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Abstract 
In this paper, we propose a quantitative evaluation method of students’ 
thinking in group learning. Thinking evaluation will become increasingly 
important in programming education in Japan. However, it is impossible for 
instructors to single-handedly evaluate their students’ thinking at the same 
time. It is necessary to provide a quantitative evaluation method that can be 
applied to a variety of educational situations in order to help instructors. We 
define coding vectors based on students’ source code that will serve as an in-
dicator of evaluation. Moreover, we judge students’ prospects through a 3-step 
analysis with their coding vectors. We analyzed coding vectors for 22 partici-
pants obtained through a task experiment. We evaluated students’ thinking 
from three perspectives: visualization, distance, and direction. As a result, all 
three ways had the ability to grasp students’ thinking content. Coding vectors 
allow us to comprehensively judge students’ coding steps and their prospects. 
In this paper, we discuss the expressive power of coding vectors for coding 
content, and task settings appropriate for them. 
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1. Introduction 

From the 2020 academic year onward, education in Japan has been based on the 
new government course guidelines. As a result, programming education has be-
come compulsory in primary and secondary education and has gained impor-
tance. In the programming education guide published by the Ministry of Educa-
tion, Culture, Sports, Science, and Technology, the term “programming think-
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ing” is used as a keyword. This programming thinking is a mindset and ability 
that can be developed through programming education. In a word, it is the abil-
ity to construct procedures. The guide says that one major goal is to develop 
programming thinking. A method to grasp students’ thinking about coding is 
important. 

However, there are two educational problems with it. First, it is not clear how 
to evaluate the thinking process. This is due to the lack of experience in the new 
educational system. Second, it is difficult to evaluate thinking ability in group 
learning. To evaluate thinking skills, for example, simple calculations and cor-
rect memorization of theorems are not enough. As in a proof problem, the 
process of how to use them to derive the necessary matter is important. Howev-
er, it is physically impossible for a teacher to observe the thinking processes of 
more than ten students at a time. It is also tough to evaluate tasks with different 
characteristics using a common indicator, as there is currently no standard. The 
subjective judgments of instructors and the impressions of students are different 
standards for each individual, and they may change with one’s mood. A new 
evaluation method in programming education is required to solve the two prob-
lems in Japan. 

Programming thinking mentioned above, which is an educational goal in Ja-
pan, is referred to as computational thinking in other countries which have 
started programming education earlier than Japan (Wing, 2006). In countries 
with advanced programming education, there are many studies that relate pro-
gramming to computational thinking. Tedre et al. provide some notes on future 
research based on the history of computational thinking (Tedre & Denning, 
2016). Sun et al. showed positive effects of programming on computational think-
ing skills through a meta-analysis (Sun et al., 2021). They also provided a discus-
sion of good design factors of programming education. Studies from overseas such 
as these studies indicate a high interest in thinking ability about programming in 
primary education. 

Tikva et al. and Fagerlund et al. present a review of the literature related to 
computational thinking (Tikva & Tambouris, 2021; Fagerlund et al., 2021). These 
studies point out a lack of indicative research examples in the evaluation of 
computational thinking and the causes of the lack. One of the causes is the diffi-
culty of grasping the reality of the thinking process itself. Another cause is that 
the results of each study may be dependent on regional differences and curricu-
lums. Since programming thinking is based on the idea of computational think-
ing, problems related to computational thinking are common. Therefore, solving 
these two causes is necessary to tackle the educational problems in Japan. 

This paper presents a method to solve these educational problems. As the first 
solution to these problems, this paper deals with a thought-readable task suitable 
for primary education. In this way, we clearly define how we grasp the thinking 
in programming. Second, the method is independent of the environment and 
the individual so that it can be applied to a variety of situations. To realize this 
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solution, this paper focuses on the development of a quantitative evaluation in-
dicator as its policy. 

Specifically, the policy consists of 2 issues: dealing with drawing tasks and 
converting source code into features. Introducing these policies, the paper solves 
the problems related to programming thinking. 

2. Policies for Issue Resolution 
2.1. Use of Figure Drawing Tasks 

There are different styles of programming, depending on the content of the task 
being handled. It is not realistic to present an evaluation method covering all of 
them. We should consider characteristics of tasks that are suitable for beginning 
students. In programming education in Japan, the majority of elementary schools 
use visual languages such as Scratch and Viscuit. These tools are used because 
they are suited for primary education. 

Methods of operation are sensible and user-friendly. It is easy to recognize 
mistakes because the execution results can be visually confirmed. 

In addition, the programming guide in Japan introduces the task of drawing 
polygons. In figure drawing tasks, students directly recognize their own coding 
content. Molina et al. confirmed that displaying text and images together en-
hances students’ understanding of elementary education about geometry (Molina 
et al., 2018). Procedures that draw figures are easier to interpret for beginning 
students than procedures without a clear image. Programming tasks that have 
visual results such as figure drawing is easy to tackle for beginners. We believe 
that a figure drawing task is one of the tasks in which students’ thinking is most 
easily reflected. 

To search for an evaluation method for thinking activities during program-
ming, we suggest limiting the target tasks in this paper. There are two important 
points. The first is to target intuitive tasks applicable to elementary education. 
The reason is obvious from programming tasks adopted in elementary education 
in Japan. 

The second is that the structure of the solution is unique. Tanigawa et al. have 
found that there are common patterns among students in figure drawing tasks 
(Tanigawa et al., 2011). In programming, students have many points where they 
must select the right options to reach the correct codes. The work examines the 
order of functions to draw a figure. From the function call logs, the work has 
succeeded in identifying points where many students may take options leading 
to wrong answers. In the tasks they use, the drawing order is specified. If the or-
der of drawing is not specified, there will be an unlimited number of correct 
procedures, which makes it difficult to distinguish good thinking from wrong 
one. Similarly, if a correct procedure can be described by a series of different 
functions, it becomes difficult to determine the correctness of the procedure. 

It is necessary that the flow of function calls should be unique to evaluate the 
thinking during the task. If it is the case, it is possible to evaluate students’ 
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thinking patterns from their answers, as in the study. Tanigawa et al. only focus 
on the final answers. A method is required to evaluate students’ thinking during 
solving a task. 

2.2. Conversion of Source Code to Features 

In evaluating students’ thinking activities during programming, time-series data 
representing students’ activities is necessary. Bosch et al., Grafsgaard et al. and 
Jaques et al. have estimated students’ emotions in learning including program-
ming from sensing data of body movements and eye gaze (Bosch et al., 2014; 
Grafsgaard et al., 2014; Jaques et al., 2014). Many studies estimate tendencies 
during learning from sensing data that seem to be useful. However, in actual 
education, it costs too high to provide a sensor for each student. 

Let us see what kind of data is being dealt with in studies that focus on com-
putational thinking. Guggemos has shown a relationship between students’ com-
putational thinking ability and surrounding factors (Guggemos, 2021). Wei et al. 
have presented the direction of an effective approach for improving computa-
tional thinking by conducting a controlled experiment in elementary school 
subjects (Wei et al., 2021). Different from sensing data, these studies connect the 
quality of computational thinking to indicators such as questionnaires for stu-
dents and the scores that students earned on tasks. 

However, data obtained after finishing a task cannot be used to estimate 
thinking about the contents of the task in the process of answering it. If the data 
are not time-series data that occur during the solving process, we will miss the 
timing of interventions that are closely related to the contents of tasks. Moreo-
ver, personal metrics such as questionnaires are subjective labeling, and the re-
sults are dependent on environments and individuals. 

Source code changes while a student solves a task. Unless it is a large pro-
gramming task, there is only one source code file to edit. By observing this file 
sequentially, source code can be regarded as time-series data, such as sensor da-
ta. The source code is the student’s solution process itself. Intervention by stu-
dents’ thinking is reflected in it every time they change their minds. Therefore, it 
is quite possible to read the student’s thinking toward a task from time-series 
source code. 

Unfortunately, source code is not utilized in the area of thinking evaluation. 
Cosma et al. showed the result of research on plagiarism of source code (Cosma 
& Joy, 2008). Djuric et al. designed a source code similarity detection system that 
is more promising than existing systems (Đurić & Gašević, 2013). A major theme 
in source code research is plagiarism. This is probably because the source code 
serves as a submission for the instructors. 

Lazar et al. proposed a method of automatically presenting necessary fixes to a 
program through text-based program synthesis (Lazar & Bratko, 2014). This is 
an example of providing students with guidelines during the solution, based on 
their editing of source code. However, it is difficult to express task contents in 
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detail with text-based ideas. It is possible to recognize the existence of a descrip-
tion as text. It is difficult to determine the role of the description from the text 
information. There is probably no previous method for estimating students’ think-
ing on task contents from time-series data of source code. 

3. Quantitative Evaluation by Coding Vectors 
3.1. Creation of Coding Vectors 

In this section, we describe the procedure for creating coding vectors. We call 
the vector data created by this method a coding vector. We named it a coding 
vector because it is a vector representation of the data during coding. In addi-
tion, we discuss its characteristics along with the procedure for its creation. Fig-
ure 1 shows the procedure for creating feature vectors. We describe the proce-
dure in Figure 1 in three main parts. 

The first is to obtain the source code. While students solve a programming 
task, their solution, source code, changes. We save their source code sequential-
ly. The bundle of source code is the time series data of one’s solution process. As 
can be seen from Figure 1, source code at a point in time t is a single sample of 
time-series data. We believe that source code can potentially show the change in 
students’ thinking. It is also necessary to transform source code into a form that 
facilitates thinking evaluation. Therefore, it is important not to miss the results 
of programs expressed in source code by transformation. 

The second is to obtain function logs. Functions logs refer to records of func-
tions that are called when a program is executed. One of the logs is a log of a 
function name and an argument value when the function is called. We use func-
tion logs to transform source code into a form that is easier to analyze. The  

 

 
Figure 1. Procedure of coding vectors creation. 
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number of functions and actions marked as text is different from the number of 
functions and actions called in execution. This is because of the use of repetition 
and conditional branches, and changes of variable values as arguments. Function 
logs include the number of times the function is called and the value of an ar-
gument. Therefore, the content that students are trying to realize can be properly 
recognized by function logs. We obtain function logs from the source code at 
each point in time obtained in the previous step. Time-series data of function 
logs are created with the same number of samples as the source code. 

The third is to obtain coding vectors. Function logs are a good representation 
of what students are trying to express. However, this is not easy to analyze me-
chanically. The vertical logs are not suitable for calculating values as indicators. 
Therefore, we transform the data from function logs to vector type. The function 
log is a combination of functions and arguments. We count how many times 
each combination has been called from a single function log. If the number of 
combination types is n, the result of this measurement is an n-dimensional vec-
tor. By converting the time-series data of function logs into vectors, we obtain 
data in tabular form, with a vertical length of t and a horizontal length of n. This 
tabular data represents the student’s solution process. The vertical length of the 
table is the number of samples in a time series. The horizontal length of the table 
is the number of combinations of functions and arguments required for a task. 
In other words, columns of coding vectors are features to represent the coding 
details. The blank source code has 0 values for all features and can be regarded as 
the origin. In other words, the values of coding vectors represent the total amount 
and direction of coding. 

Through these steps, coding vectors can be obtained. The coding vector, which 
is the measure of evaluation, should well represent the student’s thinking during 
the solution. We then describe our thoughts on the characteristics of vectors. 
The contents of source code and function logs would not change depending on 
the method of obtaining them. However, coding vectors are different. The col-
umns as features should contain the necessary combinations for a task. Some 
functions would not require arguments. It is better to record the number of func-
tion calls regardless of the arguments. The problem is the wrong use of func-
tions. In terms of covering students’ thinking, it is necessary to take from the in-
dicators even when they make mistakes. To do this, it is impossible to simply 
count combinations for correct content. Coding vector features must also include 
information about wrong combinations. However, if the argument is a continuous 
value, the number of combinations required for the expression is countless. It is 
difficult to cover all wrong combinations. In this paper, if a value of an argument is 
a mistake, we count it as the number of mistakes in the function. This is the basic 
characteristic of coding vectors to represent students’ thinking. 

3.2. Assumptions about Solution Process 

In Section 3.1, we defined coding vectors for quantitative evaluation, based on 
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the idea that source code is a potential expression of thinking about tasks. Next, 
it is important to grasp changes in coding vectors caused by the progression and 
regression of students’ thinking states. In other words, we should consider how 
the activity of thinking develops during programming. In this section, we discuss 
our thoughts about students’ programming solution process before considering 
how to utilize coding vectors. 

When students solve programming tasks, their answers are expected to ap-
proach the correct answer in a stepwise manner. 

This is the first assumption. In general programming, it is difficult to build a 
perfect flowchart-like structure from the beginning. A novice programmer un-
familiar with programming would build with the goal of reaching the middle of 
the structure. They would also take other ways, such as putting off the condi-
tional branches. It is also expected that students will naturally proceed with pro-
gramming from the front of the flow. This is because the correctness of the pre-
vious function’s implementation determines the conditions for creating the next 
function. If the previous function incorrectly deals with a common variable, the 
next function cannot begin in the correct condition in the first place. Imple-
menting from the front and building up each step so that the functionality works 
correctly is a natural way to solve programming tasks. This assumption will be 
especially true for figure-drawing tasks. If a unique procedure is established, like 
a drawing song, students will naturally implement it according to that proce-
dure. In the case of drawing tasks, this is because the coordinates of an object, 
such as a paintbrush, are affected by the previous step. The position and direc-
tion of the object after the previous procedure are directly the conditions before 
starting the next procedure. 

Second, we believe that programming activities follow a transition similar to a 
tree structure. As in the first assumption, the student’s thinking is considered to 
approach the correct answer in stages. In other words, the contents required for 
a correct answer can be divided into stepwise elements. Stepwise elements are 
necessary for coding, such as setting up components consisting of functions and 
variables, repetitive expressions, and conditional branches. If a unique procedure 
for a task is established, the order in which each element should be implemented 
will naturally be established. Students may be able to implement stepwise ele-
ments in one fell swoop if they are highly skilled. However, even in that case, it 
follows an absolute forward direction to approach the correct answer. There is 
an absolute flow of solutions common to students in coding programming tasks. 

Of course, it is possible to make a mistake during the solution. A mistake is to 
code with a misrepresentation of the element one is trying to realize. If the step-
wise flow approaching the correct answer is viewed as linear, then mistakes are 
flows branching off from it. Students who make a mistake will make revisions on 
the same element until the result of that run is correct. Fixing a mistake can be 
regarded as finding the correct flow for the element they were thinking about. 
Students then seek the correct flow for the next step in a similar manner. In this 

https://doi.org/10.4236/ce.2023.1410124


T. Kobayashi et al. 
 

 

DOI: 10.4236/ce.2023.1410124 1952 Creative Education 
 

way, students’ activities solving a task spread out like a tree structure. The step-
wise flow of correct answers is the central trunk, and patterns of mistakes exist 
as branches. In the next section, based on these assumptions, we propose a me-
thod of thinking evaluation using coding vectors. 

3.3. Distance Evaluation of Coding Vectors 

Coding vectors are created based on source code that reflects students’ thinking 
activities. Therefore, the value of the coding vector is a coordinate that represents 
the stage of the student’s thinking during a task. The number of columns of 
coding vectors, or of features, is the number of dimensions. It means that vector 
data at each point in time has a coordinate in a multidimensional space. There-
fore, we try to grasp the changes in students’ thinking activities by observing the 
movement of coordinates in time series. With reference to the assumptions in 
section 3.2, there are vectors that belong to a correct flow in coding vectors. 
These vectors can be viewed as a single connected constellation in a multidi-
mensional space. By connecting several source codes that satisfy the stepwise 
elements in a sequence, the coding flow that should be followed in the task can 
be represented in space. Based on this idea, we propose a three-step quantitative 
thinking evaluation by coding vectors. Before explaining our method, we show 
an image of evaluations in Figure 2. 

The first is the visualization of coding vectors through dimensional compres-
sion. We assumed that the flow toward a correct answer existed in stages. In or-
der to recognize this spatially, we need to reduce the dimensions of features to at 
least three. Therefore, we use PCA, a method of dimensional compression. We 
check coding vectors compressed into two dimensions by PCA on a 
two-dimensional graph. This method allows visualization of the correct flow that  

 

 
Figure 2. Evaluation based on coding vectors. 
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should be followed in a task. It would also provide a visual check on how far the 
source code in the student’s solution is from the correct flow. This method is an 
easy way for anyone to check the path from a start to a goal. 

The second is the determination of thinking separation degree based on dis-
tance. When a student is solving a task, the correctness of source code at a given 
point in time may be judged by whether it follows the correct flow. The correct 
flow in the feature space is formed from points with multiple coordinates, like a 
constellation. If the source code in a solution matches the stepwise correct an-
swer, then these two coordinates in the feature space will also match. In the case 
of source code with a mistake, the coordinate exists at a distance from the coor-
dinates of correct answers. In addition, we consider the case of a mistake on a 
certain phasing factor. In that case, the coordinate of a mistake would be located 
around a coordinate that correctly satisfies that element. This idea is based on 
the assumptions in section 3.2. The distance between coordinates can be calcu-
lated based on a definition of Euclidean distance. Correct coding would be close 
to zero distance from correct answers. Incorrect coding would be so far away 
from them that its content would be out of degree. By observing a distance, we 
would be able to determine what stage students are at, including any incorrect 
codes. 

The third is an evaluation of prospects focused on time-series changes. We be-
lieve that students’ thinking, together with their behavior, can be divided into 
three main categories. There are three types: thinking that has a right prospect 
and correctly realizes an element, thinking that has no right prospect and incor-
rect coding, and thinking that has no right prospect and stops coding. In order 
to judge these from coding vectors, we should focus on time-series changes. As 
coding occurs, the coding vector also changes, regardless of the correctness of 
the coding. If the student’s hand stops moving, the coding vector will not change. 
Changes in coding vectors are closely related to coding according to the stu-
dent’s thinking. Therefore, the existence of students’ prospects can be deter-
mined from the change in the coding vector. In particular, we focus on the 
change between vectors, which is a vector of difference. The difference between 
two vectors can be regarded as the direction of movement in space. The differ-
ence vector means the direction of the coding. Therefore, we estimate the cor-
rectness of students’ prospects by the direction of difference vectors. In particu-
lar, we calculate cosine similarity between difference vectors in the correct an-
swers flow and difference vectors generated by coding. If the direction of the 
student’s stepwise coding is correct, it should have a high similarity to one of the 
directions in a correct flow. 

4. Task Experiment for Data Collection 
4.1. Outline of Task Experiment 

We conducted a task experiment to gather source code. The programming task 
provided is a graphic drawing task. The number of tasks is two, and the standard 
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solution time is 30 minutes for both tasks. The programming language used is 
Python. Turtle Graphics, the standard Python library, is used for drawing graph-
ics. Drawing contents consist of five functions in Turtle Graphics functions. 
Those functions are forward(), left(), circle(), penup(), and pendown(). These 
were employed as operations for moving forward, rotating, drawing circles, and 
orbiting or not. 

Figure 3 shows the actual task page displayed on a PC screen. The left side of 
the page is a drawing content. A Gif animation is placed on the left, and a com-
pleted drawing is placed on the right, side by side. Below them, there is a sen-
tence of additional explanation about numerical values. The right side of the 
page is an editor. There is a source code editor at the top, and a box with debug 
log output at the bottom. There is an execution button in the center, which can 
be pressed to check the drawing result with the current source code. 

26 university and graduate students participated in the task experiment. All 
participants had learned how to use Python. They understood how to handle 
drawing functions with 10 minutes tutorial. We told participants to ask their 
supervisors if they had any questions about descriptions. This is because we 
want to eliminate the time of stagnation caused by syntax errors. In addition, 
because the participants used their own laptops, they were able to code as they 
normally code. 

We gathered source code data for 22 of the 26 participants through this expe-
riment. We also recorded logs of keyboard input at the same time. Based on the 
response of three participants at the beginning, the level of difficulty and nota-
tions were refined. Therefore, the data of these three participants were excluded. 
One of the other participants lost information on keyboard inputs due to im-
proper actions during the task. It was necessary to refer to keyboard inputs for 
data processing, which will be explained in the next section. Data from this one  

 

 
Figure 3. Task page on PC screen. 
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participant was also excluded. As a result, 16 (73%) were able to solve the first 
task, and 18 (82%) were able to solve the second task. In both tasks, the number 
of participants who solved within a standard 30 minutes was less than half of all 
participants accomplishing the tasks. Other participants were divided into two 
groups: those who solved in more than 30 minutes or those who did not finish in 
more than 30 minutes and gave up. Therefore, the difficulty level of both tasks 
was suitable for them. 

We gathered source code data for 22 of the 26 participants through this expe-
riment. We also recorded logs of keyboard input at the same time. Based on the 
response of three participants at the beginning, the level of difficulty and nota-
tions were refined. Therefore, the data of these three participants were excluded. 
One of the other participants lost information on keyboard inputs due to im-
proper actions during the task. It was necessary to refer to keyboard inputs for 
data processing, which will be explained in the next section. Data from this one 
participant was also excluded. 

As a result, 16 (73%) were able to solve the first task, and 18 (82%) were able 
to solve the second task. In both tasks, the number of participants who solved 
within a standard 30 minutes was less than half of all participants who were able 
to solve the task. Other participants were divided into two groups: those who 
solved in more than 30 minutes or those who did not finish in more than 30 
minutes and gave up. Therefore, the difficulty level of both tasks was suitable for 
them. 

4.2. Attention for Conversion to Coding Vectors 

In the task experiment, we recorded source code files every second. The one-second 
interval was set to grasp well changes caused by coding. The number of recorded 
files would be 1800 for 30 minutes of solution time. After counting files for 22 
participants, the average solution time for the first task was about 34 minutes, 
and for the second one, about 36 minutes. The number of features required for 
the two tasks was 30 and 23, respectively. These features consist of the total 
number of each function, the correct combination of function and arguments, 
and the number of each function call with incorrect arguments. 

Some of the recorded source code causes syntax errors when executed. This is 
because they contain code that was saved while the student was typing. Function 
logs cannot be obtained from them. In this case, we took over the feature values 
obtained from the latest source code that could be executed successfully. This 
method enables assigning coding vectors even to source code that cannot be ex-
ecuted. In other words, we should wait to change coding vectors until one cod-
ing session has been completed. 

Even if no errors occur, source code that is different from the student’s ideas 
may be recorded. For example, when a student writes the value of an argument 
as 1000, the value might be recorded as 1, 10, or 100, depending on the timing of 
the recording. In another example, when a student is indenting multiple lines 
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sequentially, a state may be recorded in which not all indentations are complete. 
After observing the experiment data, we found some source code with these 
wrong conditions. In particular, the indentation operation was a relatively long 
coding process. Coding vectors at that time were expected to represent wrong 
expressions, regardless of the student’s thinking. Therefore, we considered it ne-
cessary to make an exception at the step of obtaining the function logs. We ob-
served logs of participants’ keystrokes and found that there were at least five 
seconds between each coding session. Based on this finding, we processed these 
the same as the source code in error as long as a keystroke was occurring within 
5 seconds. We believe that this processing makes students’ thinking and coding 
vectors more relevant. 

5. Coding Vectors Analysis 
5.1. Visualization with PCA 

For coding vectors collected in the task experiment, we show analysis results ac-
cording to the method described in section 3.3. First, we check the spread of the 
solution process by visualization with PCA. Before applying PCA, data from 22 
participants were normalized. The minimum value for each feature is 0 and the 
maximum value is the number of calls required for the final answer. 

We specially processed numerical values of the number of features for calls 
with wrong arguments. The total number of mistakes can increase dramatically 
compared to the number of calls with a particular argument. Therefore, the val-
ues should be appropriately suppressed toward PCA. We took the natural loga-
rithm for values greater than or equal to 0 for these features and added 1. If the 
original value is 1, it remains 1. The closer it is to 1, the more it retains the face 
of its size. We can considerably reduce the size of outliers, even those that exceed 
100. This process allowed us to equalize the influence of each feature on the 
PCA. 

Figure 4 shows a scatterplot of the flow of correct answers in the two tasks. Its 
two axes are the first and second principal components of the PCA. The contri-
bution ratio up to the second principal component was 0.644. The flow of cor-
rect answers was divided into about 10 stages, such as drawing a polygon, draw-
ing a circle, moving to the next starting point, repeating the process n times, and 
so on. 

In Figure 4, we can see the route from a blank paper to a completed drawing 
by coloring. This route extends in a relatively coherent direction. In particular, at 
the end of the process, for the repetition of graphic elements, these points are 
placed in a straight line. From both scatter plots, it can be seen that the path to 
the correct answer consists of three major linear paths, at the beginning, middle, 
and end of the path. In summary, figure drawing programming has stepwise 
elements, and they are also coded according to a certain direction. We can see 
this trend in Figure 4. 

Figure 5 shows a scatterplot of the solution process for some of the participants.  
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Figure 4. Coding vectors flow of correct answers. 

 
There are several examples separated into completed and uncompleted solution 
processes. Each point is a coding vector obtained from per-second source code. 
Time series data are colored from blue to red from the start of a task to its end. It 
should be noted that while coding vectors do not change, their coordinates are 
the same, so dots in Figure 5 will overlap during those periods. Moreover, the 
flow of correct answers shown in Figure 4 is marked by gray triangles. 

On the completed side, there are examples that follow this flow very well. It 
shows that these participants followed the expected steps in their thinking. It is 
clear that these participants understood the next stepwise element to be imple-
mented and coded it correctly. However, on the completed side, there are exam-
ples where their final answer does not overlap with the correct answer dot. The 
reason is that the timing to stop drawing was different. Participants with under-
standing expressed the process of moving to the next starting point after draw-
ing a shape. Other participants are missing the process of moving to the next 
starting point at the end of the drawing. The process does not involve an orbit,  
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Figure 5. Solution process of participants. 

 
so it is not reflected in the finished image as a drawing. We grouped such cases 
as the completed side for this analysis. 

Next, there are examples with dots placed in space away from the flow of cor-
rect answers. It shows that participants made the wrong use of functions in their 
source code. It also shows the stage before mistakes were made and the stage af-
ter fixes were made, based on the color information. There are some durations 
when one or two dots pop up in space away from correct answers. It means that 
the mistake was fixed with a small number of touches. In contrast, there are 
some periods, especially in the uncompleted, where many dots are scattered in 
outer space. It means that participants make repeated fixes but are not able to fix 
them well. In other words, it is possible to visually check for three patterns: 
which stages they were able to think successfully, when mistakes were made, and 
whether they are struggling to fix those mistakes. 

Finally, the uncompleted side had the characteristic of stagnation. Many on 
the uncompleted side stagnate in the early stages. We find that they stay in a 
state of mistake for a long time, because the color of the dots does not change 
continually. The reason why they cannot solve a task until the end is that they 
are unable to move forward into the next stage because of a lack of prospects. 

Therefore, we can judge students’ lack of prospects, which is the cause of the 
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stagnation of the task, based on the long stay of coding vectors. Instructors can 
easily recognize students’ thinking simply by observing the movement of coding 
vectors. Therefore, even in a group study setting, it would be possible to judge 
whether each student’s coding is going well on the spot. Specifically, we can judge 
in detail the stage of thinking students reached, the occurrence of mistakes, and 
the lack of prospects due to stagnation. 

5.2. Distance Evaluation of Correctness 

We confirmed the visualization analysis with up to a second principal compo-
nent. Next, we analyze the distance calculated from the base value of coding vec-
tors as a more accurate indicator. Columns of wrong arguments were processed as 
we have done in section 5.1. This is to keep the recognition in line with PCA’s 
results. We calculated Euclidean distances from the correct answers for coding 
vectors of 22 participants. The distance from correct answers is a distance from 
the nearest dot in the flow of correct answers shown in Figure 4. 

Figure 6 shows the distribution of distances from correct answers. The total 
number of coding vectors for the first task is 44,708 and the number for the 
second task is 48,037. In Figure 6, outliers are excluded from the first task. This 
is because some of the distances from one’s coding vectors were over 600 values. 
The histogram of the first task does not include these 145 (0.3\% of total) out-
liers. 

The number of zeros is by far the largest number for both tasks in Figure 6. 
This is because the coding vectors of participants match the vectors of the ex-
pected correct answer flow. It also has a relatively large number of cases on the 
left side. These cases are source code with a small number of wrong function 
calls. In particular, students’ solutions in the early steps would fit this case, since 
the number of functions required is small in itself. 

In contrast, it would be far from a correct answer if the distance is greater 
than 10. The more advanced the steps of a task, the greater increases the number 
of wrong calls that occur from a single writing error. Therefore, the distance  

 

 
Figure 6. Histograms of Euclidean distance in two tasks. 
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from correct answers would have more effect on thinking evaluation if judged 
based on the steps in the coding process. In this way, we can evaluate quantita-
tively the steps of students’ thinking as well as visualization by using the distance 
from correct answers as an indicator. In particular, it is said that the student has 
a good understanding of the steps if this distance is close to zero. 

We describe a point that should be kept in mind in using distance as an indi-
cator. The distribution is different for the first and second tasks in Figure 6. The 
distribution is different for the two tasks in Figure 6. A common threshold for 
these tasks does not exist in Figure 6. However, we might get the threshold by 
generalizing. As mentioned earlier, it is expected that the number of mistakes is 
proportional to the step students reached. 

Figure 7 shows the result of dividing values used in Figure 6 by the number 
of all function calls. In other words, the distance was scaled by the progress of 
the task. Both shapes are closer to mountains than in Figure 6. The center of the 
mountain distribution is about 0.2 in both cases. In this way, the distribution of 
distances approaches the form of a probability distribution by scaling with the 
number of function calls. 

Based on the idea of probability distributions, we can judge that these cases on 
the right side of Figure 7 are different, without the influence of progress. The 
result in Figure 7 shows the possibility of finding a common threshold for tasks. 

5.3. Directions Evaluation Based on Coding Changes 

We have shown a method to quantitatively evaluate the degree of separation by 
focusing on the current source code in Section 5.2. Next, we try a more detailed 
analysis by focusing on changes in time-series source code. Each coding vector 
represents the current coding content. These differences can be regarded as vec-
tors with the amount and direction of movement from the content before the 
change to the content after the change. We assumed that the student’s solution 
process would follow the flow of correct answers. The arrows connecting each 
dot in Figure 4 represent the direction they should follow. Therefore, we evaluate  

 

 
Figure 7. Histograms of scaled distance in two tasks. 

https://doi.org/10.4236/ce.2023.1410124


T. Kobayashi et al. 
 

 

DOI: 10.4236/ce.2023.1410124 1961 Creative Education 
 

the correctness of coding by cosine similarity with these difference vectors. 
Figure 8 is a box plot of the number of coding changes from 22 participants. 

As described in section 4.2, the coding vector changes when there are no execu-
tion errors and no key input for 5 seconds. Figure 8 shows that both tasks aver-
aged about 25 changes in students’ coding vectors. Difference vectors were ob-
tained for two coding vectors before and after these changes occurred. The dif-
ference vector of correct answers flow was prepared by the permutation method. 
This is because skipping or going back is expected for stepwise elements. For 
example, the first task has 13 vectors of correct answers flow, so there are 156 
difference vectors. 

Distributions of cosine similarity are shown in Figure 9. This cosine similarity 
value is the highest value of the combination of the student’s difference vector 
and difference vector of correct answer flow. If cosine similarity is 1, the stu-
dent’s coding is in perfect sync with the ideal stepwise coding. Cases where the 
cosine similarity exceeds 0.8 would also be the result of equivalent ideal coding. 
Figure 9 shows that there is an ideal coding in students’ difference vectors. Of 
course, students’ difference vectors include changes related to mistakes. The case 
of mistakes does not have a high similarity to ideal difference vectors in the first  

 

 
Figure 8. Box plot of cording changes in solution. 
 

 
Figure 9. Histogram of cosine similarity with direction. 
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place. The cases with not high cosine similarity in Figure 9 would belong to this 
category. In this manner, the higher similarity is, the more strongly they can be 
judged to have a similar directional identity. However, low similarity shows no 
relationship to expected directions, and it is difficult to discuss the content of the 
coding from this exclusive information. 

In addition, we compare the starting point and ending point with the highest 
similarity combination in Figure 9. 

We labeled the difference vectors with their starting and ending points. 
The starting and ending points on the correct answer flow side were labeled 

with their base stage. The starting and ending points on the student side were 
labeled with the closest steps in distance to the based student’s vector. The per-
centages of the starting and ending labels matched were 33.9% for the first task 
and 23.2% for the second task. Of course, in the case of wrong coding, there is 
no validity to the starting and ending labels. It would be better to say about this 
result that about 30% of the student’s difference vector was about appropriate 
coding. In addition, including cases where only one of the labels matched, the 
percentages of labels that matched were 44.5% and 58.5%, respectively. Differ-
ence vectors include those toward a mistake and those fixed from a mistake. The 
increase from the percentage of both matched is considered these vectors. 

We checked the similarity with the direction of the correct answer flow by co-
sine similarity. As a result, we can say that a student’s appropriate coding can be 
identified in these coding stages by the similarity. The distance evaluation is an 
evaluation against source code at a point in time. In contrast, the directions 
evaluation is an evaluation of the differences in source code changes. It does not 
affect the difference even if any content is wrong except for the part that the 
student has changed. Therefore, directions evaluation can help measure the va-
lidity of thinking that may be missed in distance evaluation. 

However, if a student’s coding is wrong, evaluation by cosine similarity is not 
easy. This is because it is necessary to prepare a difference vector for the pattern 
we want to identify. It is difficult to prepare for a variety of error patterns in ad-
vance. To make it possible, it is preferable to gather data on students’ answers in 
advance and discover typical mistake patterns that occur in the answers. It 
would allow us to evaluate the student’s coding in three categories: correct, typi-
cally mistaken, and other (singularly mistaken). 

6. Conclusion 

In this paper, we proposed a method to evaluate students’ thinking steps based 
on their coding vectors. We visually checked the paths of the solution process 
and the students’ thinking steps in scatter plots with PCA. This method allows 
instructors to easily observe students’ coding contents in a group study. We con-
firmed the validity of using distance from correct answer flow as a quantitative 
evaluation indicator. Moreover, scaled distances can result in common thre-
sholds for multiple tasks. Directions evaluation by cosine similarity gives us a 
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more certain judgment of the thinking step. However, this method requires la-
bels for comparison. Our future task is to expand the generality and range of ap-
plications for similarity evaluation. 

We should continue validation in order to show more clearly that this theory 
can be applied to educational programming. In conjunction, it is necessary to 
determine the range of programming for which this evaluation is valid. It is im-
portant for future development to confirm the possibility of applying this me-
thod not only to figure drawing, but also to various types of tasks. We would like 
to extend our evaluation theory based on the findings of this paper. One possible 
approach is the introduction of probability theory to distance evaluation. 
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