity as inhibitors of DNMT1 in 
enzymatic inhibition assays as reported in ChEMBL, version 33 [2]. Among the 
DNMT1 inhibitors (representative compounds are shown in Figure S1 in the 
Supplementary Material [3]), azacitidine and 5-aza-decitabine (Figure S1) stand 
out as they are nucleoside inhibitors, approved for clinical use for the treatment 
of myelodysplastic syndrome [4]. However, DNMT1 activators in enzymatic as-
says are poorly investigated, and few compounds are known [5]. Just recently, 
Rodriguez-Mejia et al. disclosed two activators that are hybrids of N-phthalyl- 
L-tryptophan (RG108), a well-known inhibitor of DNMT1 [5], and a tetrapep-
tide and heptapeptide (Figure 1(a)). DNMT1 activators have the potential to 
serve as pharmacological agents for the amelioration of conditions characterized 
by DNA hypomethylation [6]. Conversely, DNMT1 activators also offer a means 
to discern the intricate physiological consequences induced by DNMT1 enzyme 
activation. To illustrate, instances arise, such as in carcinogenesis, wherein a 
comprehensive reduction in DNA methylation accompanies the cellular trans-
formation process. In essence, the significance of hypomethylation lies in its 
propensity to instigate genomic instability, thereby potentially contributing to 
the evolutionary progression of malignancies [6].  

This communication discusses small molecules that activate the enzymatic ac-
tivity of DNMT1 and highlight common pharmacophoric features. We also ana-
lyzed differences between potent nucleoside DNMT1 inhibitors and activators 
using chemoinformatics approaches. The outcome of this study paves the way 
for further investigation and development of activators of the enzymatic activity 
of DNMT1. 

2. Methods  
2.1. Compound Selection and Similarity Searching  

In a previous virtual screening campaign searching for DNMT1 inhibitors, ele-
ven molecules that activate the catalytic activity were found and reported in a 
thesis dissertation [7]. Such results were not disclosed before in a peer-reviewed 
publication because they were initially regarded as negative data of a virtual 
screening effort. However, there is an increasing awareness of the significance of 
disclosing initially non-interesting compounds, aka negative data [7]. 
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Figure 1. Chemical structures of activators of the enzymatic activity of DNMT1. (a) RG108 inhibitory molecule with peptides 
caused enzymatic activation of DNMT1. Compounds with an enzymatic activation (b) Greater than 400%; (c) Greater than 150%; 
and (d) Greater than 100%. Each compound’s core scaffold (Bemis and Murcko) is highlighted. 
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We implemented a ligand-based approach to identify additional DNMT1 ac-
tivators. We did not conduct a structure-based approach because the mechanism 
of enzymatic activation of the small molecules at the structural level is not 
known. The ligand-based approach was a fingerprint-based similarity search of 
ChemDiv, a commercial screening library taking as a reference eight known 
DNMT1 activators, namely, RG108-GGGKQVY, RG108-KQVY, L112-0668, 
L112-0728, L485-2669, L483-0323, L485-2761, and M056-0726 (Figure 1) most 
of them previously uncovered in a virtual screening intended to find inhibitors 
(vide supra) [7]. At the time of the study, ChemDiv contained 220,000 compounds 
(https://www.chemdiv.com/; accessed March, 2023). The similarity search was 
done with two fingerprints of different designs: dictionary (MACCS Keys, 166-bits) 
and topological (Extended Connectivity Fingerprint, Radius 6, ECFP6) [8]. Si-
milarity searching hits were selected from ChemDiv if they had a Tanimoto si-
milarity [9] value equal to or above 0.80 (with MACCS keys) or equal to or 
above 0.50 (with ECFP6). For ECFP6, we considered a similarity value lower 
than MACCS keys because of the higher resolution of the former [10]). Figure 
S2 in the Supplementary Material illustrates the general approach to identifying 
the DNMT1 enzyme activators reported in this study. 

2.2. Enzymatic DNMT1 Activity Assay 

Selected computational hits were purchased from ChemDiv and experimentally 
tested at the Reaction Biology Company in an enzymatic activity methyltransfe-
rase assay using the HotSpotSM platform [11]. Our group has reported the me-
thodology and results of this biochemical assay, including the identification of 
7-amino alkoxy-quinazolines [3]. Briefly, HotSpotSM is a low-volume radioiso-
tope-based assay that employs tritium-labeled AdoMet -3H-SAM- as a methyl 
donor. The test compounds diluted in dimethyl sulfoxide were added using acous-
tic technology (Echo550, Labcyte, San Jose, CA, USA) into an enzyme/substrate 
mixture in the nano-liter range. The reactions were started by adding tri-
tium-labeled AdoMet and incubated at 30˚C. Total final methylations on the sub-
strate (Poly dI-dC) were identified by a filter binding method implemented in 
Reaction Biology. Data analysis was conducted using Graphed Prism software 
(La Jolla, CA, USA) for curve fit. The enzymatic inhibition assays were carried 
out with the DNMT1 enzyme at a concentration of 25 nM, 1 μM of S-adenosyl 
methionine, SAM. The standard positive control was S-adenosylhomocysteine, 
SAH. The compounds were tested in 10-concentration IC50 (effective concen-
tration to inhibit enzymatic activity by 50%) with a threefold serial dilution 
starting at 100 μM. 

2.3. Pharmacophore Hypothesis 

Five activators of the enzymatic activity of DNMT1 were used to build a phar-
macophore hypothesis: L112-0668, L112-0728, L485-2669, L112-0731, and 
RG108-KQVY (Figure 1). These compounds were classified as high activators 
for their pronounced activation potential (higher than 150%) for the initial four 
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compounds. Furthermore, RG108-KQVY was ascribed the classification of 
“highly activating.” Three nucleotide molecules were used to perform the phar-
macophore model of the inhibitory compounds: decitabine, zebularine, and azaci-
tidine. Another pharmacophore model was constructed using the experimentally 
confirmed hit molecules and queries that had greater than 400%: C066-2421, 
C350-0522, L112-0668, L112-0725, L112-0728, L112-0731, L485-2669, and 
L485-2777. The pharmacophore models were constructed using the Molecular 
Operating Environment (MOE) 2022.02 program with the pharmacophore elu-
cidator and consensus function. The default settings were employed. 

3. Results and Discussion 
3.1. Small Molecule Activators of the Enzymatic Activity of DNMT1 

Table 1 summarizes the results of the similarity-based virtual screening of 
ChemDiv, including the percentage of enzymatic activity of DNMT1. The table 
also summarizes the results of the enzymatic activity of the compounds pre-
viously identified as activators during a docking-based virtual screening to iden-
tify inhibitors (vide supra) [7]. Table S1 in the Supplementary Material shows 
the results of the similarity values for each of the six hit compounds from the 
similarity searching.  

Results of the similarity searching indicated that six out of the nine molecules 
selected from ChemDiv activated the enzymatic activity of DNMT1 in a bio-
chemical assay. The molecules that turned out to be inactive, despite having a 
high Tanimoto coefficient value based on MACCS keys fingerprints (0.87 - 
0.92), had low Tanimoto coefficient values based on ECFP6 fingerprint (0.16 - 
0.24). This suggests that the ECFP6 fingerprint has a greater impact on assessing 
molecular similarity for virtual screening applications. Indeed, in previous 
benchmark studies, it has been noticed the efficiency of circular fingerprints 
such as ECFP6 [12]. This could be because ECFP6 fingerprints consider not only 
the presence or absence of chemical groups, as MACCS keys [8], but also the 
connections between them, providing a more certain measure of similarity be-
tween molecules [13]. It is also why the similarity values computed with ECFP 
are generally lower than those computed with MACCS keys (166 bits), as they 
evaluate the entire molecule, including the connectivity of its chemical groups 
[13]. 

The difference in activation percentage between the activators ranged from 
191% to 672%. This depended on the molecule’s activation percentage, to which 
they had the highest similarity. It is important to mention that the molecules 
that had more activation percentage were those that had similarity with the mo-
lecules published by Martínez-Fernández [7], the molecules that were consi-
dered as references for this virtual screening were the ones that are mentioned in 
Section 2.3. The molecules were classified in three categories based on their ac-
tivation percentage: “activators” were those with over 100% activation, “high ac-
tivators” greater than 150%, and “strong activators” with an activation 
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Table 1. Summary of the DNMT1 enzymatic activity of small molecules. 

Strategy Compound ID % Activity (std dev)a 

Docking-based virtual 
screening initially target to 

find inhibitors 

ZINC9675996/C350-0522e 558.13 (16.26) 

ZINC33356851/C066-2421e 424.54 (55) 

ZINC33114735/L112-0668b,c,e 519.25 (163.12) 

ZINC33114747/L112-0688 121.28 (11.47) 

ZINC33114766/L112-0725e 525.03 (87.55) 

ZINC33274075/L112-0728b,c,e 467.42 (27.19) 

ZINC33114768/L112-0731b,c,e 509.10 (11.24) 

ZINC44167520/L483-0323c 230.74 (0.14) 

ZINC64474040/L485-2669b,c,e 442.42 (37.77) 

ZINC65034429/L485-2761c 151.49 (9.85) 

ZINC33298643/M056-0726c 131.66 (0.94) 

Similarity 

ZINC33274076/L112-0729d 191.42 (31.99) 

ZINC64474058/L485-2687d 243.27 (66.66) 

ZINC64474109/L485-2777d 672.64 (88.83) 

ZINC33114760/L112-0716d 221.10 (12.35) 

ZINC33114754/L112-0706d 250.28 (12.49) 

ZINC33274072/L112-0698d 334.73 (12.88) 

ZINC21146903/3909-9992d 95.85 (0.29) 

ZINC20103984/C066-0242d 94.04 (6.09) 

ZINC34921986/V011-9764d 71.16 (2.06) 

aThe averages of the DNMT1 enzyme activation values are shown in units of percentage 
and the standard deviation of their measurements. SAH was used as a positive control. 
bCompounds used to construct the pharmacophoric hypothesis. cCompounds considered 
as queries in the similarity searching. dMolecules from ChemDiv identified from similari-
ty searching of reference compounds using the Tanimoto coefficient and ECFP6 and 
MACCS keys (166-bits) fingerprints. The results of the similarity searching are summa-
rized in Table S1. eMolecules used for the pharmacophore hypothesis with the high acti-
vators molecules. 
 
percentage over 400%. Table S2 in the Supplementary Material summarizes the 
percentage of DNMT1 of selected hit compounds at different concentrations. 
Results indicated that, for some compounds such as L112-0729, L112-0716, 
L112-0706, and L112-0698, the activity was higher at lower compound concen-
trations. The overall increase in enzymatic activity at lower concentrations fol-
lowed by a decrease in activity at even lower concentrations seem to be asso-
ciated with the so-called biphasic response, wherein an automatic reduction or 
decrease in response occurs at high concentrations. The biphasic response re-
sults in an optimal range of stimulation for downstream effects [14]. Biphasic 
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responses in signaling are frequently sought after, as they can act as a safeguard 
against excessive activation, overexpression, and the dominance of mutants [14]. 
In any case, it is remarkable that L485-2777 increases the activity of DNMT1 up 
to 627% at 11 μM. The activity of L112-0729 is also notable: 275% of activation 
at 11 μM. L112-0716, L112-0706, and L112-0698 increased the activity of 
DNMT1 between 261% - 393% at 5.6 μM (Table S2). 

Figure 1(b) and Figure 1(c) shows the chemical structures of the activators, 
highlighting in blue the core (Bemis-Murcko) scaffolds [15]. The Figure indi-
cates that a scaffold is common to all three categories of molecules according to 
the classification based on activity (vide supra). For example, the molecules with 
higher activity L485-2777 (672%) and the molecule L485-2761 (151.49%) share 
the same scaffold; however, the only difference between them lies in their subs-
tituent groups. L485-2777 has a methoxy group and a chloride, whereas L485-2761 
has a methyl group and a chloride. Similarly, the molecules L112-0725, 
L112-0668, L112-0728, L112-0731, L112-0706, L112-0698, L112-0716, 
L112-0688 with activity percentages ranging from 121% to 525% share the same 
scaffold but have different substituents, suggesting that it is the substituents that 
make the difference in activation capacity due to their electronegativity, and 
their donor or acceptor capacity, among other factors [16] [17]. In contrast, the 
inhibitory compounds (Figure S1) and activators do not share scaffolds. 

3.2. Pharmacophore Hypothesis 

Figure 2 shows the preliminary pharmacophoric points of DNMT1 modulators, 
including activators (Figure 2(a)), strong activators (Figure 2(b)), and nucleo-
side inhibitors (Figure 2(c)). The figure shows reference activator compounds 
L112-0668 (Figure 2(a)) and L485-2777 (Figure 2(b)), and the DNMT1 inhi-
bitor azacitidine. The figure highlights the principal difference between the 
pharmacophore models of the activators and nucleoside inhibitors: the activa-
tors have more aromatic/hydrophobic groups, one donor group but in different 
positions. Something that the inhibitors and activators have in common is that 
both of them have two acceptor groups in the ring at the same position. Fur-
thermore, the highly activating compounds share only one hydrophobic group 
with a hydrogen acceptor group with the inhibitors, while they share four hy-
drophobic/aromatic groups and only one hydrogen acceptor group with the ac-
tivators. One hypothesis of the differences and similarities between these two 
models is based on the binding site. According to Figure 1 and Figure 2, and 
Figure S1 in the Supplementary Material, most of the activating compounds are 
larger than the nucleoside inhibitors, and if they have different binding sites, 
they have different groups because they need other interactions with amino acids 
found in that cavity. This hypothesis will be explored with a structure-based 
pharmacophore model [18] [19]. Of note, a structure-based pharmacophore 
model of activators of DNMT1 is yet to be explored since the mechanism of ac-
tivation is not yet understood at the molecular level.  
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Figure 2. Potential pharmacophoric points of DNMT1 modulators. (a) Ligand-based 
hypothesis of activators based on the structures of L112-0668, L112-0728, L485-2669, 
L112-0731, and RG108-KQVY (compound shown: L112-0668). (b) Ligand-based hypo-
thesis of high activators based on the structures of C066-2421, C350-0522, L112-0668, 
L112-0725, L112-728, L112-0731, L485-2669, L485-277 (compound shown: L485-2777). 
(c) Ligand-based model of nucleoside inhibitors derived from the structures of azaciti-
dine, decitabine, and zebularine (compound shown: azacitidine). 

3.3. Visualization of the Chemical Multiverse 

A chemical multiverse is a group of multiple chemical spaces, each one defined 
by a given set of descriptors [20]. Therefore, multiple chemical representations 
provide a more comprehensive view of the coverage of the chemical space of 
compound sets. The chemical multiverse has been used to analyze the relation-
ship and diversity of compound datasets [21]. The chemical multiverse of 
DNMT1 modulators is shown in Figure 3, described by ECFP6, MACCS Keys  
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Figure 3. Visual representation of the chemical multiverse of modulators of the enzy-
matic activity of DNMT1 (15 strong activators in red; two activators in yellow; 197 inhi-
bitors (from ChEMBL in purple; and three inactive compounds in green). The visual re-
presentation was done with tSNE based on the (a) ECFP6, (b) Ph2D, and (c) MACCS 
keys (166 bits) fingerprints. 
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(166 bits), and 2D pharmacophoric fingerprints (Fp2D). The visualization me-
thod was tSNE. The inhibitors used for the multiverse are nucleoside and non- 
nucleoside, shown in Figure S1 in the Supplementary Material [22]. The visual 
representation of the chemical multiverse indicated that activators and inhibitors 
share common structural features among themselves. The characteristics in 
common are atom groups, the connectivity between the atom groups, and phar-
macophoric features. This is why, within the chemical space described by various 
fingerprints, activating molecules arrange into distinct clusters within the groups 
formed by DNMT1 inhibitors. 

3.4. Conclusions and Perspectives 

Compounds with the ability to increase the enzymatic activity of DNMT1 have 
been disclosed on a limited basis. Since in most previous virtual screenings and 
optimization campaigns, the inhibitors are pursued, the activators might be con-
sidered as negative results or non-interesting results. Recently, another research 
group disclosed two compounds (hybrids, small molecules-peptides) that, in a 
serendipitous finding, could activate the activity of DNMT1. Herein, we discuss 
a total of seventeen small molecules with various levels of activation of enzymat-
ic activity. The most potent activator of the enzymatic activity of DNMT1 was 
L485-2777 (623% enzyme activation at 11 μM of compound concentration). All 
compounds were tested in a biochemical assay for DNMT1 activity under the 
same conditions. Analysis of the chemical multiverse indicated that the inactive, 
activators and inhibitors occupy distinct positions in the chemical space sharing, 
within each group, common atomic groups, connectivity, and pharmacophoric 
characteristics, as captured by the different fingerprints. A preliminary pharma-
cophore hypothesis indicated by the compounds employed in the model’s con-
struction, it is notable that both inhibitory and activator compounds share three 
pharmacophoric features: one aromatic group and two hydrogen-bond accep-
tors. Conversely, the pharmacophore model of the highly activating molecules 
shares four hydrophobic points and one hydrogen-bond acceptor group with the 
model of the activating molecules. When compared to the model of the inhibit-
ing molecules, it only shares one aromatic group with one hydrogen-bond ac-
ceptor. Activator compounds contain a higher quantity of hydrophobic groups 
in their structure, while nucleosidic inhibitors contain a higher number of hy-
drogen bond acceptor and donor groups. These differences are partly due to the 
fact that activators and inhibitors do not share common scaffolds. Given this 
observation, we posit the hypothesis that activating molecules typically possess a 
larger molecular size when contrasted with nucleoside inhibitors. However, 
among the different groups of activators evaluated (activators > 100%, super ac-
tivators > 150%, and strong activators > 400%), they share common core struc-
tures. The primary distinctions among them lie in their functional groups. Addi-
tionally, they share pharmacophoric features, exhibiting fewer pharmacophoric 
points as the molecules become more activating. Consequently, the binding sites 
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for these two categories of compounds are probably dissimilar. The mechanism 
of enzymatic activation of the small molecules at the structural level is not 
known. For that purpose, it is necessary to conduct a structure-based approach. 

Perspective of this study is performing more replicates of the enzymatic assays 
to obtain a more reliable value of the percentage activation and the evaluation of 
the newly identified small molecules as activators of the enzymatic activity of 
other DNMTs (e.g., DNMT3A, 3B). Other perspective is to conduct cell-based 
assays. Examples of cell-based assays are the live-cell DNA methylation assays, 
immunofluorescence for DNA methylation [23], protein-compound interaction 
assays [24], flow cytometry assays [25], and global methylation profiling assays 
[26] [27]. 
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Supplementary Material 

 
Figure S1. Chemical structures of representative DNMT1 inhibitors. The core scaffold (Bemis 
and Murcko) of each compound is marked in green. (a) Nucleotide compounds with inhibitory 
activity of DNMT1 that have been approved as drugs. (b) Representative non-nucleoside inhibi-
tors of the enzymatic activity of DNMT1. 
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Figure S2. Similarity-based screening of the ChemDiv database using the Tanimoto coef-
ficient and ECFP6 and MACCS Keys (166-bits) fingerprints. The reference (query) mo-
lecules were: L112-0668, L112-0728, L485-2669, L483-0323, L485-2761, M056-0726, 
RG108-KQVY, and RG108-GGGKQVY (chemical structures shown in Figure 1). 

 
Table S1. Similarity values of the chemDiv compounds selected from the fingerprint-based 
similarity search. 

ID hit/ 
compound 

Fgpt 

Reference (queries) 

RG
10

8-
G
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G
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Q
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12
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85
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66
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83
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32
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L4
85
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76
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M
05
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07

26
 

L112-0729 
MACCSa 0.51 0.49 0.78 0.94 0.66 0.65 0.61 0.71 

ECFP6b 0.09 0.08 0.62 0.84 0.13 0.13 0.13 0.14 

L485-2687 
MACCS 0.62 0.60 0.56 0.62 1.00 0.82 0.90 0.71 

ECFP6 0.08 0.08 0.10 0.11 0.75 0.21 0.52 0.12 

L485-2777 
MACCS 0.59 0.57 0.59 0.57 0.89 0.79 0.98 0.64 

ECFP6 0.09 0.09 0.14 0.12 0.54 0.23 0.82 0.13 

L112-0716 
MACCS 0.48 0.46 0.98 0.73 0.57 0.61 0.61 0.67 

ECFP6 0.10 0.08 0.78 0.58 0.14 0.13 0.15 0.15 

L112-0706 
MACCS 0.51 0.49 0.90 0.76 0.62 0.61 0.57 0.70 

ECFP6 0.10 0.09 0.71 0.61 0.16 0.13 0.14 0.15 

L112-0698 
MACCS 0.57 0.56 0.75 0.82 0.78 0.76 0.72 0.79 

ECFP6 0.11 0.09 0.63 0.68 0.18 0.18 0.18 0.17 

3909-9992 
MACCS 0.61 0.59 0.59 0.64 0.92 0.80 0.83 0.77 

ECFP6 0.10 0.10 0.17 0.14 0.18 0.20 0.15 0.16 
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Continued 

C066-0242 
MACCS 0.59 0.57 0.57 0.61 0.92 0.78 0.83 0.77 

ECFP6 0.11 0.10 0.11 0.11 0.16 0.17 0.13 0.20 

V011-9764 
MACCS 0.58 0.57 0.54 0.61 0.90 0.76 0.82 0.71 

ECFP6 0.10 0.10 0.11 0.13 0.24 0.19 0.20 0.17 

aMACCS keys (166 bits). bECFP6 (2048 bits). 
 

Table S2. Percentage of activity of DNMT1 activators at different concentrations. 

ID hit/compound Concentration (μM) % Activity (stddev) 

L112-0729 

100 190.42 (±33.40) 

33.3 214.275 (±51.09) 

11.1 275.445 (±61.60) 

L485-2687 

100 243.265 (±66.67) 

33.3 355.025 (±78.95) 

11.1 159.755 (±34.67) 

L485-2777 

100 672.635 (±88.85) 

33.3 501 (±126.19) 

11.1 623.17 (±135.82) 

L112-0716 

50 221.1 (±12.35) 

16.7 239.64 (±39.58) 

5.56 263.765 (±24.60) 

L112-0706 

50 250.29 (±12.49) 

16.7 214.435 (±24.20) 

5.56 261.705 (±20.30) 

L112-0698 

50 333.74 (±14.30) 

16.7 370.61 (±4.19) 

5.56 392.96 (±4.79) 

The averages of the DNMT1 enzyme activation values are shown in units of percentage 
and the standard deviation of their measurements. The compounds L112-0698, L112-0716 
and L112-0706, were tested at a starting concentration of 50 μM because they were inso-
luble at 100 μM. 
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