
Creative Education, 2022, 13, 750-767
https://www.scirp.org/journal/ce

ISSN Online: 2151-4771
ISSN Print: 2151-4755

DOI: 10.4236/ce.2022.133048 Mar. 15, 2022 750 Creative Education

Process-Oriented Understanding Estimation
Using Code Puzzles

Hiroki Ito1, Hiromitsu Shimakawa2, Fumiko Harada3

1Graduate School of Information Science and Engineering, Ritsumeikan University, Shiga, Japan
2College of Information Science and Engineering, Ritsumeikan University, Shiga, Japan
3Connect Dot Ltd, Kyoto, Japan

Abstract
In the current programming education, in order to assess the true ability
of learners, instructors still have no choice but to monitor their answering
process, standing by them. However, this is impractical for freshman training
in educational institutions and newcomer training in companies. Because of
the practicality, a large number of learners are assessed at once using written
tests or Web tests. They usually inquire of learners whether they know algo-
rithms and grammar. If not, they assess only the behavior of source codes
they submit, at best. Under the training based on such assessment, in reality,
not a few learners fail to acquire the skill of writing source codes. It implies
that the attainment of programming skills cannot be assessed only by tests on
knowledge and submitted source codes. This paper proposes a method for
analyzing learners’ understanding that focuses on their thinking process of pro-
gramming. The proposed method focuses on a code puzzle in which learners
arrange fragments of a program code to satisfy given requirements. It aims to
estimate the learner’s perspective on how fragments are built up to achieve
the requirements. Learners with low understanding are assumed to be differ-
ent from those with high in terms of the consistency of arranging ways to
compose code fragments for specific blocks in source codes. For the discrim-
ination, the method builds a model using a hidden Markov model. The in-
ternal state obtained from this model would help instructors grasp the learn-
er’s understanding level. The results of an experiment present that the hidden
Markov model produces meaningful values, which enable instructors to in-
terpret the understanding of individual learners.

Keywords
Programming Education, Learning Analytics, Computational Thinking, Code
Puzzle, Hidden Markov Model

How to cite this paper: Ito, H., Shimakawa,
H., & Harada, F. (2022). Process-Oriented
Understanding Estimation Using Code Puz-
zles. Creative Education, 13, 750-767.
https://doi.org/10.4236/ce.2022.133048

Received: January 20, 2022
Accepted: March 12, 2022
Published: March 15, 2022

Copyright © 2022 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

 Open Access

https://www.scirp.org/journal/ce
https://doi.org/10.4236/ce.2022.133048
https://www.scirp.org/
https://doi.org/10.4236/ce.2022.133048
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

H. Ito et al.

DOI: 10.4236/ce.2022.133048 751 Creative Education

1. Introduction

The current research trends in the programming education field indicate that
many studies are trying to predict performance and learners who drop out (Hel-
las et al., 2019). However, despite their efforts, there are many learners who drop
out of the programming course. Nikula et al. (2011) mention that one of the
factors of dropout is motivation, but assessing students’ programming abilities.
If necessary, we should provide them with appropriate interventions.

Previous researchers have considered that the backgrounds, prior knowledge,
cognitive abilities, working time, and learning attitudes may be related to the
performance of learners (Luo & Wang, 2020). Especially, many current studies
are trying to examine learners’ knowledge. However, these information do not
allow us to provide appropriate interventions to students. In such programming
education for beginners, there are many students who cannot write proper source
codes even though they can pass written exams. A true programming ability
cannot be assessed only with the learner’s knowledge.

Programming skills require not only knowledge but also the ability to con-
struct program elements logically with perspectives. Nesbit et al. who summa-
rized ITS (Intelligent Tutoring System) in computer science and software engi-
neering education also raised alarm over that it has a high percentage of proce-
dural learning objectives and a low percentage of conceptual learning objectives
(Nesbit et al., 2015). Under the conceptual learning objectives, learners should
attain abilities to build a perspective for the logical construction of program ele-
ments, which is referred to programming thinking ability. Since perspectives are
built during the assembly of program components, the ability to make perspec-
tives cannot be examined without investigating the process of assembling them
so that given requirements should be satisfied.

There is still no established method for assessing programming thinking abil-
ity. In the actual situation, the only way to verify the true programming ability of
a learner, which consists of both knowledge and programming thinking ability,
is for the instructor to stand next to learners to watch their coding. However, in
a large class, it takes too much effort to check the understanding of all students
in this way. Most of the current educational institutions use measurement me-
thods inquiring learners’ knowledge because they are easy to use. This leads to
many learners failing to understand the intention of assigned tasks. It prevents
them from acquiring the ability to realize them. There is a strong demand for a
method to grasp the students’ understanding chronologically, taking their pro-
gramming thinking ability into account.

This study analyses a time-series of the operation process of a learner strug-
gling with a code puzzle in which learners arrange fragments of a program code
to satisfy given requirements. The proposed method is to estimate their perspec-
tive based on the information of how the code fragments are arranged. The
proposed method assumes that differences in learners’ understanding are mani-
fested in the consistency of the way to construct code fragments in specific blocks
of source codes. The method uses a hidden Markov model to discriminate the

https://doi.org/10.4236/ce.2022.133048

H. Ito et al.

DOI: 10.4236/ce.2022.133048 752 Creative Education

difference.
To confirm the method provides a proper hidden Markov model, the paper

examines whether the model can explain the labels given by the instructor. An
experiment reveals the trained model can quantify the learners’ understanding.
The result indicates the model facilitates instructors to detect learners who need
additional supervision.

In Chapter 2, the challenges of current programming education are explained,
and then the code puzzles and hidden Markov models applied in this paper are
described. In Chapter 3, the method for grasping the perspectives in program-
ming tasks using code puzzles is explained, and the method of evaluating is de-
scribed. In Chapter 4, the experiments and results of the proposed method are
shown. In Chapter 5, a summary and future work is discussed.

2. Programming Tutoring System
2.1. Current Programming Education Support

Many of the actual tools to support programming education analyze the learn-
er’s understanding based on the results of the learner’s answers, while few of
them analyze from the viewpoints of the learner’s logical thinking. According to
schema theory in cognitive psychology (Schnotz & Kürschner, 2007) when hu-
mans solve a problem, they read the problem to create a perspective for solving
it. It is also the case for the programming field. The logical thinking ability can-
not be assessed without considering the way to solve the problem. The paper
analyses the understanding in programming, focusing on the thinking process.

In the research area of Intelligent Tutoring Systems (Crow et al., 2018), adap-
tive feedbacks have become a hot topic in recent years. They are generally classi-
fied into those that provide step-by-step hints and navigation, and those that
provide summative feedbacks only for the submitted code. It implies the inhe-
rent difficulty of developing an understanding of the structure of the program
and its associated issues. Nesbit et al. (Nesbit et al., 2015) who summarized the
Intelligent Tutoring System (ITS) in computer science and software engineering
education also warned about the low percentage of conceptual learning objec-
tives. Villamor (Villamor, 2020) stated the following: Assessing performance-
based conventional assessment (McCracken et al. 2001) and assessing only the
final outputs do not take into account the student’s intentions (Johnson & Glad-
win, 1987) and the process that led to their final submission (Lane & VanLehn,
2005), and programming should be regarded as a means of reflecting how stu-
dents think, decompose, and solve problems, not just generate codes (Marion et
al., 2007). As these works point out, in the evaluation of programming ability, it
is essential to establish a learning support method that emphasizes logical as-
pects rather than knowledge.

2.2. Programming Education through Code Puzzle

The proposed method uses the code puzzle as the interface for learning. The

https://doi.org/10.4236/ce.2022.133048

H. Ito et al.

DOI: 10.4236/ce.2022.133048 753 Creative Education

code puzzle is a programming practice task to place the modules or code frag-
ments into the correct order to achieve the requirements. The code Puzzle is in-
spired by the Parson’s Programming Puzzle proposed by Parsons and Haden
(2006). The MIT Scratch app that takes a similar approach is well known today.
Parson et al. insist that code puzzles are more effective for beginners because
they work better at nurturing logical thinking than full-coding. Unlike fill-in-
the-blank puzzles, code puzzles require the learner to make the logic flow. It is
conceived code puzzle has a format suitable for developing computational think-
ing, which has been a vital topic recently. Furthermore, the code puzzle is easy to
obtain the data of the learner’s behaviors such as the actions of choosing, mov-
ing, and placing the blocks. These can be used as features to estimate the pers-
pectives of learners. A code puzzle provides learners with an ideal interface of a
system for estimation.

2.3. Hidden Markov Model

The Hidden Markov Model is a series of papers proposed by Baum and Petrie
(1966). It is a stochastic model which is a Markov process with unobserved
(hidden) states. In a general Markov process, the states are observable. The only
parameter is the transition probability of the state. On the other hand, in a hid-
den Markov model, the state is not observed, only the output is observed. The
output is calculated probabilistically from the unobservable state of the model.
Therefore, the main parameters are the state, the state transition probability, and
the output probability from the state. Eventually, it aims to predict the transition
sequence of the state that exists behind the observed series.

This paper calls the output as the observed state and the state as the internal
state in order to distinguish between the output and the state.

2.4. Related Works

Kato et al. proposed a method to estimate the characteristics of learners from
their compiling behavior and time (Kato et al., 2018). The work does not esti-
mate the understanding of learners. Though working time is known to have a
large effect on understanding, the analysis proposed in the work provides little
information for feedback. Scaradozzi et al. succeeded in identifying various pat-
terns of learners by k-means clustering of visual programming logs, which is
similar to code puzzles (Scaradozzi et al., 2020). This method proposed in the
work can consider the characteristics of the learners from the means of the clus-
ters, but it does not take into account the process of how the learners solved the
problems. Mysore et al. proposed Porta, a web system that can identify locations
where learners are struggling in a material book (Mysore & Guo, 2018). Porta
computes the location in which students struggled based on their attention to
the material book, but does not calculate personal understanding. Since it fails to
judge whether the students succeed in the location, it cannot judge misunders-
tanding points. Guo et al. proposed Codeopticon, an interface, and implementa-
tion that supports one-to-many programming learning on the spot (Guo, 2015).

https://doi.org/10.4236/ce.2022.133048

H. Ito et al.

DOI: 10.4236/ce.2022.133048 754 Creative Education

This is a tool that can monitor the learner’s code modifications all the time. In a
sense, it takes the answering process into account. However, it does not estimate
anything on the intention of learners for the modification. It does not provide
instructors with an intuitive grasp of whether the learner is struggling or has a
perspective. Asai et al. identified the cognitive load of learners and its factors
using a fill-in-the-blank task (Asai, 2019). However, the fill-in-the-blank task
prevents learners from building the flow of logic. It cannot be said that it takes
computational thinking into account.

Most of these studies do not provide estimates of learners’ understanding
based on the logic. As a paper that focuses on program structure, Blikstein sug-
gested that the understanding of learners can be measured using the clustering
method with programming structure (Blikstein et al., 2014). As a study focusing
on behavior, Ihantola et al. estimated the difficulty of a task using a decision tree
based on the solution process, such as the solving time and keystrokes in pro-
gramming (Ihantola et al., 2014). They suggested that the solution process has a
significant difference in learners’ understanding. However, they do not mention
the programming thinking ability nor estimate the factors. Another process-
oriented approach (Villamor, 2020) is sometimes referred to as WATWIN score
proposed by Watson et al. (Watson et al., 2013; Watson et al., 2014) and EQ
score proposed by Jadud (2006), which is improved by Tabanao et al. (Tabanao
et al., 2011). Both of these are based on compilation behavior. The approach
mainly evaluates whether the type of compilation errors has been solved. These
approaches seem to be good ideas in accordance with experiences supporting the
method proposed in the paper. However, the experiences conclude that compila-
tion behavior and work time do not always represent the learner’s ability. The
study in the paper decided that it is necessary to consider indicators to assess the
learner’s ability other than compilation behavior and time. Ito et al. (Ito et al.,
2021) work on estimating understanding from the process of working on code
puzzles. The work succeeds to estimate 80% of labels given by the instructors to
show learners’ understanding. However, to estimate perspective based on com-
posing aspects of programming, it is necessary to analyze a time series of opera-
tions by learners working on the task.

3. Grasping Perspective Using Behavior of Code Puzzle
3.1. Method for Understanding Estimation Based on Operating

Process

The aim of the study is to estimate how good perspective learners have, scruti-
nizing the process of solving problems along with submitted codes the conven-
tional methods concentrate. This is due to the fact that computational thinking
occurs in the process of composing a program. For example, learners who have
developed computational thinking should be able to write codes smoothly with a
good logical perspective in order to satisfy all the given requirements. To deter-
mine whether learners compose programs under the computational thinking, it
is necessary to observe their process of writing codes.

https://doi.org/10.4236/ce.2022.133048

H. Ito et al.

DOI: 10.4236/ce.2022.133048 755 Creative Education

Figure 1 shows a schematic diagram of the method. Suppose learners engage
in a code puzzle. In the code puzzle, blocks composing a proper program are
presented in a random order. The learners are requested to arrange them in a
PAD format so that they should compose the program. The code puzzle in this
study is implemented as an original application that runs on the web. This ap-
plication chronologically records various operations on applications as the beha-
vior logs of the learners. The behavior logs should be different depending on the
degree of understanding of individual learners.

The following hypothesis is made in the study: The learners who cannot un-
derstand the role of each block would touch the blocks randomly. The learners
who understand the role of each block would operate certain blocks consistently
to assemble them into a module with a specific function. This means that varia-
tions in understandings of individual learners can manifest themselves as dif-
ferences in the consistency with which specific blocks are manipulated. Based on
this hypothesis, this paper suggests an educational support system that will help
instructors to grasp learners’ understanding based on their operation logs.

This method uses a state-space model to represent the learner’s process of
working on the assignment, as shown in Figure 1. This is due to the idea that the
learners’ working processes have internal states behind the observable behavior
of the learners. The processes can be represented with transition among the in-
ternal states, each of which corresponds to their understanding in a specific time
point, which blocks the learners manipulate at each time point corresponds to
the observable behavior. This method trains a state-space model coincident with
observable behavior logs. For a new given behavior log collected from a learner,
it estimates which internal state the learner stays. It provides personalized feed-
back to the learner, interpreting the internal state.

The internal states are expected to be interpreted as the perspective the learner
has. This paper investigates whether the estimated internal states can distinguish
perspectives of learners with low comprehension from those with low, as in-
structors standing by the learners do. The estimated internal state would be valid
if the internal state variable is coincident with the judgments of the instructors in
terms of perspectives. The valid internal states enable instructors to provide new
feedback that would be impossible with the traditional assessment based on
knowledge or final source codes of learners. The feedback gives learners perso-
nalized supervision, which has been inherently difficult to be determined unless
instructors stand beside them to watch over their programming processes, as
long as the traditional assessment is used. Furthermore, the state-space model
calculates the classification probability indicating whether each learner has a
high understanding. The probability is calculated so quickly that the learner who
needs instruction should be found immediately. In addition, the importance of
variables representing the internal states allows us to grasp the differences in
behavior between learners with high and low understanding. In other words, it is
possible to grasp the points that prevent poor learners from achieving the task.

https://doi.org/10.4236/ce.2022.133048

H. Ito et al.

DOI: 10.4236/ce.2022.133048 756 Creative Education

Figure 1. Method to estimate perspective based on code puzzle log.

3.2. Code Puzzle to Collect Learner’s Behaviors

This study uses the original web application shown in Figure 2 to collect the
characteristic behaviors for estimating learners’ understanding. The representa-
tion of the program structure follows the PAD proposed by Futamura et al. (Fu-
tamura et al., 1981). The web application presents a task in the assignment text
screen to make a program whose model source code is given. In the proposed
method, the model source code is divided into fragments. Each of them is one or
a few lines that play the role of a functional unit. In this paper, the fragments af-
ter the division are referred to as blocks. Since operations on every block are
collected as behavior, how detailed feedback will be provided depends on the di-
vision granularity of the blocks. As shown in Figure 2, blocks are shown to
learners to build their programs for each task. Additional tricky or wrong blocks
may be added optionally and purposely to test the learners. Learners drag and
drop blocks to assemble them so as to satisfy all given requirements in the task.

After learners enter their names, they move to the drawing screen to initiate
working on the programming. They can switch between the assignment text
screen and the drawing screen using the tabs at the top of the tool. If they have
any hesitation during the process, they can check the assignment text again.
When they write down their programs to some extent, they can examine the
programs on the screen for execution and test. The reason for separating the
screens by tabs is to collect data on the time learners spend for each of inter-
preting the task requirements, creating their programs, and checking and testing
their programs. The learners finish engaging the task by pressing the submit
button when they conceive to complete the task. The code puzzle system stores
whole operations composing of learners’ behavior as event data.

https://doi.org/10.4236/ce.2022.133048

H. Ito et al.

DOI: 10.4236/ce.2022.133048 757 Creative Education

Figure 2. The interface of the code puzzle used in the experiment (The text is in Japanese).

Although this tool collects a wide variety of data, major information discussed
in this study is represented with discrete variables indicating which blocks are
manipulated. The study builds a state-space model to examine whether each
learner has a proper perspective. Even introductory programs used for pro-
gramming primers generally consist of at least 20 lines. The amount of data col-
lected at composing them is too large for a state-space model to handle. The
proposed method pays attention to that each task has several key points learners
should achieve. They are referred to as subgoals. In this paper, blocks used in the
code puzzles are grouped in terms of subgoals. Blocks are labeled for each group
in advance. The labels are then used as observable variables. The roughness with
which the consistency of the operation is examined depends on how the sub-
goals are set. A sub-goal corresponds to a segment containing a series of source
code lines implementing a specific logic flow. It is generally set to a program
component such as loops, branches, and self-made functions. The proposed
method estimates the internal state by training a state-space model from these
variables.

3.3. Feature Engineering for Perspective Status

The proposed method estimates the learner’s perspective status using a state-
space model. The perspective status should not be treated as a single aspect. The
task contains multiple subgoals. In addition, the perspectives will change during
the process. In order for instructors to grasp the perspective status, it is essential
to observe the learner’s answering process. In this method, the perspective status
is considered in a time series. In other words, the perspective status should be
evaluated at each moment when an operation is conducted. The paper considers
the manipulation of a certain kind of block as an observable state, and the pers-
pective at the time point as an internal state. Since both the observable state and
the internal state are discrete, a hidden Markov model is used as the state space
model.

https://doi.org/10.4236/ce.2022.133048

H. Ito et al.

DOI: 10.4236/ce.2022.133048 758 Creative Education

In order to investigate the hypothesis introduced in section 3.1, this section
explains how to calculate the consistency in the manipulation of blocks inside a
subgoal. In this method, labels assigned to subgoals are used as variables fed to a
hidden Markov model. For example, consider when a task has a subgoal of tak-
ing input data. The subgoal is implemented with several blocks such as a code to
prompt input, functions to get data from the standard input, and a code for er-
ror handling. In this paper, these blocks are given the same label, meaning that
they are represented with the same value of the variable.

Next, let us consider the transition probabilities from one subgoal to another.
When a learner tries to complete achieving a specific subgoal, the learner keeps
manipulating blocks in the subgoal for a while. To represent the situation, the
transition probabilities are calculated using a moving window. Let us construct a
matrix whose rows and columns correspond to the current subgoals and the
succeeding ones, respectively. Entries of the matrix can represent the transition
probabilities in the time window. When the learner consistently manipulates
blocks in a certain subgoal, the diagonal component will be larger in the matrix.
Note that a learner who has a good perspective on a specific subgoal manipulates
blocks in the subgoal, making few accesses to blocks in others. In this way, the
transition probability lets us know the learner’s perspective. In order to make a
feature that represents whether learners operate consistently blocks in a subgoal,
the norm of the non-diagonal entries is calculated. In this case, the norm is not
the L2 norm, but the L0 norm defined by the following:

0
0

1

d

j
j

x x
=

= ∑

where 00 = 0.
Since the L0 norm indicates how many elements are not equal to 0, it repre-

sents the number of other subgoals touched during the moving window.
The larger the norm, the higher the percentage the learner manipulates blocks

of different subgoals, which means the learner has fallen into a confused mode,
losing a perspective. However, subgoal transition that occurs only once in a
moving window is not always a confusion. It may be considered as the moment
when one subgoal has been done and the next subgoal has been started. There-
fore, a transition of only one time is neglected. The norm of the non-diagonal
component of the transition probability matrix is the final observed variable. It
is used to train the hidden Markov model. By changing the length of the moving
window, it is possible to adjust the severity of the consistency. The longer the
moving window, the harder the observed variables get small without a longer
consistent manipulation. A long moving window leads to a severe evaluation.

3.4. Explain Understanding Using Perspective

Using the Baum-Welch algorithm, the parameters in the hidden Markov model
are trained with the observed variables fed. The internal state at each moment
for each individual is estimated by the Viterbi algorithm. Since the manipulation

https://doi.org/10.4236/ce.2022.133048

H. Ito et al.

DOI: 10.4236/ce.2022.133048 759 Creative Education

consistency of each subgoal is used as an observable variable, the hidden Markov
model is expected to provide several internal states depending on how the varia-
ble changes its value. That is, each internal state expresses whether the learner
has a perspective on the subgoal. It is hard to suppose the states transit instanta-
neously. In this study, three internal states are assumed for the hidden Markov
model. The first one corresponds to a state where the learner has a clear perspec-
tive. The second indicates the learner has no perspective. The last one is assigned
to be a transitive state between the first and the second. The internal state esti-
mated by the Viterbi algorithm for each learner should differ depending on the
existence of the perspective. When learners who have no perspective operate on
a subgoal, they would frequently experience a state lacking a perspective. On the
other hand, a learner who has a perspective would encounter the state corres-
ponding to a perspective many times, while they engage in the construction of
the certain subgoal. There may be learners who have no perspective at first, but
realize the role of the block in the process. For such learners, the state may
switch from one without perspectives to the one having a perspective.

This paper examines the statistical significance of the perspective status esti-
mated by the hidden Markov model. If it coincident with the understanding la-
bels given by instructors, it indicates that perspective status is an important pre-
dictor of understanding. The feedbacks made from the estimated perspective are
also meaningful.

The following is a method to explain understanding based on perspectives.
This paper uses the Random Forest Classifier, assigning the number of occur-
rences of each internal state and the label by the instructor as the explanatory
variable and the objective variable, respectively. This study takes as many expla-
natory variables as the number of subgoals multiplied by three, since we have set
up three internal states.

3.5. Feedback from Perspective

This method can find subgoals for which the learner could not get a perspective
through the analysis of the learners’ answering process. This cannot be achieved
with a system that grasps the learners’ understanding from the only their sub-
mitted codes. Our method allows to intuitively grasp the learners’ progresses on
the programming from the manipulated blocks and the internal state estimated
using the hidden Markov model. This makes it easy to identify the key points for
learners who need guidance. The instructor or automated system can provide a
hints or navigation to notify the learners of what to think about next. This can be
regarded as adaptive feedback (Kaplan, 2021).

4. Experiment
4.1. Method and Objective

The purpose of this experiment is to clarify whether the learner’s operation logs
can determine whether they have perspective on a certain subgoal. The subjects

https://doi.org/10.4236/ce.2022.133048

H. Ito et al.

DOI: 10.4236/ce.2022.133048 760 Creative Education

were 20 university students of various levels of programming ability. We did not
set a time limit in to obtain the process where they are confused. Some subjects
finished the given assignment in 20 minutes and others took 90 minutes. 10
subjects produced correct output while 3 subjects submitted incomplete output.
3 subjects produced slightly incorrect output due to error handling.

Since no time limit was settled, even if the learner was able to produce a cor-
rect behaving program in the end, it does not necessarily mean the learner has a
high level of understanding. Before starting the assignment, the subjects engaged
in a tutorial task to familiarize themselves with the code puzzle. All experiments
were conducted online. In this experiment, the assignment was designed for be-
ginning students and included many elements of programming. It is to create a
calendar when a day of the 1st and the number of days in a month are input.

4.2. Result of Perspective Estimation

Figure 3 shows the manipulated subgoals and the estimated internal states cal-
culated with the proposed method applied to behavior logs attained from the
subjects. Each dot represents a subgoal that was manipulated, while the back-
ground color represents the internal state at that time. The red line is a simpli-
fied representation of the compilation behavior explained in existing works
(Watson et al., 2013; Jadud, 2006). Note that it is not used in the analysis.

In the figure, in case a subgoal is manipulated consistently, corresponding to
successive dots in identical subgoals, internal state A appears a lot. On the other
hand, internal state C appears a lot, when subgoals are manipulated inconsis-
tently, which is indicated by dots scattered on the subgoals. Internal state B
seems to appear as a transient state between them. In this method, transitions
that occur only once are ignored. Therefore, the internal states B and C will ap-
pear when two or more transitions have occurred in the moving window.

Figure 3. Visualization of perspective and manipulated subgoals.

https://doi.org/10.4236/ce.2022.133048

H. Ito et al.

DOI: 10.4236/ce.2022.133048 761 Creative Education

The information as shown in Figure 3 enables instructors to quickly find out
where the learner’s confusion occurred. First, subjects with very good program-
ming ability have fewer compilations and a higher percentage of internal state A.
In this paper, a particularly interesting result is shown in Figure 3. Subjects A
and D were the ones of the learners who performed the solution relatively
smoothly. The diagram of subject A consists almost exclusively of internal state
A. This means that he understood the meaning of each block enough to com-
pose the program with a clear perspective. Note the existing works taking com-
piling behavior into account (Watson et al., 2013; Jadud, 2006) regard try-
and-error type learners such as the subject D and A as ones with lower under-
standing. Subject C had difficulty in solving the task. The interpretation of him
is simple. After consistently manipulating the “input 1” and “input 2”, the other
four subgoals were manipulated just like randomly. This is exactly because he
did not understand the role of the blocks. Subject D also had difficulty in ans-
wering. He seems to have been confused about the “calculate” and “complex-
loop” subgoals. It should also be noted that even if the learner operates consis-
tently, as in the “complexloop”. We can see the perspective may not be correct.
For these learners, intervention should be conducted online at the time when
internal state C becomes frequent, or when internal state A continues too long
compared to the surroundings.

In this way, the perspective state proposed in this paper can be used by in-
structors or automated systems to notify learners of what they should think
about next as a hint or navigation.

4.3. Result of Understanding Estimation

It was found that the internal state estimated by the hidden Markov model has
interpretable results. It was also found that it is not possible to say that having a
good perspective is a good understanding. Thus, having a perspective on a sub-
goal is considered to increase understanding in an aspect. On the other hand, if a
learner has a wrong perspective, that is, if he or she is confused about how to as-
semble the certain blocks, the understanding would be rated lower. Therefore, it
is expected that the understanding level can be explained by the number of times
each perspective status appears in every subgoal.

Let us examine the method presented in Section 3.4. Since one of the 20 sub-
jects misunderstood how to use the tool and did not answer until the end, it is
removed as inappropriate data.

Random forest classification was used to generate the model. The explanatory
variables are the operations for each subgoal. The objective variable is a binary
understanding label attached by three instructors. The labeling was individually
conducted in closed sessions with each other. The objective variable was deter-
mined by a majority vote. In the evaluation, leave-one-out cross-validation was
used. The results are shown in Table 1. The classification performance is 0.894
and 0.875 in the accuracy and the f1-score, respectively. Someone may be skeptical

https://doi.org/10.4236/ce.2022.133048

H. Ito et al.

DOI: 10.4236/ce.2022.133048 762 Creative Education

Table 1. Results of labeled understanding classification.

User id
Classification Probability Classification Result

Low High True Pred

1637246487 0.023 0.977 1 1

1622469590 0.138 0.863 1 1

1622345108 0.151 0.849 1 1

1637056992 0.157 0.843 1 1

1631595816 0.259 0.741 1 1

1637047241 0.269 0.731 1 1

1622434821 0.272 0.728 1 1

1622169741 0.316 0.684 0 1

1631602622 0.512 0.488 0 0

1622145530 0.601 0.399 0 0

1621841538 0.657 0.343 0 0

1 622899809 0.736 0.264 0 0

1631605420 0.745 0.255 0 0

1631600152 0.779 0.222 0 0

1637159166 0.781 0.219 0 0

1631606028 0.785 0.215 0 0

1622430288 0.812 0.188 0 0

1631586473 0.852 0.148 0 0

1622262196 0.912 0.088 0 0

due to the number of subjects. The Repeated 3-Fold Cross-Validation is con-
ducted to get rid of the skepticism. The result was 0.871 for Accuracy.

Figure 4 shows the variable importance. It represents the degree of influence
of the explanatory variable on the objective variable. This paper presents the
coefficients of the logistic regression in addition to the variable importance of
the random forest to investigate the positive or negative degree of influence on
the objective variable. The validity of the results is secured because the accuracy
showed the same results, although the results of classification are different for a
few subjects.

In Figure 4 showing the variable importance, the top four are the subgoals
that are relatively easy to solve in the task. All of them are the number of occur-
rences of internal state A. That is, the more smoothly these subgoals are solved,
the higher understanding has been assigned to the learners. On the other hand,
internal states B and C appear quite frequently on the other subgoals. This indi-
cates that learners who had no perspective on these subgoals were classified into
ones with low understanding. Subgoals Calculate and ComplexLoop have nega-
tive coefficients even though they are in internal state A. This means that learn-
ers who continue to repeat the manipulations with a wrong perspective are clas-
sified into ones with low understanding. However, note that the understanding

https://doi.org/10.4236/ce.2022.133048

H. Ito et al.

DOI: 10.4236/ce.2022.133048 763 Creative Education

Figure 4. Feature coefficients of understanding estimator.

of learners who manipulate these subgoals without perspective is also estimated
to be low (see these internal states B and C).

The results in this section show that the instructors’ notion of learners’ under-
standing can be explained by the perspective status proposed in this paper. Fur-
thermore, referring to the results of variable importance, the criteria of under-
standing discrimination are interpretable. The experiment results indicate the
perspective status by the hidden Markov model proposed in this paper is trust-

https://doi.org/10.4236/ce.2022.133048

H. Ito et al.

DOI: 10.4236/ce.2022.133048 764 Creative Education

worthy.
In addition, we conducted another experiment that makes four teaching as-

sistants judge understanding labels referring only to Figure 3. There was a 93%
agreement between these labels and the labels used in the classification, though
only 15 learners were included. This result implies that instructors can judge the
understanding only from the information shown in Figure 3, without standing
beside the learners.

5. Conclusion

This paper proposed a method to grasp learners’ perspectives from the behavior
of answering code puzzles and estimate their understanding from their perspec-
tives. The results of the experiment showed that it is possible to estimate the
perspectives on the subgoals with a hidden Markov Model. The subgoal is the
key point that the learner should achieve in the assignment. Furthermore, the es-
timated perspective was able to successfully predict the learners’ understanding
labels manually judged by more than one instructor.

Such analysis that emphasizes the behavior of the answering process is essen-
tial for developing computational thinking, which has been a hot topic recently.
Especially nowadays, there are more and more opportunities to give lectures
remotely. It is not always possible for instructors to directly watch over their
students. In such situations, the system with the proposed method can provide
easy feedback to instructors, because that collects and summarizes learners’
learning behaviors online. It is also possible to grasp the learner’s perspective
status on the spot through the time-series analysis. If the proposed method noti-
fies instructors or systems of learners’ confusions, they can quickly provide su-
pervision for learners who are suffering from troubles in learning programming,
which prevents learners from dropping out. Furthermore, the classification
probabilities of the model described in Section 4.3 can be used to arrange the
learners’ understanding in continuous values. It would enable education provid-
ers to use their human resources as much as they can to rescue learners who
need help. In addition, our previous method can clarify which code fragments
were difficult for the learner, based on the level of attention to each block.

The followings are the future outlooks. Although feedback to the learner in
this method is easy due to Figure 3, it has still relied on instructors to check the
figure, make a decision, and interpret an estimation model, yet. The goal of our
method is to be able to give a kind of summative assessment sheet to learners,
almost without relying on any instructor. As an additional try, the existing me-
thod of assessing learners’ understanding based on compilation errors should be
applied to the proposed method, to improve it in terms of providing more feed-
back. It would be necessary to have a system to exclude those who quit the en-
gagement in the middle of the task in the automated systemization. And, we will
practice several assignments and compare the algorithms to see which one is
suitable. To collect more various data, this method is to be applied to a variety of
assignments.

https://doi.org/10.4236/ce.2022.133048

H. Ito et al.

DOI: 10.4236/ce.2022.133048 765 Creative Education

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
Asai, S. (2019). Identification of Factors Affecting Cognitive Load in Programming Learn-

ing with Decision Tree. Journal of Computers, 14, 624-633.
https://doi.org/10.17706/jcp.14.11.624-633

Baum, L. E., & Petrie, T. (1966). Statistical Inference for Probabilistic Functions of Finite
State Markov Chains. The Annals of Mathematical Statistics, 37, 1554-1563.
https://doi.org/10.1214/aoms/1177699147

Blikstein, P., Worsley, M., Piech, C., Sahami, M., Cooper, S., & Koller, D. (2014). Pro-
gramming Pluralism: Using Learning Analytics to Detect Patterns in the Learning of
Computer Programming. Journal of the Learning Sciences, 23, 561-599.
https://doi.org/10.1080/10508406.2014.954750

Crow, T., Luxton-Reilly, A., & Wuensche, B. (2018). Intelligent Tutoring Systems for
Programming Education. In R. Mason, & Simon (Eds.), Proceedings of the 20th Aus-
tralasian Computing Education Conference (pp. 53-62). Association for Computing
Machinery. https://doi.org/10.1145/3160489.3160492

Futamura , Y., Kawai, T., Horikoshi, H., & Tsutsumi, M. (1981). Development of Com-
puter Programs by Problem Analysis Diagram (PAD). In S. Jeffrey, & L. G. Stucki
(Eds.), Proceedings of the 5th International Conference on Software Engineering (pp.
325-332). Association for Computing Machinery.

Guo, P. J. (2015). Codeopticon: Real-Time, One-To-Many Human Tutoring for Comput-
er Programming. In C. Latulipe, B. Hartmann, & T. Grossman (Eds.), Proceedings of
the 28th Annual ACM Symposium on User Interface Software & Technology (pp. 599-
608). Association for Computing Machinery.
https://doi.org/10.1145/2807442.2807469

Hellas, A., Ajanovski, V. V., Knutas, A., Ihantola, P., Gutica, M., Leinonen, J., Liao, S. N.,
Petersen, A., Hynninen, T., & Messom, C. (2019, May 20). Predicting Academic Per-
formance: A Systematic Literature Review. In G. Rossling, & B. Scharlau (Eds.), Pro-
ceedings Companion of the 23rd Annual ACM Conference on Innovation and Tech-
nology in Computer Science Education (pp. 175-199). Association for Computing Ma-
chinery. https://doi.org/10.1145/3293881.3295783
https://research.monash.edu/en/publications/predicting-academic-performance-a-syst
ematic-literature-review

Ihantola, P., Sorva, J., & Vihavainen, A. (2014). Automatically Detectable Indicators of
Programming Assignment Difficulty. In B. Rutherfoord, L. Li, S. Van de Ven, & A. Set-
tle (Eds.), Terry Steinbach, Proceedings of the 15th Annual Conference on Information
Technology Education (pp. 33-38). Association for Computing Machinery.
https://doi.org/10.1145/2656450.2656476

Ito, H., Shimakawa, H., & Harada, F. (2021). Advanced Comprehension Analysis Using
Code Puzzle. In E. Ziemba, & W. Chmielarz (Eds.), Information Technology for Man-
agement: Towards Business Excellence (pp. 45-64). Springer.
https://doi.org/10.1007/978-3-030-71846-6_3

Jadud, M. C. (2006). Methods and Tools for Exploring Novice Compilation Behaviour. In
R. J. Anderson, S. Fincher, & M. Guzdial (Eds.), Proceedings of the 2006 2nd Interna-
tional Workshop on Computing Education Research (pp. 73-84). Association for Com-
puting Machinery. https://doi.org/10.1145/1151588.1151600

https://doi.org/10.4236/ce.2022.133048
https://doi.org/10.17706/jcp.14.11.624-633
https://doi.org/10.1214/aoms/1177699147
https://doi.org/10.1080/10508406.2014.954750
https://doi.org/10.1145/3160489.3160492
https://doi.org/10.1145/2807442.2807469
https://doi.org/10.1145/3293881.3295783
https://research.monash.edu/en/publications/predicting-academic-performance-a-systematic-literature-review
https://research.monash.edu/en/publications/predicting-academic-performance-a-systematic-literature-review
https://doi.org/10.1145/2656450.2656476
https://doi.org/10.1007/978-3-030-71846-6_3
https://doi.org/10.1145/1151588.1151600

H. Ito et al.

DOI: 10.4236/ce.2022.133048 766 Creative Education

Johnson, W. L., & Gladwin, L. A. (1987). Intention-Based Diagnosis of Novice Program-
ming Errors. IEEE Expert, 2, 94. https://doi.org/10.1109/MEX.1987.4307101

Kaplan, A. (2021). Higher Education at the Crossroads of Disruption: The University of
the 21st Century. Emerald Publishing. https://doi.org/10.1108/9781800715011

Kato, T., Kambayashi, Y., Terawaki, Y., & Kodama, Y. (2018). Analysis of Students’ Beha-
viors in Programming Exercises Using Deep Learning. In V. Uskov, R. Howlett, & L.
Jain (Eds.), Smart Education and e-Learning 2017 (pp. 38-47). Springer.
https://doi.org/10.1007/978-3-319-59451-4_4

Lane, H. C., & VanLehn, K. (2005). Intention-Based Scoring: An Approach to Measuring
Success at Solving the Composition Problem. ACM SIGCSE Bulletin, 37, 373-377.
https://doi.org/10.1145/1047344.1047471

Luo, J., & Wang, T. (2020). Analyzing Students’ Behavior in Blended Learning Environ-
ment for Programming Education. In Proceedings of the 2020 2nd World Symposium
on Software Engineering (pp. 179-185). Association for Computing Machinery.
https://doi.org/10.1145/3425329.3425346

Marion, B., Impagliazzo, J., St. Clair, C., Soroka, B., & Whitfield, D. (2007). Assessing
Computer Science Programs. In I. Russell, S. M. Haller, J. D. Dougherty, & S. H. Rodg-
er (Eds.), Proceedings of the 38th SIGCSE Technical Symposium on Computer Science
Education (pp. 131-132). Association for Computing Machinery.
https://doi.org/10.1145/1227310.1227358

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B.-D., Lax-
er, C., Thomas, L., Utting, I., & Wilusz, T. (2001). A Multi-National, Multi-Institutional
Study of Assessment of Programming Skills of First-Year CS Students. ACM SIGCSE
Bulletin, 33, 125-180. https://doi.org/10.1145/572139.572181

Mysore, A., & Guo, P. J. (2018). Porta: Profiling Software Tutorials Using Operating-
System-Wide Activity Tracing. In P. Baudisch, A. Schmidt, & A. Wilson (Eds.), Pro-
ceedings of the 31st Annual ACM Symposium on User Interface Software and Tech-
nology (pp. 201-212). Association for Computing Machinery.
https://doi.org/10.1145/3242587.3242633

Nesbit, J., Liu, L., Liu, Q., & Adesope, O. (2015). Work in Progress: Intelligent Tutoring
Systems in Computer Science and Software Engineering Education. In 2015 ASEE An-
nual Conference and Exposition Proceedings (pp. 26.1754.1-26.1754.12). American So-
ciety for Engineering Education. https://doi.org/10.18260/p.25090

Nikula, U., Gotel, O., & Kasurinen, J. (2011, October 31). A Motivation Guided Holistic
Rehabilitation of the First Programming Course. ACM Transactions on Computing
Education, 11, Article No. 24. https://doi.org/10.1145/2048931.2048935
https://eric.ed.gov/?id=EJ958645

Parsons, D., & Haden, P. (2006). Parson’s Programming Puzzles: A Fun and Effective
Learning Tool for First Programming Courses. In D. Tolhurst, & S. Mann (Eds.), Pro-
ceedings of the 8th Australasian Conference on Computing Education (Vol. 52, pp.
157-163). Australian Computer Society, Inc.

Scaradozzi, D., Cesaretti, L., Screpanti, L., & Mangina, E. (2020). Identification of the Stu-
dents Learning Process during Education Robotics Activities. Frontiers in Robotics and
AI, 7, Article No. 21. https://doi.org/10.3389/frobt.2020.00021

Schnotz, W., & Kürschner, C. (2007). A Reconsideration of Cognitive Load Theory. Edu-
cational Psychology Review, 19, 469-508. https://doi.org/10.1007/s10648-007-9053-4

Tabanao, E. S., Rodrigo, M. M., & Jadud, M. C. (2011). Predicting At-Risk Novice Java
Programmers through the Analysis of Online Protocols. In K. Sanders, M. E. Casper-
sen, & A. Clear (Eds.), Proceedings of the Seventh International Workshop on Compu-

https://doi.org/10.4236/ce.2022.133048
https://doi.org/10.1109/MEX.1987.4307101
https://doi.org/10.1108/9781800715011
https://doi.org/10.1007/978-3-319-59451-4_4
https://doi.org/10.1145/1047344.1047471
https://doi.org/10.1145/3425329.3425346
https://doi.org/10.1145/1227310.1227358
https://doi.org/10.1145/572139.572181
https://doi.org/10.1145/3242587.3242633
https://doi.org/10.18260/p.25090
https://doi.org/10.1145/2048931.2048935
https://eric.ed.gov/?id=EJ958645
https://doi.org/10.3389/frobt.2020.00021
https://doi.org/10.1007/s10648-007-9053-4

H. Ito et al.

DOI: 10.4236/ce.2022.133048 767 Creative Education

ting Education Research (pp. 85-92). Association for Computing Machinery.
https://doi.org/10.1145/2016911.2016930

Villamor, M. M. (2020). A Review on Process-Oriented Approaches for Analyzing Novice
Solutions to Programming Problems. Research and Practice in Technology Enhanced
Learning, 15, Article No. 8. https://doi.org/10.1186/s41039-020-00130-y

Watson, C., Li, F. W. B., & Godwin, J. L. (2013). Predicting Performance in an Introduc-
tory Programming Course by Logging and Analyzing Student Programming Behavior.
In 2013 IEEE 13th International Conference on Advanced Learning Technologies (pp.
319-323). Institute of Electrical and Electronics Engineers.
https://doi.org/10.1109/ICALT.2013.99

Watson, C., Li, F. W. B., & Godwin, J. L. (2014). No Tests Required: Comparing Tradi-
tional and Dynamic Predictors of Programming Success. In J. D. Dougherty, K. Nagel,
A. Decker, & K. Eiselt (Eds.), Proceedings of the 45th ACM Technical Symposium on
Computer Science Education (pp. 469-474). Association for Computing Machinery.
https://doi.org/10.1145/2538862.2538930

https://doi.org/10.4236/ce.2022.133048
https://doi.org/10.1145/2016911.2016930
https://doi.org/10.1186/s41039-020-00130-y
https://doi.org/10.1109/ICALT.2013.99
https://doi.org/10.1145/2538862.2538930

	Process-Oriented Understanding Estimation Using Code Puzzles
	Abstract
	Keywords
	1. Introduction
	2. Programming Tutoring System
	2.1. Current Programming Education Support
	2.2. Programming Education through Code Puzzle
	2.3. Hidden Markov Model
	2.4. Related Works

	3. Grasping Perspective Using Behavior of Code Puzzle
	3.1. Method for Understanding Estimation Based on Operating Process
	3.2. Code Puzzle to Collect Learner’s Behaviors
	3.3. Feature Engineering for Perspective Status
	3.4. Explain Understanding Using Perspective
	3.5. Feedback from Perspective

	4. Experiment
	4.1. Method and Objective
	4.2. Result of Perspective Estimation
	4.3. Result of Understanding Estimation

	5. Conclusion
	Conflicts of Interest
	References

