
Creative Education, 2023, 14, 1945-1964
https://www.scirp.org/journal/ce

ISSN Online: 2151-4771
ISSN Print: 2151-4755

DOI: 10.4236/ce.2023.1410124 Oct. 17, 2023 1945 Creative Education

Evaluating Prospects in Programming with
Features in Graphic Function Use

Tomoharu Kobayashi1, Hiromitsu Shimakawa1, Fumiko Harada2

1Graduate School of Information Science and Engineering, Ritsumeikan University, Shiga, Japan
2Research Organization of Science and Technology, Ritsumeikan University, Shiga, Japan

Abstract
In this paper, we propose a quantitative evaluation method of students’
thinking in group learning. Thinking evaluation will become increasingly
important in programming education in Japan. However, it is impossible for
instructors to single-handedly evaluate their students’ thinking at the same
time. It is necessary to provide a quantitative evaluation method that can be
applied to a variety of educational situations in order to help instructors. We
define coding vectors based on students’ source code that will serve as an in-
dicator of evaluation. Moreover, we judge students’ prospects through a 3-step
analysis with their coding vectors. We analyzed coding vectors for 22 partici-
pants obtained through a task experiment. We evaluated students’ thinking
from three perspectives: visualization, distance, and direction. As a result, all
three ways had the ability to grasp students’ thinking content. Coding vectors
allow us to comprehensively judge students’ coding steps and their prospects.
In this paper, we discuss the expressive power of coding vectors for coding
content, and task settings appropriate for them.

Keywords
Programming, Computational Thinking, Source Code, Figure Drawing, Feature
Vector, PCA

1. Introduction

From the 2020 academic year onward, education in Japan has been based on the
new government course guidelines. As a result, programming education has be-
come compulsory in primary and secondary education and has gained impor-
tance. In the programming education guide published by the Ministry of Educa-
tion, Culture, Sports, Science, and Technology, the term “programming think-

How to cite this paper: Kobayashi, T.,
Shimakawa, H., & Harada, F. (2023). Eva-
luating Prospects in Programming with
Features in Graphic Function Use. Creative
Education, 14, 1945-1964.
https://doi.org/10.4236/ce.2023.1410124

Received: July 17, 2023
Accepted: October 14, 2023
Published: October 17, 2023

Copyright © 2023 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

 Open Access

https://www.scirp.org/journal/ce
https://doi.org/10.4236/ce.2023.1410124
https://www.scirp.org/
https://doi.org/10.4236/ce.2023.1410124
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

T. Kobayashi et al.

DOI: 10.4236/ce.2023.1410124 1946 Creative Education

ing” is used as a keyword. This programming thinking is a mindset and ability
that can be developed through programming education. In a word, it is the abil-
ity to construct procedures. The guide says that one major goal is to develop
programming thinking. A method to grasp students’ thinking about coding is
important.

However, there are two educational problems with it. First, it is not clear how
to evaluate the thinking process. This is due to the lack of experience in the new
educational system. Second, it is difficult to evaluate thinking ability in group
learning. To evaluate thinking skills, for example, simple calculations and cor-
rect memorization of theorems are not enough. As in a proof problem, the
process of how to use them to derive the necessary matter is important. Howev-
er, it is physically impossible for a teacher to observe the thinking processes of
more than ten students at a time. It is also tough to evaluate tasks with different
characteristics using a common indicator, as there is currently no standard. The
subjective judgments of instructors and the impressions of students are different
standards for each individual, and they may change with one’s mood. A new
evaluation method in programming education is required to solve the two prob-
lems in Japan.

Programming thinking mentioned above, which is an educational goal in Ja-
pan, is referred to as computational thinking in other countries which have
started programming education earlier than Japan (Wing, 2006). In countries
with advanced programming education, there are many studies that relate pro-
gramming to computational thinking. Tedre et al. provide some notes on future
research based on the history of computational thinking (Tedre & Denning,
2016). Sun et al. showed positive effects of programming on computational think-
ing skills through a meta-analysis (Sun et al., 2021). They also provided a discus-
sion of good design factors of programming education. Studies from overseas such
as these studies indicate a high interest in thinking ability about programming in
primary education.

Tikva et al. and Fagerlund et al. present a review of the literature related to
computational thinking (Tikva & Tambouris, 2021; Fagerlund et al., 2021). These
studies point out a lack of indicative research examples in the evaluation of
computational thinking and the causes of the lack. One of the causes is the diffi-
culty of grasping the reality of the thinking process itself. Another cause is that
the results of each study may be dependent on regional differences and curricu-
lums. Since programming thinking is based on the idea of computational think-
ing, problems related to computational thinking are common. Therefore, solving
these two causes is necessary to tackle the educational problems in Japan.

This paper presents a method to solve these educational problems. As the first
solution to these problems, this paper deals with a thought-readable task suitable
for primary education. In this way, we clearly define how we grasp the thinking
in programming. Second, the method is independent of the environment and
the individual so that it can be applied to a variety of situations. To realize this

https://doi.org/10.4236/ce.2023.1410124

T. Kobayashi et al.

DOI: 10.4236/ce.2023.1410124 1947 Creative Education

solution, this paper focuses on the development of a quantitative evaluation in-
dicator as its policy.

Specifically, the policy consists of 2 issues: dealing with drawing tasks and
converting source code into features. Introducing these policies, the paper solves
the problems related to programming thinking.

2. Policies for Issue Resolution
2.1. Use of Figure Drawing Tasks

There are different styles of programming, depending on the content of the task
being handled. It is not realistic to present an evaluation method covering all of
them. We should consider characteristics of tasks that are suitable for beginning
students. In programming education in Japan, the majority of elementary schools
use visual languages such as Scratch and Viscuit. These tools are used because
they are suited for primary education.

Methods of operation are sensible and user-friendly. It is easy to recognize
mistakes because the execution results can be visually confirmed.

In addition, the programming guide in Japan introduces the task of drawing
polygons. In figure drawing tasks, students directly recognize their own coding
content. Molina et al. confirmed that displaying text and images together en-
hances students’ understanding of elementary education about geometry (Molina
et al., 2018). Procedures that draw figures are easier to interpret for beginning
students than procedures without a clear image. Programming tasks that have
visual results such as figure drawing is easy to tackle for beginners. We believe
that a figure drawing task is one of the tasks in which students’ thinking is most
easily reflected.

To search for an evaluation method for thinking activities during program-
ming, we suggest limiting the target tasks in this paper. There are two important
points. The first is to target intuitive tasks applicable to elementary education.
The reason is obvious from programming tasks adopted in elementary education
in Japan.

The second is that the structure of the solution is unique. Tanigawa et al. have
found that there are common patterns among students in figure drawing tasks
(Tanigawa et al., 2011). In programming, students have many points where they
must select the right options to reach the correct codes. The work examines the
order of functions to draw a figure. From the function call logs, the work has
succeeded in identifying points where many students may take options leading
to wrong answers. In the tasks they use, the drawing order is specified. If the or-
der of drawing is not specified, there will be an unlimited number of correct
procedures, which makes it difficult to distinguish good thinking from wrong
one. Similarly, if a correct procedure can be described by a series of different
functions, it becomes difficult to determine the correctness of the procedure.

It is necessary that the flow of function calls should be unique to evaluate the
thinking during the task. If it is the case, it is possible to evaluate students’

https://doi.org/10.4236/ce.2023.1410124

T. Kobayashi et al.

DOI: 10.4236/ce.2023.1410124 1948 Creative Education

thinking patterns from their answers, as in the study. Tanigawa et al. only focus
on the final answers. A method is required to evaluate students’ thinking during
solving a task.

2.2. Conversion of Source Code to Features

In evaluating students’ thinking activities during programming, time-series data
representing students’ activities is necessary. Bosch et al., Grafsgaard et al. and
Jaques et al. have estimated students’ emotions in learning including program-
ming from sensing data of body movements and eye gaze (Bosch et al., 2014;
Grafsgaard et al., 2014; Jaques et al., 2014). Many studies estimate tendencies
during learning from sensing data that seem to be useful. However, in actual
education, it costs too high to provide a sensor for each student.

Let us see what kind of data is being dealt with in studies that focus on com-
putational thinking. Guggemos has shown a relationship between students’ com-
putational thinking ability and surrounding factors (Guggemos, 2021). Wei et al.
have presented the direction of an effective approach for improving computa-
tional thinking by conducting a controlled experiment in elementary school
subjects (Wei et al., 2021). Different from sensing data, these studies connect the
quality of computational thinking to indicators such as questionnaires for stu-
dents and the scores that students earned on tasks.

However, data obtained after finishing a task cannot be used to estimate
thinking about the contents of the task in the process of answering it. If the data
are not time-series data that occur during the solving process, we will miss the
timing of interventions that are closely related to the contents of tasks. Moreo-
ver, personal metrics such as questionnaires are subjective labeling, and the re-
sults are dependent on environments and individuals.

Source code changes while a student solves a task. Unless it is a large pro-
gramming task, there is only one source code file to edit. By observing this file
sequentially, source code can be regarded as time-series data, such as sensor da-
ta. The source code is the student’s solution process itself. Intervention by stu-
dents’ thinking is reflected in it every time they change their minds. Therefore, it
is quite possible to read the student’s thinking toward a task from time-series
source code.

Unfortunately, source code is not utilized in the area of thinking evaluation.
Cosma et al. showed the result of research on plagiarism of source code (Cosma
& Joy, 2008). Djuric et al. designed a source code similarity detection system that
is more promising than existing systems (Đurić & Gašević, 2013). A major theme
in source code research is plagiarism. This is probably because the source code
serves as a submission for the instructors.

Lazar et al. proposed a method of automatically presenting necessary fixes to a
program through text-based program synthesis (Lazar & Bratko, 2014). This is
an example of providing students with guidelines during the solution, based on
their editing of source code. However, it is difficult to express task contents in

https://doi.org/10.4236/ce.2023.1410124

T. Kobayashi et al.

DOI: 10.4236/ce.2023.1410124 1949 Creative Education

detail with text-based ideas. It is possible to recognize the existence of a descrip-
tion as text. It is difficult to determine the role of the description from the text
information. There is probably no previous method for estimating students’ think-
ing on task contents from time-series data of source code.

3. Quantitative Evaluation by Coding Vectors
3.1. Creation of Coding Vectors

In this section, we describe the procedure for creating coding vectors. We call
the vector data created by this method a coding vector. We named it a coding
vector because it is a vector representation of the data during coding. In addi-
tion, we discuss its characteristics along with the procedure for its creation. Fig-
ure 1 shows the procedure for creating feature vectors. We describe the proce-
dure in Figure 1 in three main parts.

The first is to obtain the source code. While students solve a programming
task, their solution, source code, changes. We save their source code sequential-
ly. The bundle of source code is the time series data of one’s solution process. As
can be seen from Figure 1, source code at a point in time t is a single sample of
time-series data. We believe that source code can potentially show the change in
students’ thinking. It is also necessary to transform source code into a form that
facilitates thinking evaluation. Therefore, it is important not to miss the results
of programs expressed in source code by transformation.

The second is to obtain function logs. Functions logs refer to records of func-
tions that are called when a program is executed. One of the logs is a log of a
function name and an argument value when the function is called. We use func-
tion logs to transform source code into a form that is easier to analyze. The

Figure 1. Procedure of coding vectors creation.

https://doi.org/10.4236/ce.2023.1410124

T. Kobayashi et al.

DOI: 10.4236/ce.2023.1410124 1950 Creative Education

number of functions and actions marked as text is different from the number of
functions and actions called in execution. This is because of the use of repetition
and conditional branches, and changes of variable values as arguments. Function
logs include the number of times the function is called and the value of an ar-
gument. Therefore, the content that students are trying to realize can be properly
recognized by function logs. We obtain function logs from the source code at
each point in time obtained in the previous step. Time-series data of function
logs are created with the same number of samples as the source code.

The third is to obtain coding vectors. Function logs are a good representation
of what students are trying to express. However, this is not easy to analyze me-
chanically. The vertical logs are not suitable for calculating values as indicators.
Therefore, we transform the data from function logs to vector type. The function
log is a combination of functions and arguments. We count how many times
each combination has been called from a single function log. If the number of
combination types is n, the result of this measurement is an n-dimensional vec-
tor. By converting the time-series data of function logs into vectors, we obtain
data in tabular form, with a vertical length of t and a horizontal length of n. This
tabular data represents the student’s solution process. The vertical length of the
table is the number of samples in a time series. The horizontal length of the table
is the number of combinations of functions and arguments required for a task.
In other words, columns of coding vectors are features to represent the coding
details. The blank source code has 0 values for all features and can be regarded as
the origin. In other words, the values of coding vectors represent the total amount
and direction of coding.

Through these steps, coding vectors can be obtained. The coding vector, which
is the measure of evaluation, should well represent the student’s thinking during
the solution. We then describe our thoughts on the characteristics of vectors.
The contents of source code and function logs would not change depending on
the method of obtaining them. However, coding vectors are different. The col-
umns as features should contain the necessary combinations for a task. Some
functions would not require arguments. It is better to record the number of func-
tion calls regardless of the arguments. The problem is the wrong use of func-
tions. In terms of covering students’ thinking, it is necessary to take from the in-
dicators even when they make mistakes. To do this, it is impossible to simply
count combinations for correct content. Coding vector features must also include
information about wrong combinations. However, if the argument is a continuous
value, the number of combinations required for the expression is countless. It is
difficult to cover all wrong combinations. In this paper, if a value of an argument is
a mistake, we count it as the number of mistakes in the function. This is the basic
characteristic of coding vectors to represent students’ thinking.

3.2. Assumptions about Solution Process

In Section 3.1, we defined coding vectors for quantitative evaluation, based on

https://doi.org/10.4236/ce.2023.1410124

T. Kobayashi et al.

DOI: 10.4236/ce.2023.1410124 1951 Creative Education

the idea that source code is a potential expression of thinking about tasks. Next,
it is important to grasp changes in coding vectors caused by the progression and
regression of students’ thinking states. In other words, we should consider how
the activity of thinking develops during programming. In this section, we discuss
our thoughts about students’ programming solution process before considering
how to utilize coding vectors.

When students solve programming tasks, their answers are expected to ap-
proach the correct answer in a stepwise manner.

This is the first assumption. In general programming, it is difficult to build a
perfect flowchart-like structure from the beginning. A novice programmer un-
familiar with programming would build with the goal of reaching the middle of
the structure. They would also take other ways, such as putting off the condi-
tional branches. It is also expected that students will naturally proceed with pro-
gramming from the front of the flow. This is because the correctness of the pre-
vious function’s implementation determines the conditions for creating the next
function. If the previous function incorrectly deals with a common variable, the
next function cannot begin in the correct condition in the first place. Imple-
menting from the front and building up each step so that the functionality works
correctly is a natural way to solve programming tasks. This assumption will be
especially true for figure-drawing tasks. If a unique procedure is established, like
a drawing song, students will naturally implement it according to that proce-
dure. In the case of drawing tasks, this is because the coordinates of an object,
such as a paintbrush, are affected by the previous step. The position and direc-
tion of the object after the previous procedure are directly the conditions before
starting the next procedure.

Second, we believe that programming activities follow a transition similar to a
tree structure. As in the first assumption, the student’s thinking is considered to
approach the correct answer in stages. In other words, the contents required for
a correct answer can be divided into stepwise elements. Stepwise elements are
necessary for coding, such as setting up components consisting of functions and
variables, repetitive expressions, and conditional branches. If a unique procedure
for a task is established, the order in which each element should be implemented
will naturally be established. Students may be able to implement stepwise ele-
ments in one fell swoop if they are highly skilled. However, even in that case, it
follows an absolute forward direction to approach the correct answer. There is
an absolute flow of solutions common to students in coding programming tasks.

Of course, it is possible to make a mistake during the solution. A mistake is to
code with a misrepresentation of the element one is trying to realize. If the step-
wise flow approaching the correct answer is viewed as linear, then mistakes are
flows branching off from it. Students who make a mistake will make revisions on
the same element until the result of that run is correct. Fixing a mistake can be
regarded as finding the correct flow for the element they were thinking about.
Students then seek the correct flow for the next step in a similar manner. In this

https://doi.org/10.4236/ce.2023.1410124

T. Kobayashi et al.

DOI: 10.4236/ce.2023.1410124 1952 Creative Education

way, students’ activities solving a task spread out like a tree structure. The step-
wise flow of correct answers is the central trunk, and patterns of mistakes exist
as branches. In the next section, based on these assumptions, we propose a me-
thod of thinking evaluation using coding vectors.

3.3. Distance Evaluation of Coding Vectors

Coding vectors are created based on source code that reflects students’ thinking
activities. Therefore, the value of the coding vector is a coordinate that represents
the stage of the student’s thinking during a task. The number of columns of
coding vectors, or of features, is the number of dimensions. It means that vector
data at each point in time has a coordinate in a multidimensional space. There-
fore, we try to grasp the changes in students’ thinking activities by observing the
movement of coordinates in time series. With reference to the assumptions in
section 3.2, there are vectors that belong to a correct flow in coding vectors.
These vectors can be viewed as a single connected constellation in a multidi-
mensional space. By connecting several source codes that satisfy the stepwise
elements in a sequence, the coding flow that should be followed in the task can
be represented in space. Based on this idea, we propose a three-step quantitative
thinking evaluation by coding vectors. Before explaining our method, we show
an image of evaluations in Figure 2.

The first is the visualization of coding vectors through dimensional compres-
sion. We assumed that the flow toward a correct answer existed in stages. In or-
der to recognize this spatially, we need to reduce the dimensions of features to at
least three. Therefore, we use PCA, a method of dimensional compression. We
check coding vectors compressed into two dimensions by PCA on a
two-dimensional graph. This method allows visualization of the correct flow that

Figure 2. Evaluation based on coding vectors.

https://doi.org/10.4236/ce.2023.1410124

T. Kobayashi et al.

DOI: 10.4236/ce.2023.1410124 1953 Creative Education

should be followed in a task. It would also provide a visual check on how far the
source code in the student’s solution is from the correct flow. This method is an
easy way for anyone to check the path from a start to a goal.

The second is the determination of thinking separation degree based on dis-
tance. When a student is solving a task, the correctness of source code at a given
point in time may be judged by whether it follows the correct flow. The correct
flow in the feature space is formed from points with multiple coordinates, like a
constellation. If the source code in a solution matches the stepwise correct an-
swer, then these two coordinates in the feature space will also match. In the case
of source code with a mistake, the coordinate exists at a distance from the coor-
dinates of correct answers. In addition, we consider the case of a mistake on a
certain phasing factor. In that case, the coordinate of a mistake would be located
around a coordinate that correctly satisfies that element. This idea is based on
the assumptions in section 3.2. The distance between coordinates can be calcu-
lated based on a definition of Euclidean distance. Correct coding would be close
to zero distance from correct answers. Incorrect coding would be so far away
from them that its content would be out of degree. By observing a distance, we
would be able to determine what stage students are at, including any incorrect
codes.

The third is an evaluation of prospects focused on time-series changes. We be-
lieve that students’ thinking, together with their behavior, can be divided into
three main categories. There are three types: thinking that has a right prospect
and correctly realizes an element, thinking that has no right prospect and incor-
rect coding, and thinking that has no right prospect and stops coding. In order
to judge these from coding vectors, we should focus on time-series changes. As
coding occurs, the coding vector also changes, regardless of the correctness of
the coding. If the student’s hand stops moving, the coding vector will not change.
Changes in coding vectors are closely related to coding according to the stu-
dent’s thinking. Therefore, the existence of students’ prospects can be deter-
mined from the change in the coding vector. In particular, we focus on the
change between vectors, which is a vector of difference. The difference between
two vectors can be regarded as the direction of movement in space. The differ-
ence vector means the direction of the coding. Therefore, we estimate the cor-
rectness of students’ prospects by the direction of difference vectors. In particu-
lar, we calculate cosine similarity between difference vectors in the correct an-
swers flow and difference vectors generated by coding. If the direction of the
student’s stepwise coding is correct, it should have a high similarity to one of the
directions in a correct flow.

4. Task Experiment for Data Collection
4.1. Outline of Task Experiment

We conducted a task experiment to gather source code. The programming task
provided is a graphic drawing task. The number of tasks is two, and the standard

https://doi.org/10.4236/ce.2023.1410124

T. Kobayashi et al.

DOI: 10.4236/ce.2023.1410124 1954 Creative Education

solution time is 30 minutes for both tasks. The programming language used is
Python. Turtle Graphics, the standard Python library, is used for drawing graph-
ics. Drawing contents consist of five functions in Turtle Graphics functions.
Those functions are forward(), left(), circle(), penup(), and pendown(). These
were employed as operations for moving forward, rotating, drawing circles, and
orbiting or not.

Figure 3 shows the actual task page displayed on a PC screen. The left side of
the page is a drawing content. A Gif animation is placed on the left, and a com-
pleted drawing is placed on the right, side by side. Below them, there is a sen-
tence of additional explanation about numerical values. The right side of the
page is an editor. There is a source code editor at the top, and a box with debug
log output at the bottom. There is an execution button in the center, which can
be pressed to check the drawing result with the current source code.

26 university and graduate students participated in the task experiment. All
participants had learned how to use Python. They understood how to handle
drawing functions with 10 minutes tutorial. We told participants to ask their
supervisors if they had any questions about descriptions. This is because we
want to eliminate the time of stagnation caused by syntax errors. In addition,
because the participants used their own laptops, they were able to code as they
normally code.

We gathered source code data for 22 of the 26 participants through this expe-
riment. We also recorded logs of keyboard input at the same time. Based on the
response of three participants at the beginning, the level of difficulty and nota-
tions were refined. Therefore, the data of these three participants were excluded.
One of the other participants lost information on keyboard inputs due to im-
proper actions during the task. It was necessary to refer to keyboard inputs for
data processing, which will be explained in the next section. Data from this one

Figure 3. Task page on PC screen.

https://doi.org/10.4236/ce.2023.1410124

T. Kobayashi et al.

DOI: 10.4236/ce.2023.1410124 1955 Creative Education

participant was also excluded. As a result, 16 (73%) were able to solve the first
task, and 18 (82%) were able to solve the second task. In both tasks, the number
of participants who solved within a standard 30 minutes was less than half of all
participants accomplishing the tasks. Other participants were divided into two
groups: those who solved in more than 30 minutes or those who did not finish in
more than 30 minutes and gave up. Therefore, the difficulty level of both tasks
was suitable for them.

We gathered source code data for 22 of the 26 participants through this expe-
riment. We also recorded logs of keyboard input at the same time. Based on the
response of three participants at the beginning, the level of difficulty and nota-
tions were refined. Therefore, the data of these three participants were excluded.
One of the other participants lost information on keyboard inputs due to im-
proper actions during the task. It was necessary to refer to keyboard inputs for
data processing, which will be explained in the next section. Data from this one
participant was also excluded.

As a result, 16 (73%) were able to solve the first task, and 18 (82%) were able
to solve the second task. In both tasks, the number of participants who solved
within a standard 30 minutes was less than half of all participants who were able
to solve the task. Other participants were divided into two groups: those who
solved in more than 30 minutes or those who did not finish in more than 30
minutes and gave up. Therefore, the difficulty level of both tasks was suitable for
them.

4.2. Attention for Conversion to Coding Vectors

In the task experiment, we recorded source code files every second. The one-second
interval was set to grasp well changes caused by coding. The number of recorded
files would be 1800 for 30 minutes of solution time. After counting files for 22
participants, the average solution time for the first task was about 34 minutes,
and for the second one, about 36 minutes. The number of features required for
the two tasks was 30 and 23, respectively. These features consist of the total
number of each function, the correct combination of function and arguments,
and the number of each function call with incorrect arguments.

Some of the recorded source code causes syntax errors when executed. This is
because they contain code that was saved while the student was typing. Function
logs cannot be obtained from them. In this case, we took over the feature values
obtained from the latest source code that could be executed successfully. This
method enables assigning coding vectors even to source code that cannot be ex-
ecuted. In other words, we should wait to change coding vectors until one cod-
ing session has been completed.

Even if no errors occur, source code that is different from the student’s ideas
may be recorded. For example, when a student writes the value of an argument
as 1000, the value might be recorded as 1, 10, or 100, depending on the timing of
the recording. In another example, when a student is indenting multiple lines

https://doi.org/10.4236/ce.2023.1410124

T. Kobayashi et al.

DOI: 10.4236/ce.2023.1410124 1956 Creative Education

sequentially, a state may be recorded in which not all indentations are complete.
After observing the experiment data, we found some source code with these
wrong conditions. In particular, the indentation operation was a relatively long
coding process. Coding vectors at that time were expected to represent wrong
expressions, regardless of the student’s thinking. Therefore, we considered it ne-
cessary to make an exception at the step of obtaining the function logs. We ob-
served logs of participants’ keystrokes and found that there were at least five
seconds between each coding session. Based on this finding, we processed these
the same as the source code in error as long as a keystroke was occurring within
5 seconds. We believe that this processing makes students’ thinking and coding
vectors more relevant.

5. Coding Vectors Analysis
5.1. Visualization with PCA

For coding vectors collected in the task experiment, we show analysis results ac-
cording to the method described in section 3.3. First, we check the spread of the
solution process by visualization with PCA. Before applying PCA, data from 22
participants were normalized. The minimum value for each feature is 0 and the
maximum value is the number of calls required for the final answer.

We specially processed numerical values of the number of features for calls
with wrong arguments. The total number of mistakes can increase dramatically
compared to the number of calls with a particular argument. Therefore, the val-
ues should be appropriately suppressed toward PCA. We took the natural loga-
rithm for values greater than or equal to 0 for these features and added 1. If the
original value is 1, it remains 1. The closer it is to 1, the more it retains the face
of its size. We can considerably reduce the size of outliers, even those that exceed
100. This process allowed us to equalize the influence of each feature on the
PCA.

Figure 4 shows a scatterplot of the flow of correct answers in the two tasks. Its
two axes are the first and second principal components of the PCA. The contri-
bution ratio up to the second principal component was 0.644. The flow of cor-
rect answers was divided into about 10 stages, such as drawing a polygon, draw-
ing a circle, moving to the next starting point, repeating the process n times, and
so on.

In Figure 4, we can see the route from a blank paper to a completed drawing
by coloring. This route extends in a relatively coherent direction. In particular, at
the end of the process, for the repetition of graphic elements, these points are
placed in a straight line. From both scatter plots, it can be seen that the path to
the correct answer consists of three major linear paths, at the beginning, middle,
and end of the path. In summary, figure drawing programming has stepwise
elements, and they are also coded according to a certain direction. We can see
this trend in Figure 4.

Figure 5 shows a scatterplot of the solution process for some of the participants.

https://doi.org/10.4236/ce.2023.1410124

T. Kobayashi et al.

DOI: 10.4236/ce.2023.1410124 1957 Creative Education

Figure 4. Coding vectors flow of correct answers.

There are several examples separated into completed and uncompleted solution
processes. Each point is a coding vector obtained from per-second source code.
Time series data are colored from blue to red from the start of a task to its end. It
should be noted that while coding vectors do not change, their coordinates are
the same, so dots in Figure 5 will overlap during those periods. Moreover, the
flow of correct answers shown in Figure 4 is marked by gray triangles.

On the completed side, there are examples that follow this flow very well. It
shows that these participants followed the expected steps in their thinking. It is
clear that these participants understood the next stepwise element to be imple-
mented and coded it correctly. However, on the completed side, there are exam-
ples where their final answer does not overlap with the correct answer dot. The
reason is that the timing to stop drawing was different. Participants with under-
standing expressed the process of moving to the next starting point after draw-
ing a shape. Other participants are missing the process of moving to the next
starting point at the end of the drawing. The process does not involve an orbit,

https://doi.org/10.4236/ce.2023.1410124

T. Kobayashi et al.

DOI: 10.4236/ce.2023.1410124 1958 Creative Education

Figure 5. Solution process of participants.

so it is not reflected in the finished image as a drawing. We grouped such cases
as the completed side for this analysis.

Next, there are examples with dots placed in space away from the flow of cor-
rect answers. It shows that participants made the wrong use of functions in their
source code. It also shows the stage before mistakes were made and the stage af-
ter fixes were made, based on the color information. There are some durations
when one or two dots pop up in space away from correct answers. It means that
the mistake was fixed with a small number of touches. In contrast, there are
some periods, especially in the uncompleted, where many dots are scattered in
outer space. It means that participants make repeated fixes but are not able to fix
them well. In other words, it is possible to visually check for three patterns:
which stages they were able to think successfully, when mistakes were made, and
whether they are struggling to fix those mistakes.

Finally, the uncompleted side had the characteristic of stagnation. Many on
the uncompleted side stagnate in the early stages. We find that they stay in a
state of mistake for a long time, because the color of the dots does not change
continually. The reason why they cannot solve a task until the end is that they
are unable to move forward into the next stage because of a lack of prospects.

Therefore, we can judge students’ lack of prospects, which is the cause of the

https://doi.org/10.4236/ce.2023.1410124

T. Kobayashi et al.

DOI: 10.4236/ce.2023.1410124 1959 Creative Education

stagnation of the task, based on the long stay of coding vectors. Instructors can
easily recognize students’ thinking simply by observing the movement of coding
vectors. Therefore, even in a group study setting, it would be possible to judge
whether each student’s coding is going well on the spot. Specifically, we can judge
in detail the stage of thinking students reached, the occurrence of mistakes, and
the lack of prospects due to stagnation.

5.2. Distance Evaluation of Correctness

We confirmed the visualization analysis with up to a second principal compo-
nent. Next, we analyze the distance calculated from the base value of coding vec-
tors as a more accurate indicator. Columns of wrong arguments were processed as
we have done in section 5.1. This is to keep the recognition in line with PCA’s
results. We calculated Euclidean distances from the correct answers for coding
vectors of 22 participants. The distance from correct answers is a distance from
the nearest dot in the flow of correct answers shown in Figure 4.

Figure 6 shows the distribution of distances from correct answers. The total
number of coding vectors for the first task is 44,708 and the number for the
second task is 48,037. In Figure 6, outliers are excluded from the first task. This
is because some of the distances from one’s coding vectors were over 600 values.
The histogram of the first task does not include these 145 (0.3\% of total) out-
liers.

The number of zeros is by far the largest number for both tasks in Figure 6.
This is because the coding vectors of participants match the vectors of the ex-
pected correct answer flow. It also has a relatively large number of cases on the
left side. These cases are source code with a small number of wrong function
calls. In particular, students’ solutions in the early steps would fit this case, since
the number of functions required is small in itself.

In contrast, it would be far from a correct answer if the distance is greater
than 10. The more advanced the steps of a task, the greater increases the number
of wrong calls that occur from a single writing error. Therefore, the distance

Figure 6. Histograms of Euclidean distance in two tasks.

https://doi.org/10.4236/ce.2023.1410124

T. Kobayashi et al.

DOI: 10.4236/ce.2023.1410124 1960 Creative Education

from correct answers would have more effect on thinking evaluation if judged
based on the steps in the coding process. In this way, we can evaluate quantita-
tively the steps of students’ thinking as well as visualization by using the distance
from correct answers as an indicator. In particular, it is said that the student has
a good understanding of the steps if this distance is close to zero.

We describe a point that should be kept in mind in using distance as an indi-
cator. The distribution is different for the first and second tasks in Figure 6. The
distribution is different for the two tasks in Figure 6. A common threshold for
these tasks does not exist in Figure 6. However, we might get the threshold by
generalizing. As mentioned earlier, it is expected that the number of mistakes is
proportional to the step students reached.

Figure 7 shows the result of dividing values used in Figure 6 by the number
of all function calls. In other words, the distance was scaled by the progress of
the task. Both shapes are closer to mountains than in Figure 6. The center of the
mountain distribution is about 0.2 in both cases. In this way, the distribution of
distances approaches the form of a probability distribution by scaling with the
number of function calls.

Based on the idea of probability distributions, we can judge that these cases on
the right side of Figure 7 are different, without the influence of progress. The
result in Figure 7 shows the possibility of finding a common threshold for tasks.

5.3. Directions Evaluation Based on Coding Changes

We have shown a method to quantitatively evaluate the degree of separation by
focusing on the current source code in Section 5.2. Next, we try a more detailed
analysis by focusing on changes in time-series source code. Each coding vector
represents the current coding content. These differences can be regarded as vec-
tors with the amount and direction of movement from the content before the
change to the content after the change. We assumed that the student’s solution
process would follow the flow of correct answers. The arrows connecting each
dot in Figure 4 represent the direction they should follow. Therefore, we evaluate

Figure 7. Histograms of scaled distance in two tasks.

https://doi.org/10.4236/ce.2023.1410124

T. Kobayashi et al.

DOI: 10.4236/ce.2023.1410124 1961 Creative Education

the correctness of coding by cosine similarity with these difference vectors.
Figure 8 is a box plot of the number of coding changes from 22 participants.

As described in section 4.2, the coding vector changes when there are no execu-
tion errors and no key input for 5 seconds. Figure 8 shows that both tasks aver-
aged about 25 changes in students’ coding vectors. Difference vectors were ob-
tained for two coding vectors before and after these changes occurred. The dif-
ference vector of correct answers flow was prepared by the permutation method.
This is because skipping or going back is expected for stepwise elements. For
example, the first task has 13 vectors of correct answers flow, so there are 156
difference vectors.

Distributions of cosine similarity are shown in Figure 9. This cosine similarity
value is the highest value of the combination of the student’s difference vector
and difference vector of correct answer flow. If cosine similarity is 1, the stu-
dent’s coding is in perfect sync with the ideal stepwise coding. Cases where the
cosine similarity exceeds 0.8 would also be the result of equivalent ideal coding.
Figure 9 shows that there is an ideal coding in students’ difference vectors. Of
course, students’ difference vectors include changes related to mistakes. The case
of mistakes does not have a high similarity to ideal difference vectors in the first

Figure 8. Box plot of cording changes in solution.

Figure 9. Histogram of cosine similarity with direction.

https://doi.org/10.4236/ce.2023.1410124

T. Kobayashi et al.

DOI: 10.4236/ce.2023.1410124 1962 Creative Education

place. The cases with not high cosine similarity in Figure 9 would belong to this
category. In this manner, the higher similarity is, the more strongly they can be
judged to have a similar directional identity. However, low similarity shows no
relationship to expected directions, and it is difficult to discuss the content of the
coding from this exclusive information.

In addition, we compare the starting point and ending point with the highest
similarity combination in Figure 9.

We labeled the difference vectors with their starting and ending points.
The starting and ending points on the correct answer flow side were labeled

with their base stage. The starting and ending points on the student side were
labeled with the closest steps in distance to the based student’s vector. The per-
centages of the starting and ending labels matched were 33.9% for the first task
and 23.2% for the second task. Of course, in the case of wrong coding, there is
no validity to the starting and ending labels. It would be better to say about this
result that about 30% of the student’s difference vector was about appropriate
coding. In addition, including cases where only one of the labels matched, the
percentages of labels that matched were 44.5% and 58.5%, respectively. Differ-
ence vectors include those toward a mistake and those fixed from a mistake. The
increase from the percentage of both matched is considered these vectors.

We checked the similarity with the direction of the correct answer flow by co-
sine similarity. As a result, we can say that a student’s appropriate coding can be
identified in these coding stages by the similarity. The distance evaluation is an
evaluation against source code at a point in time. In contrast, the directions
evaluation is an evaluation of the differences in source code changes. It does not
affect the difference even if any content is wrong except for the part that the
student has changed. Therefore, directions evaluation can help measure the va-
lidity of thinking that may be missed in distance evaluation.

However, if a student’s coding is wrong, evaluation by cosine similarity is not
easy. This is because it is necessary to prepare a difference vector for the pattern
we want to identify. It is difficult to prepare for a variety of error patterns in ad-
vance. To make it possible, it is preferable to gather data on students’ answers in
advance and discover typical mistake patterns that occur in the answers. It
would allow us to evaluate the student’s coding in three categories: correct, typi-
cally mistaken, and other (singularly mistaken).

6. Conclusion

In this paper, we proposed a method to evaluate students’ thinking steps based
on their coding vectors. We visually checked the paths of the solution process
and the students’ thinking steps in scatter plots with PCA. This method allows
instructors to easily observe students’ coding contents in a group study. We con-
firmed the validity of using distance from correct answer flow as a quantitative
evaluation indicator. Moreover, scaled distances can result in common thre-
sholds for multiple tasks. Directions evaluation by cosine similarity gives us a

https://doi.org/10.4236/ce.2023.1410124

T. Kobayashi et al.

DOI: 10.4236/ce.2023.1410124 1963 Creative Education

more certain judgment of the thinking step. However, this method requires la-
bels for comparison. Our future task is to expand the generality and range of ap-
plications for similarity evaluation.

We should continue validation in order to show more clearly that this theory
can be applied to educational programming. In conjunction, it is necessary to
determine the range of programming for which this evaluation is valid. It is im-
portant for future development to confirm the possibility of applying this me-
thod not only to figure drawing, but also to various types of tasks. We would like
to extend our evaluation theory based on the findings of this paper. One possible
approach is the introduction of probability theory to distance evaluation.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
Bosch, N., Chen, Y., & D’Mello, S. (2014). It’s Written on Your Face: Detecting Affective

States from Facial Expressions While Learning Computer Programming. In Intelligent
Tutoring Systems: 12th International Conference, ITS 2014 (pp. 39-44). Springer In-
ternational Publishing. https://doi.org/10.1007/978-3-319-07221-0_5

Cosma, G., & Joy, M. (2008). Towards a Definition of Source-Code Plagiarism. IEEE
Transactions on Education, 51, 195-200. https://doi.org/10.1109/TE.2007.906776

Đurić, Z., & Gašević, D. (2013). A Source Code Similarity System for Plagiarism Detec-
tion. The Computer Journal, 56, 70-86. https://doi.org/10.1093/comjnl/bxs018

Fagerlund, J., Häkkinen, P., Vesisenaho, M., & Viiri, J. (2021). Computational Thinking
in Programming with Scratch in Primary Schools: A Systematic Review. Computer
Applications in Engineering Education, 29, 12-28. https://doi.org/10.1002/cae.22255

Grafsgaard, J., Wiggins, J., Boyer, K. E., Wiebe, E., & Lester, J. (2014). Predicting Learning
and Affect from Multimodal Data Streams in Task-Oriented Tutorial Dialogue. In
Proceedings of the 7th International Conference on Educational Data Mining (EDM)
(pp. 122-129).

Guggemos, J. (2021). On the Predictors of Computational Thinking and Its Growth at the
High-School Level. Computers & Education, 161, Article 104060.
https://doi.org/10.1016/j.compedu.2020.104060

Jaques, N., Conati, C., Harley, J. M., & Azevedo, R. (2014). Predicting Affect from Gaze
Data during Interaction with an Intelligent Tutoring System. In Intelligent Tutoring
Systems: 12th International Conference, ITS 2014 (pp. 29-38). Springer International
Publishing. https://doi.org/10.1007/978-3-319-07221-0_4

Lazar, T., & Bratko, I. (2014). Data-Driven Program Synthesis for Hint Generation in
Programming Tutors. In Intelligent Tutoring Systems: 12th International Conference,
ITS 2014 (pp. 306-311). Springer International Publishing.
https://doi.org/10.1007/978-3-319-07221-0_38

Molina, A. I., Navarro, Ó., Ortega, M., & Lacruz, M. (2018). Evaluating Multimedia Learn-
ing Materials in Primary Education Using Eye Tracking. Computer Standards & Inter-
faces, 59, 45-60. https://doi.org/10.1016/j.csi.2018.02.004

Sun, L., Hu, L., & Zhou, D. (2021). Which Way of Design Programming Activities Is More

https://doi.org/10.4236/ce.2023.1410124
https://doi.org/10.1007/978-3-319-07221-0_5
https://doi.org/10.1109/TE.2007.906776
https://doi.org/10.1093/comjnl/bxs018
https://doi.org/10.1002/cae.22255
https://doi.org/10.1016/j.compedu.2020.104060
https://doi.org/10.1007/978-3-319-07221-0_4
https://doi.org/10.1007/978-3-319-07221-0_38
https://doi.org/10.1016/j.csi.2018.02.004

T. Kobayashi et al.

DOI: 10.4236/ce.2023.1410124 1964 Creative Education

Effective to Promote K-12 Students’ Computational Thinking Skills? A Meta-Analysis.
Journal of Computer Assisted Learning, 37, 1048-1062.
https://doi.org/10.1111/jcal.12545

Tanigawa, K., Harada, F., & Shimakawa, H. (2011). Detecting Learning Patterns during
Exercise from Function Call Logs. International Journal of Advanced Computer Science,
1, 30-35.

Tedre, M., & Denning, P. J. (2016). The Long Quest for Computational Thinking. In
Proceedings of the 16th Koli Calling International Conference on Computing Educa-
tion Research (pp. 120-129). Association for Computing Machinery.
https://doi.org/10.1145/2999541.2999542

Tikva, C., & Tambouris, E. (2021). Mapping Computational Thinking through Program-
ming in K-12 Education: A Conceptual Model Based on a Systematic Literature Re-
view. Computers & Education, 162, Article 104083.
https://doi.org/10.1016/j.compedu.2020.104083

Wei, X., Lin, L., Meng, N., Tan, W., & Kong, S. C. (2021). The Effectiveness of Partial Pair
Programming on Elementary School Students’ Computational Thinking Skills and
Self-Efficacy. Computers & Education, 160, Article 104023.
https://doi.org/10.1016/j.compedu.2020.104023

Wing, J. M. (2006). Computational Thinking. Communications of the ACM, 49, 33-35.
https://doi.org/10.1145/1118178.1118215

https://doi.org/10.4236/ce.2023.1410124
https://doi.org/10.1111/jcal.12545
https://doi.org/10.1145/2999541.2999542
https://doi.org/10.1016/j.compedu.2020.104083
https://doi.org/10.1016/j.compedu.2020.104023
https://doi.org/10.1145/1118178.1118215

	Evaluating Prospects in Programming with Features in Graphic Function Use
	Abstract
	Keywords
	1. Introduction
	2. Policies for Issue Resolution
	2.1. Use of Figure Drawing Tasks
	2.2. Conversion of Source Code to Features

	3. Quantitative Evaluation by Coding Vectors
	3.1. Creation of Coding Vectors
	3.2. Assumptions about Solution Process
	3.3. Distance Evaluation of Coding Vectors

	4. Task Experiment for Data Collection
	4.1. Outline of Task Experiment
	4.2. Attention for Conversion to Coding Vectors

	5. Coding Vectors Analysis
	5.1. Visualization with PCA
	5.2. Distance Evaluation of Correctness
	5.3. Directions Evaluation Based on Coding Changes

	6. Conclusion
	Conflicts of Interest
	References

