

Detailed Quantum Mechanical QSAR Analysis of Certain Aminopyrimidoisoquinolinequinones with Anticancer Activity

Mukhtaar Qaaed S. Sultan^{1*}, Mohamed Osman El-Faki², Inas Osman Khojali Mohammed³

¹Department of Pharmacy, Faculty of Medical Sciences, Azal University for Human Development, Sana'a, Yemen ²Department of Basic Science, Faculty of Engineering Sciences, Omdurman Islamic University, Omdurman, Sudan ³Department of Chemistry and Industrial Chemistry, College of Applied and Industrial Sciences, University of Bahri, Alkadroo, Sudan

Email: *muktoxic2005@gmail.com

How to cite this paper: Sultan, M.Q.S., El-Faki, M.O. and Mohammed, I.O.K. (2023) Detailed Quantum Mechanical QSAR Analysis of Certain Aminopyrimidoisoquinolinequinones with Anticancer Activity. *Computational Chemistry*, **11**, 24-35. https://doi.org/10.4236/cc.2023.111002

Received: November 4, 2022 Accepted: January 17, 2023 Published: January 20, 2023

Copyright © 2023 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Abstract

A detailed quantum mechanical analysis of electronic disposition of five aminopyrimidoisoquinolinequinones (APIQs) was performed after extraction of this subset of compounds from a larger data set of APIQs via a reported clustering methodology (Elfaki, et al. 2020). Both semi empirical PM3 method and DFT quantum mechanical methods were used to calculate global and local quantum mechanical descriptors (QMDs) to define the electronic environment of these molecules in attempt to rationalize their observed anticancer response variability. The biological response is the anticancer activity against human gastric adenocarcenoma (AGS) cell line. The correlation matrix between the calculated global electronic descriptors and biological activity demonstrated that the global dipole moment gives the highest correlation. The local electronic environment was analysed by The Mullikan charges (MC) and Fukui functions for N-5, C-6, C-8 in addition to the N atom of phenylamino side group at C-8. MCs furnished no useful information as each of these atoms had almost identical MC values for all the five compounds with exception of C-6 which gave varied values. Regressing MCs of C-6 against the response traces 60% of the latter variability. As C-6 is an extra annular methyl carbon adjacent to N-5 in isoquinoline residue of APIQ, we reasoned that the chemical reactivities of 4 out of the 5 APIQs might be due to a Chichibabin-type tautomerism implying a possible alkylation aspect in their mechanism of action. The corresponding Fukui functions (f, f and f) showed a considerable consistency with the patterns of chemical reactivity exhibited by this small set of APIQs.

Keywords

APIQs, DFT, Semi Empirical PM3, Global and Local Quantum Mechanical

Descriptors

1. Introduction

Physicochemical properties and structural features of chemical compounds control their biological activities [1]. For example, the ability of a molecule to cross cell membranes or dissolve in fatty tissues is closely related to its lipophilicity [2]. Likewise, ability of a molecule to form stable complexes and/or react with biological molecules is directed by its electronic distribution [3]. Quantum mechanical descriptors (QMD) such as the energy of the highest occupied molecular orbital ε_{HOMO} , the energy of the lowest unoccupied molecular orbital ε_{LUMO} , electronegativity (χ), hardness (η), softness (S), electrophilicity index (ω) have been used in the elucidation of the chemical reactivity [4] [5]. QMD can be divided into two kinds; global descriptors which describe whole molecule such as electrophilic index and dipole moment and local descriptors which describe parts of molecule such as Mullikan atomic charge and Fukui function [6]. Density functional theory (DFT) beside semi empirical PM3 method has been used fairly successful in elucidation of molecular properties and chemical reactivity [7]. In the present study, we report a detailed quantum mechanical study of electronic dispositions of five aminopyrimidoisoquinolinequinones (APIQs) [8] which cluster together when a larger data set of congeneric 27 APIQs was subjected regression clustering as previously reported by our group [9]. Both semi empirical PM3 method and DFT methods were used to calculate several global and local QMDs for these compounds in attempt to rationalize and explain the variability of biological response as a consequence of electronic environment.

2. Material and Method

Software:

Gaussian 5.0.8 was used to draw/optimize of structures and for DFT calculation of Fukui functions basis set 3 - 21 G and B3LYP method [10]. Arguslab 4 and Molecular Operation Environment (MOE) 2008 softwares were used to calculate Mullikan charge and global descriptors [11]. Statistical analysis was performed using Microsoft Excel 2010 program.

Data set:

The biological activity used in the present study is the anticancer activities of compounds 5, 17, 18, 19 and 23 which are extracted from a larger data set through a reported clustering procedure [9]. We maintain the original numbering as appeared in the previous paper. The cancer cell line used is human gastric adenocarcenoma (AGS) cell line. Biological response is expressed as the inhibitory concentration of 50% of the subjects IC_{50} . The structures and biological activities of the APIQ's are shown in **Table 1**.

Figure 1 shows the optimized chemical structures of molecules.

		R^{3} R^{2} Q	CH ₃ O N CH ₃ O CH ₃ CH ₃	
No	\mathbb{R}^1	R ²	R ³	IC₅₀ (μM)
5	Н	Н	p-MeO-Ph-	2.8
17	Me	Н	p-HO-Ph-	3.3
18	Me	Н	p-MeO-Ph-	5.5
19	Me	Н	p-F-Ph-	1
23	Me	Н	2,5-diMeO-Ph-	31.7

Figure 1. Optimized chemical structure of the APIQs (colored balls represent to: black (C), red (O), blue (N), yellow greenish (F) and white is (H)).

3. Results and Discussion

Global electronic descriptors

Table 2 contains the most significant global electronic descriptors of the five

APIQs under study. **Table 3** shows the correlation matrix between these descriptors including the response.

The correlation matrix between the global electronic descriptors and biological activity, demonstrates that the global dipole moment gives the highest correlation. The QSAR equation can be written as the following:

$$IC_{50} = 0.3255 \,dipo + 1.9086 \tag{1}$$

$$n = 5, R^2 = 0.88, s = 4.9, F = 23.8$$

It is clear from the data in **Table 3** that dipole moment explains up to 88% the variability of the response while electrophilicity index explains up to 86%. These two descriptors are collinear (property spaces overlap to the extent of 72%). The unexplained variability by them combined amount to 16%. This could be attributed to communal effect of the rest of descriptors on variability.

It should be noted that there is a high collinearity between GAP and the electrophilicity index. Molecule 23 has the highest GAP (0.525) with the highest ω (1.731254) whereas molecule 18 has the lowest GAP (0.038) with the lowest ω (0.083993).Thus GAP explains the same variability as ω . GAP is pictorially rendered in **Figure 2** to get a feel of the cause of partitioning of this particular set of molecules in one and the same cluster.

Table 2. Global electronic descriptors of the five APIQs molecules.

Comp.	<i>є</i> номо (eV)	<i>€</i> гимо (eV)	η (eV)	s (eV)	χ (eV)	GAP (eV)	dip (debye)	G
5	3.073	3.316	0.121	4.122	-3.195	0.242	1.115	0.619086
17	2.797	2.846	0.024	20.149	-2.822	0.049	3.161	0.049628
18	2.931	2.969	0.019	25.908	-2.950	0.038	2.772	0.038597
19	2.436	2.549	0.056	8.858	-2.492	0.112	4.464	0.112882
23	3.367	3.892	0.262	1.902	-3.630	0.525	12.45	1.731254

Table 3. Correlation matrix among the global electronic descriptors and IC₅₀.

	Е НОМО	Е LUMO	η	\$	X	GAP	dipole	ω	AGS
Е НОМО	1								
\mathcal{E}_{LUMO}	0.93	1							
η	0.57	0.81	1						
S	0.12	0.30	0.65	1					
Х	0.97	0.98	0.72	0.22	1				
GAP	0.57	0.81	1	0.65	0.72	1			
dipo	0.27	0.44	0.66	0.22	0.37	0.66	1		
ω	0.64	0.85	0.98	0.54	0.77	0.98	0.72	1	
IC ₅₀	0.60	0.75	0.78	0.21	0.70	0.78	0.88	0.86	1

Local electronic descriptors

The local environment may be considered by looking at certain atoms around the molecule. We considered N-5, C-6 and C-8 in addition to the nitrogen atom of phenylamino side group at C-8.

Using the PM3 semi-empirical method, the value of Mullikan charge MC remain the same for all these atoms except for C-6 (**Table 4**), where a significant linear correlation was discerned ($R^2 = 0.6$) with the logarithm of the IC₅₀ as depicted in **Figure 3**.

This shows that this carbon is active in spite of its full valence through its presence in the aromatic ring system in addition to its bonding to methyl group. The reason for this is not far-fetched; The presence of a methyl group adjacent

Figure 2. Illustrated *E*HOMO, *E*LUMO and GAP for molecules 23 (A) and 18 (B).

Comp.	N-5	C-6	C-8	N-amino
5	4.9998	2.1548	-4.0002	-3
17	4.9978	3.4735	-4	-3
18	4.9999	4.1069	-4.0001	-3
19	4.9979	2.1318	-4.0001	-3
23	4.9999	3.477	-4.0002	-3

 Table 4. Mullikan charges of N-5, C-6, C-8 and N-amino using PM3 method.

Figure 3. Correlation matrix between MC (C-6) and logIC₅₀.

to the nitrogen of the pyridine part of the chromophore may cause a Chichibabin-type tautomerism to occur in the following manner [12]:

This tautomerism imparts a chemical reactivity which traces the variability of the biological activity to the extent of 60%. Moreover, there an additional element to add to the reactivity which the generation of an enamine scaffold *in situ* [13]. This opens a whole perspective of chemical reactivity which might even suggest alkylation aspect of the mechanism of action of this particular group of APIQs.

To get a more accurate picture of the above mentioned argument, we used DFT method to calculate the following Fukui functions: forward Fukui function f, backward Fukui function f and neutral Fukui function f for nucleophilic, electrophilic and radical attacks respectively. These functions are calculated as follows [14]:

For nucleophilic attack:

$$f^{+} = q_{a} \left(N_{el} + 1 \right) - qa \left(N_{el} \right)$$
(2)

For electrophilic attack:

$$f^{-} = q_{a} \left(N_{el} \right) - qa \left(N_{el} - 1 \right)$$
(3)

For radical attack:

$$f^{0} = q_{a} \left(N_{el} + 1 \right) - qa \left(N_{el} - 1 \right) / 2$$
(4)

In these equations q_a is the atomic charge (evaluated from Mullikan population analysis) at the jth atomic site in the neutral (*N*), anionic (*N*+1) or cationic (*N*-1) chemical species. We calculated Fukui function for our 5 APIQs and the results are summarized in **Table 5**.

We correlated Fukui functions for atoms N-5, C-6, C-8 and N-atom of 8-phenylamino side group each with the response. The outcomes (as R^2) of these correlations are summarized in Figure 4.

Upon examining the value of R^2 summarized in **Figure 4**, the following remarks could be made:

• *N*-5: it is apparent that this atom is prone to nucleophilic attack, *i.e.*, it is an electron deficient atom or an electrophilic site. This is to be expected as tuatomer b generated by Chichibabin-type tautomerism (**Figure 5**) contains a secondary amino group with a free lone pair of electron which could easily

Tabl	e 5.	Calculated	Fukui funct	ions for N	-5, C-6	5, C-8	3 and 1	N-atom	of 8-p	heny	lamino	side	grou	p
------	------	------------	-------------	------------	---------	--------	---------	--------	--------	------	--------	------	------	---

Mologylog			C-6			C-8			N-5		נ	N-pheny	1
Molecules	1C50 (µ1v1)	F+	F−	F ⁰	F+	F⁻	F ⁰	F+	F⁻	F ⁰	F+	F−	F ⁰
5	2.8	0.026	0.028	0.027	0.032	0.047	0.039	0.026	0.039	0.033	0.028	0.014	0.021
17	3.3	0.015	0.019	0.017	0.032	0.046	0.039	0.026	0.037	0.031	0.028	0.014	0.021
18	5.5	0.015	0.019	0.017	0.032	0.046	0.039	0.026	0.037	0.031	0.028	0.014	0.021
19	1	0.015	0.019	0.017	0.032	0.046	0.039	0.026	0.037	0.031	0.027	0.014	0.02
23	31.7	0.014	0.019	0.016	0.026	0.046	0.036	0.024	0.034	0.030	0.025	0.012	0.018

Figure 4. R^2 for the correlation between Fukui functions of N-5, C-6, C-8 and N-phenylamino atoms and IC₅₀.

Figure 5. Chichibaben-type tautomerism of the methyl pyridine ring of isoquinoline scaffold of APIQs.

be protonated to enhance nucleophilic attack as already indicated in Figure 5.

- *C*-6: also exhibits similar behavior because of the presence of electrophilic N-5 atom which withdraws electron density from it. Reviewing the value of Fukui functions for the five APIQs shows that compound 5 in which there is no methyl group at C-6 has the highest f⁺ value indicative that this position is open to nucleophilic attack to a degree of forming a full-fledge covalent bond, moreover, it is well-known that isoquinoline nucleus undergoes nucleophilic aromatic substitution at position 1 in pyridine ring which correspond to C-6 in isoquinoline [15]. While the other four compounds, owing to the covalent bond to the methyl group, might enter into an electrostatic interaction with electron rich center in the receptor. Thus we can say that the enamine in tautomer b (**Figure 5**) is complimentary with an electrophilic pocket in the receptor.
- C-8: Upon concentrating on C-8 and we notice the R² values for f⁴ and f⁹ = 0.98 and 0.9 respectively. This is easily justifiable by noting that this atom is a part of *α*,β-unsaturated carbonyl system and may constitute a Michael acceptor [16], Figure 6, which represents an electron deficient site. The same electron deficient site is attractive for free radicals which give justification of the high value of f⁴.
- *N-phenyl group*: As for the N atom of 8-phenylamino group the R² value of f⁻ and f⁺ of 0.9 and 0.67 respectively may indicate a protonation equilibrium as such (**Figure 7**):

Figure 6. Michel acceptor at C-8 atom.

Figure 7. Equilibrium between protonated and electron lone pair of N-phenyl.

4. Conclusion

The variability in chemical reactivity for present set of APIQ (five molecules) has been studied using global and local descriptors. Dipole moment, as a global descriptor, demonstrated a high correlation with the biological activity. The Mullikan charge for C-6, as a local descriptor, showed that this carbon atom is active in spite of its full valence through its presence in an aromatic ring system in addition to its bonding to a methyl group as presence of methyl group adjacent to the nitrogen of the pyridine part of the chromophore may cause a Chichibabin-type rearrangement. The correlation between IC_{50} and Fukui functions for atoms N-5, C-6, C-8 and N-atom of 8-phenylamino side group is consistent with variation in chemical behavior for each atom.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

- Pathan, S., Ali, S.M. and Shrivastava, M. (2016) Quantitative Structure Activity Relationship and Drug Design: A Review. *International Journal of Research in BioSciences*, 5, 1-5.
- [2] Constantinescu, T., Lungu, C.N. and Lung, I. (2019) Lipophilicity as a Central Component of Drug-Like Properties of Chalchones and Flavonoid Derivatives. *Molecules*, 24, Article No. 1505. <u>https://doi.org/10.3390/molecules24081505</u>
- [3] Xia, L. and Wang, Q. (2018) QSAR Classification Modeling for Bioactivity of Molecular Structure via SPL-Logsum.
- [4] Singh, P.P., Sharma, S.B. and Singh, K. (2010) Quantum Chemical and Energy Descriptors Based QSAR Study of Triazine Derivatives. *Journal of Chemical and Pharmaceutical Research*, **2**, 193-205.
- [5] Bendjeddou1, A., Abbaz, T., Maache, S., Rehamnia, R., Gouasmia, A.K. and Villemin, D. (2016) Quantum Chemical Descriptors of Some P-Aminophenyl Tetrathiafulvalenes through Density Functional Theory (DFT). *Rasayan Journal of Chemistry*, **9**, 18-26.

- [6] Horvath, D., Marcou, G. and Varnek, A. (2019) Molecular Descriptors. <u>https://www.BigChem.eu</u>
- [7] Sahu, V., Sharma, P. and Kumar, A. (2014) Impact of Global and Local Reactivity Descriptors on the Hetero-Diels-Alder Reaction of Enaminothione with Various Electrophiles. *Journal of the Chilean Chemical Society*, **59**, 2327-2334. https://doi.org/10.4067/S0717-97072014000100019
- [8] Vásquez, D., Rodríguez, J.A., Theoduloz, C., Calderon, P.B. and Valderrama, J.A. (2010) Studies on Quinones. Part 46. Synthesis and *in Vitro* Antitumor Evaluation of Aminopyrimidoisoquinolinequinonesq. *European Journal of Medicinal Chemistry*, 45, 5234-5242. <u>https://doi.org/10.1016/j.ejmech.2010.08.040</u>
- [9] Elfaki, M.O., Sultan, M.Q.S. and Mohammed, A.I.O.K. (2020) Mechanistic Study of Anticancer Activity of Some Known Aminopyrimido-Isoquinoline-Quinones via QSAR Classification Methodology. *Computational Chemistry*, 8, 1-13. <u>https://doi.org/10.4236/cc.2020.81001</u>
- [10] Santos, C.B.R.d., Lobato, C.C., Vieira, J.B., *et al.* (2013) Evaluation of Quantum Chemical Methods and Basis Sets Applied in the Molecular Modeling of Artemisinin. *Computational Molecular Bioscience*, **3**, 66-79. https://doi.org/10.4236/cmb.2013.33009
- [11] Mahmoud, N.F., Mahmoud, W.H. and Mohammed, G.G. (2020) Synthesis, Spectra, MOE and Cytotoxic Studies of Nano Ru(III), Pr(III) and Gd(III) Metal Complexes with New Schiff Base Ligand Based on Dibenzoyl Methane and Anthranilic Acid. *Applied Organometallic Chemistry*, **34**, e5801. <u>https://doi.org/10.1002/aoc.5801</u>
- [12] Ravat, P. and Baumgarten, M. (2015) Tschitschibabin Type Biradicals: Benzenoid or Quinoid. *Physical Chemistry Chemical Physics*, **17**, 983-991. https://doi.org/10.1039/C4CP03522D
- [13] Yuan, M., Chen, X. and Lin, S. (2018) Synthesis the Functionalized Enamine. Progress in Chemistry, 30, 1082-1096.
- [14] Joshi, D.B. (2016) Chemical Reactivity, Dipole Moment and First Hyperpolarizability of Aristolochic Acid I. *Journal of Institute of Science and Technology*, 21, 1-9. <u>https://doi.org/10.3126/jist.v21i1.16030</u>
- [15] Lee, Y.Y. and Liu, S.T. (2022) Preparation of Substituted Pyridines via Coupling of β -Enamine Carbonyls with Rongalite-Application for Synthesis of Terpyridines. *Reactions*, **3**, 415-422. <u>https://doi.org/10.3390/reactions3030029</u>
- [16] Manna, C. and Pathak, T. (2017) Michael Acceptor, Masked Aldehyde and Leaving Group in a Single Intermediate: Unorthodox Approach to Enantiopure Saturated Aza-Heterocycles from a Multifunctional Glyco-Substrate. *ChemistrySelect*, 2, 4021-4027. <u>https://doi.org/10.1002/slct.201700332</u>

Supplementary Material

calculation of electronic global descriptors

comp		Н	L		η	S		Х	Ι		A	μ		DN	GAP	dipo
	5	3.073826	3.	. 316397	0.	121286 8.	245009	-3.1	9511 -3.	07383	-3.	3164 3.1	95112	-26.3437	0.242571	1.1156
	17	2.797199	2.	. 846827	0.	024814 40	. 29983	-2.8	32201 -2.	7972	-2.8	34683 2.8	322013	-113.727	0.049628	3.1619
	18	2.93106	2.	. 969657	0.	019299	1.8175	-2.9	95036 -2.9	93106	-2.9	6966 2.9	50359	-152.88	0.038597	2.7723
	19	2. 436342	2.	. 549224	0.	056441 17	. 71762	-2.4	49278 -2.	43634	-2.5	4922 2.4	92783	-44. 1662	0.112882	4.464
	23	3. 367261	3.	. 892795	0.	262767 3.	805653	-3.6	53003 -3.	36726	-3.	8928 3.6	530028	-13.8146	0. 525534	12.4501
								calci	ilation o	f fuqu	i fı	unctions				
								ourot	aracion o	r raqa	1 10					
						C-6										
				comp		mol.0	mol.	+1	mol1	f+		f-	f0			
						5 0.1662	77 0.19	92568	0.137904	0.026	5291	0.02837	3 0.02	7332		
						17 0.3679	22 0.38	33025	0.348301	0.015	5103	0.01962	$1 \ 0.\ 01$	7362		
						18 0. 3679	94 0.38	3052 10969	-0.0267	0.015	250	0.39469	1 0.20	4875 1746		
						23 0 3672	71 0.3 85 0 38	00000 01122	0.34071	0.010	1847	0.01900	1 -0.1	7401		
						C-33	55 0.50	51152	0.041001	0.010	011	0.01342	1 0.1	1101		
				comp		mol.0	mol.	+1	mol1	f+		f-	f0			
				comp		5 0. 2548	79 0.27	2333	0. 238764	0.017	454	0.01611	5 0.01	6785		
						17 0.2352	02 0.25	50254	0.220677	0.015	5052	0.01452	5 0.01	4789		
						18 0.2548	83 0.27	1276	0.000493	0.016	5393	0.2543	9 0.13	5392		
						19 0.2970	29 0.3	31437	0.279042	0.017	341	0.01798	7 0.01	7664		
						23 0. 2806	88 0.01	.7883	0.268233	-0.26	5281	0.01245	5 -0.1	2518		
						23 0. 2936	93 0.05	94672	0.288383	-0.23	\$902	0.0053	1 -0.1	1686		
						negati	vity-at	om	1 1	C .		C	<u>co</u>			
				comp		mol. U	mol. 74 -0 5	+1	mol1	1^+	200	1- 0_01220	10 = 10	2557		
						17 - 0.520	74 -0.0 83 -0 5	57514	-0.60864	0.014	685	0.01230	1 0 01	5557 6748		
						18 -0. 520	75 -0.5	50681	0.000053	0.013	3933	-0. 520	3 -0.2	5343		
						19 -0.286	32 -0.2	26553	-0. 30558	0.02	2079	0.01926	7 0.02	0029		
						23 -0.541	97 0.03	34341	-0. 52836	0.576	5308	-0.0136	1 0.28	1349		
						23 -0. 522	62 0.03	84557	-0. 52709	0.557	178	0.00446	8 0.28	0823		
						0-orie	nt. For	NH2	-posi.28							
				comp		mol.0	mol.	+1	mol1	f+		f-	f0			
						5 -0.17	67 0.05	59448	-0.17154	0.236	5149	-0.0051	5 -0.0	5605		
						17 -0.176	$96 \ 0.05$	05945 7944	-0.17216	0.232	2903	-0.004	3 -0.0	2811 2694		
						18 -0.170	75 -0.1 15 -0	1682	-0.00024		200	-0.1765	2 -0.0	5084 6759		
						23 -0. 204	32 0.00	1395	0.037626	0.205	5712	-0.2419	4 0.01	9511		
						0-omio	t For	NU9.	-nooi 20-	91						
				comp		mol 0	mol	- NHZ- +1	-posi.30- mol -1	51 f+		f-	fO			
				comp		5 -0.19	69 0.00	3768	-0.19882	0.200	671	-0.2006	$7 - 0.0^{\circ}$	9753		
						17 -0.197	34 0.00	01971	-0. 19942	0.199	314	-0.1993	1 -0.0	9873		
						18 -0.196	86 -0.1	9168	0.001898	0.005	5184	-0.0051	8 -0.0	9489		
						19 -0.1	92 -0.1	8689	-0. 19447	0.005	5111	-0.0051	1 -0.1	9068		
						23 -0.204	32 0.00)1395	0.037626	0.205	5712	-0.2057	1 0.01	9511		
						quinon	e atom(0-23)							
				comp		mol.0	mol.	+1	mol1	f+		f-	fo	1005		
						5 -0.396	14 -0.3 46 - 0.3	1022	-0.50287	0.077	069	0.10573	1 - 0.4	1097		
						18 -0 395	±0 =0.3 38 A 44	28833 21933	-0.5012	0.076	2211	0.10560	5 -0.4 5 -0 0	1708		
						19 -0.394	42 -0.	3181	-0. 50037	0.076	319	0.1059	5 -0.4	0924		
						23 -0.397	88 -0.3	82772	-0. 50316	0.070)161	0.10527	9 -0.4	1544		

		quinone a	atom(C-1)				
comp		mol 0	mol +1	mol -1	f+	f-	fO
comp	5	0 20007	0 432056	0 250576	0 035086	1 040304	0 07228
	17	0.39997	0.432930	0.339370	0.032300	0.040394	0.07338
	17	0.399069	0.432154	0.35974	0. 033085	0.039329	0.072414
	18	0.399166	-0.08121	0.35989	-0. 48037	0.039276	-0.4411
	19	0.39966	0. 433084	0.360411	0.033424	0.039249	0.072673
	23	0.396245	0.427937	0.356156	0.031692	0.040089	0.071781
		N-12					
comp		mol.0	mol.+1	mol1	f+	f-	f0
1-	5	-0.55753	-0.53081	-0.59691	0. 02672	0.039372	0.033046
	17	-0.60537	-0.57952	-0.64249	0.025846	0 037119	0 031483
	18	-0.60543	-0.57964	-0.64245	0.025785	0.037027	0.031406
	10	-0.60513	-0 57905	-0.64212	0.026078	0.036989	0.031534
	13	-0 60683	-0.58275	-0.644212	0.020010	0.030303	0.031334
	20	0.00003	0.00270	0.04431	0.024074	0.037400	0.03078
comp		mol 0	mol+1	mol-1	f+	f-	f0
comp	5	0 162464	0 10/268	0 1151/3	0.031804	0 0.047321	0 030563
	17	0.170210	0.104200	0.124458	0.031004	0.045856	0.033003
	10	0.170314	0.202004	0.124400	0.001015	0.045050	0.030013
	10	0.170324	0.202239	0.124203	0.031910	0.040121	0.039010
	19	0.170132	0.202781	0.123997	0.032649	0.046135	0.039392
	23	0. 160496	0. 187238	0.11468	0. 026742	0.045816	0. 036279
		N-pneny1a	amino grou	лр 1 1	C I	C	<u>co</u>
comp	_	mol U	mo1+1	mo1-1	I+	I-	IU 0.001550
	5	-0.65282	-0.62394	-0.66705	0.028881	0.01423	0.021556
	17	-0.65354	-0.62584	-0.66774	0. 027698	0.014204	0.020951
	18	-0.65368	-0.62599	-0.66773	0.027692	0.014051	0.020872
	19	-0.65329	-0.62634	-0.6673	0.026947	0.014011	0.020479
	23	-0.64996	-0.62461	-0.66224	0.025355	0.012278	0.018817
		C-30 C pł	nenyl ring	g attache	ed to amin	10	
comp		mol 0	mol+1	mol-1	f+	f-	f0
	5	0.164578	0.151272	0.186279	-0.01331	-0.0217	-0.0175
	17	0.164201	0.150358	0.185434	-0.01384	-0.02123	-0.01754
	18	0.164776	0.15062	0.186281	-0.01416	-0.02151	-0.01783
	19	0.162211	0.147815	0.183133	-0.0144	-0.02092	-0.01766
	23	0.116466	0.110302	0.138089	-0.00616	-0.02162	-0.01389
		C-5 adiad	cent toca	rbony grou	ar		
comp		mol 0	mol+1	mol-1	f+	f-	f0
	5	-0.19195	-0.17746	-0.23196	0.014494	0.040008	0.027251
	17	-0.19107	-0.17709	-0.23178	0.013979	0.040713	0.027346
	18	-0.19096	-0.17703	-0.23171	0.013929	0.040758	0.027344
	19	-0.19016	-0.17611	-0.23139	0.014056	0.041232	0.027644
	23	-0. 19019	-0. 17648	-0.23266	0.013708	0.042465	0. 028087
		(-side of	nain			200	
comp		mol 0	mol+1	mol-1	f+	f–	fO
Somb	5				т. О	٠ ١	10
	17	-0 59799	-0 59927	-0 59363	-0 00128	-0 00436	-0 00282
	18	-0 50806	-0 50027	-0 50271	-0 00120	-0 00435	-0 00202
	10	-0.5000	-0 50032	-0.50371	-0 00127	-0 00433	-0 00201
	73 13	-0.50784	-0 50000	-0 50256	-0 00127		-0 00202
	40	0.03104	0.000000	0.00000	0.00124	0.00440	0.00410

		С	alculatio	n of Mulica	an charg	harg for different atoms in different positions						
	11C 0	0.166277	11C 0	0.367922	11C 0	0.367994	11C 0	0.368371	11C 0	0.367285		
	33C 0	0.254879	32C 0	0.235202	32C 0	0.254883	32C 0	0.297029	27C 0	0.280688		
	400 0	-0.52074	390 0	-0.59283	390 0	-0.52075	44F 0	-0.28632	30C 0	0.293693		
	11C+1	0.192568	11C +1	0.383025	11C +1	0.383052	11C +1	0.38363	430 0	-0.54197		
	33C+1	0.272333	32C +1	0.250254	32C +1	0.271276	32C +1	0.31437	440 0	-0.52262		
	400+1	-0.50593	390 +1	-0.57514	390 + 1	-0.50681	44F +1	-0.26553	11C +1	-0.00017		
	11C-1	0.137904	11C -1	0.348301	11C -1	-0.0267	11C -1	0.34871	27C +1	0.017883		
	33C-1	0.238764	32C -1	0.220677	32C -1	0.000493	32C -1	0.279042	30C +1	0.054672		
	400-1	-0.53305	390 - 1	-0.60864	390 - 1	0.000053	44F -1	-0.30558	430 +1	0.034341		
									440 +1	0.034557		
	orientat	ion 5	orientat	tion 17	orienta	tion 18	orienta	tion 19	11C -1	0.347861		
	28C 0	-0.20312	270 0	-0. 20197	270 0	-0.20314	27C 0	-0.22323	27C -1	0.268233		
	29C 0	-0.1767	2800	-0.17696	2800	-0.17675	2800	-0.1715	30C -1	0. 288383		
	31C 0	-0.1969	300 0	-0.19734	300 0	-0.19686	300.0	-0.192	430 - 1	-0.52836		
	320 0	-0 19296	310 0	-0.1915	310 0	-0.19287	31C 0	-0 22246	440 -1	-0.52709		
	020 0	0.10200	510 0	0.1010	510 0	0.15201	010 0	0. 222 10	110 1	0.02100		
	28C +1	0 03958	270 +1	0 038844	270 +1	-0 19423	276 +1	-0.21367				
	200 + 1 29C + 1	0.059448	28C+1	0.055945	280 + 1	-0.17344	280+1	-0.1682				
	310 + 1	0.003768	300+1	0.001971	300+1	-0 19168	300 + 1	-0 18689				
	32C + 1	0.049822	31C + 1	0.050071	31C + 1	-0 18418	31C + 1	-0.21321				
	520 1	0.010022	510 11	0.000011	510 1	0.10410	510 1	0.21521				
	280 -1	-0 21288	270 -1	-0 21199	270 -1	0 000133	270 -1	-0 23375	orienta	tion 23		
	200 - 1	-0.17154	280 - 1	-0.17216	280 - 1	-0,000133	270 - 1	-0 16697	286 0	-0 20432		
	31C -1	-0.19882	200 I 30C-1	-0.19942	200 I 30C-1	0.00024	200 - 1	-0.19447	200 0 310 0	-0.21248		
	320 -1	-0.20019	$300 \ 1$ $310 \ -1$	-0.19942	$300 \ 1$ $310 \ -1$	-0,001333	310 - 1	-0.23051	320 0	-0.21240		
	520 1	0.20015	510 1	0.1352	510 1	0.00011	510 1	0.23031	520 0	0.21004		
									28C +1	0.001395		
									31C +1	-0.01438		
5	5 quinone-	atom 1'	7 quinone-	-atom 18	8 quinone [.]	-atom 1	9 quinone	-atom	32C +1	0.025557		
0-24-0	-0.39614	0-23-0	-0.39546	3	0-23-0	-0.39538	0-23-0	-0.39442				
0 - 25 - 0	-0.449	0-24-0	-0.4561	l	0-24-0	-0.45614	0-24-0	-0.45704	28C -1	0.037626		
C-1 0	0.41737	C-1 0	0.423672	2	C-1 0	0.423777	C-1 0	0.424086	31C -1	-0.03154		
C-4 0	0.39997	C-4 0	0.399069)	C-4 0	0.399166	C-4 0	0.39966	32C -1	-0.04746		
0-24-+1	-0.31907	0-23+1	-0.31933	3	0-23+1	0.466833	0-23+1	-0.3181				
0-25-+1	-0.39559	0-24+1	-0.4056	3	0-24+1	-0.01739	0-24+1	-0.40576	2	3 quinone-atom		
C-1 +1	0.431707	C-1 +1	0.437066	3	C-1 +1	0.011417	C-1 +1	0.43755	0-23-0	-0.39788		
C-4 +1	0.432956	C-4 +1	0. 432154	1	C-4 +1	-0.08121	C-4 +1	0.433084	0-24-0	-0.45776		
0-241	-0.50287	0 - 23 - 1	-0.5012	2	0 - 23 - 1	-0.50098	0-23-1	-0.50037	C-1 0	0.423431		
0-251	-0.55897	0-24-1	-0.56145	5	0 - 24 - 1	-0.56152	0 - 24 - 1	-0.5624	C-4 0	0.396245		
C-1 -1	0.365548	C-1 -1	0.37358	3	C-1 -1	0.373717	C-1 -1	0.373952	0-23+1	-0.32772		
C-4 -1	0.359576	C-4 -1	0.35974	1	C-4 -1	0.35989	C-4 -1	0.360411	0-24+1	-0.41333		
									C-1 +1	0.435507		
									C-4 +1	0.427937		
N-isoaui	inoline								0-23-1	-0. 50316		
N-12-0	-0.55753	N-12-0	-0.60537	7	N-12-0	-0.60543	N-12-0	-0.60513	0 - 24 - 1	-0. 56279		
N-12+1	-0.53081	N-12+1	-0. 57952	2	N-12+1	-0.57964	N-12+1	-0.57905	C-1 -1	0.374086		
N-12-1	-0. 59691	N-12-1	-0.64249)	N-12-1	-0.64245	N-12-1	-0.64212	C-4 -1	0.356156		
									N-12-0	-0.60683		
									N-12+1	-0.58275		
									N-12-1	-0.64431		