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Abstract 
Anti-inflammatory activity of a series of tri-substituted pyrimidine deriva-
tives was predicted using two Quantitative Structure-Activity Relationship 
models. These relationships were developed from molecular descriptors calcu-
lated using the DFT quantum chemistry method using the B3LYP/6-31G(d,p) 
level of theory and molecular lipophilicity. Thus, the four descriptors which 
are the dipole moment µD, the energy of the highest occupied molecular or-
bital EHOMO, the isotropic polarizability α and the ACD/logP lipophilicity were 
selected for this purpose. The Multiple Linear Regression (MLR) and Artifi-
cial Neural Network (ANN) models are respectively accredited with the fol-

lowing statistical indicators: 2 91.28%R = , 2 89.11%ajR = , RMCE = 0.2831, 
2 86.50%extR =  and 2 98.22%R = , 2 97.75%ajR = , RMCE = 0.1131,  
2 98.54%extR = . The results obtained with the artificial neural network are 

better than those of the multiple linear regression. However, these results 
show that the two models developed have very good predictive performance 
of anti-inflammatory activity. These two models can therefore be used to pre-
dict anti-inflammatory activity of new similar pyrimidine derivatives. 
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1. Introduction 

Inflammation is a local response of the organism to an agression of exogenous or 
endogenous origin [1]. It aims to circumscribe and repair this aggression and 
involves a series of events that are characterized by a combination of redness, 
heat, edema and pain [2]. Like pain, inflammation changes behavior. It can then 
lead to the loss of jobs and even the marginalization of the patient by relatives. It 
therefore has a very significant social and economic cost [3]. To take part in the 
treatment of inflammation, several varieties of drugs are available such as aspirin 
and Non-Steroidal Anti-Inflammatory Drugs (NSAIDs). But many of these va-
rieties have adverse side effects for the body [4]. This is why researchers contin-
ue to mobilize in order to find new effective molecules with fewer side effects. 
Pyrimidine derivatives are a promising avenue. Evidenced by the many studies 
on series of molecules comprising the core of the pyrimidine and which have 
analgesic and anti-inflammatory properties [5] [6] [7]. A fairly large number of 
these studies relate to tri-substituted derivatives of pyrimidine [8] [9]. The re-
sults obtained are very encouraging and various substituents are tested. To par-
ticipate in this dynamic research, Quantitative Structure Activity-Relationship 
(QSAR) models of anti-inflammatory activity, developed for other organic com-
pounds, are available [10] [11]. But few models relate to the anti-inflammatory 
activity of pyrimidine derivatives. A QSAR model is an alternative and comple-
mentary solution to traditional methods for investigating a biological activity 
[12]. This approach is increasingly used to reduce the excessive number of expe-
riments, which are sometimes long, dangerous and costly in terms of time and 
finance [13]. The model establishes a quantitative relationship between biologi-
cal activity and molecular descriptors. Most models use multiple linear regres-
sion. But sometimes linear models are not sufficient to explain all sources of va-
riability due to the complex nature of the relationships between molecular struc-
ture and activity [14]. Therefore, nonlinear modeling approaches are used to 
develop statistically significant and predictive QSAR models [15]. The aim of 
this work is to develop QSAR models of the anti-inflammatory activity of a se-
ries of tri-substituted pyrimidine derivatives using molecular descriptors. 

2. Materials and Method 
2.1. Computational Theory Level 

The quantum descriptor calculation program used in this work is Gaussian 09 
[16] with its graphical interface GaussView05. The optimization and the calcula-
tion of the frequencies of the molecules were carried out using the Density Func-
tional Theory (DFT) method with the B3LYP functional. The B3LYP functional 
is a hybrid functional that combines Becke’s third parametrization for the ex-
change energy and the Lee, Yang and Parr functional for the correlation energy 
[17]. This functional has shown its efficiency for the calculation of many mole-
cular properties [18]. The basis retained is the split-valence and double-dzeta 
6-31G(d,p). This basis is sufficiently extensive and the consideration of polariza-
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tion functions is important for the explanation of dipole and multipole moments. 
The B3LYP/6-31G(d,p) level of theory was used to determine the quantum mo-
lecular descriptors. The logP molecular lipophilicity of the derivatives was esti-
mated using the ChemSketch software from ACD/Lab [19]. 

2.2. Molecular Descriptors Used 

Some theoretical descriptors have been characterized in order to develop our 
QSAR model. In particular, the dipole moment µD, the energy of the highest oc-
cupied molecular orbital EHOMO, the isotropic polarizability α and the logP mo-
lecular lipophilicity. 

The dipole moment related to the charge distribution is a parameter that relies 
on the existence of electrostatic dipoles. It is an overall distribution of electric 
charges in a molecular system, such that the barycenter of the positive charges 
does not coincide with that of the negative charges. The dipole moment is a vec-
tor quantity. The dipole moment makes it possible to describe the global polarity 
as well as the existence of interaction of molecular systems such as Van der 
Waals forces, and also to predict their solubility in polar solvents. The dipole 
moment is an important property that gives an idea of the reactivity of the mo-
lecule [20]. It also indicates the stability of a molecule in water. Thus, a strong 
dipole moment will reflect low solubility in organic solvents and high solubility 
in water [21]. 

The highest occupied molecular orbital (HOMO) plays a fundamental role in 
the qualitative interpretation of chemical reactivity [22]. It is considered the 
outer orbital containing electrons and it tends to behave as an electron donor. 

Another parameter studied is the isotropic polarizability α. It is the ease of a 
building to deform under the action of an electric field [23]. It is defined by the 
following relationship [24]: 

( )1
3 xx yy zzα α α α= + +                        (1) 

Finally, the last descriptor evaluated is molecular lipophilicity, which is very 
important. It is intimately linked to the notion of partition of a molecule be-
tween an aqueous phase and a lipid phase [25]. We now know that this capacity 
for partitioning of a molecule between two phases partly conditions its biological 
properties such as transport, passage through membranes, bioavailability (dis-
tribution and accumulation), affinity for a receptor, protein binding, pharmaco-
logical activity, toxicity, accumulation in aquatic organisms, etc. [19]. 

2.3. Quantitative Structure Activity-Relationship (QSAR) 

The objective of a QSAR study is to establish a mathematical relationship be-
tween molecular properties called descriptors and a given biological activity, for 
a series of similar compounds [26]. The equation of such a relationship, when 
validated, makes it possible to determine the values of the parameters which 
correspond to optimal activity and to predict the most promising molecular 
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structure which should be synthesized and tested in the laboratory [27]. It can 
also be used for the prediction of the properties of molecules already synthesized 
or not for which the biological activities are not available. The development of a 
QSAR model must then follow a rigorous scheme in order to achieve a reliable 
and quantitative result. Thus, the development of a QSAR model 1) begins with 
the selection of reliable experimental data [28], 2) the calculation of molecular 
descriptors, as many as possible, 3) the selection of independent and relevant 
descriptors [29], 4) setting up the QSAR relationship with the selected descrip-
tors using data analysis tools and 5) validating the model developed [30]. Vari-
ous internal validation criteria exist such as internal correlation coefficient R2, 
adjusted correlation coefficient 2

ajR , standard deviation RMCE, Fisher coeffi-
cient F [30], cross-validation 2

cvQ  [31], randomization [32] and also external 
validation criteria such as 2

extR  and standard deviation RMSEP for the test set, 
the criteria of Golbraikh and Tropsha [33] as well as those of Roy et al. 2

mr , 2
mr′ , 

2
mr∆ , ( )2 LOOmr  and ( )2 overallmr  [34]. These various criteria make it possible 

to establish the significance, robustness and reliability of the model developed. 
XLSTAT 2014 and EXCEL 2013 softwares were used to develop the QSAR mod-
els and to perform the various calculations. 

2.4. Multiple Linear Regression (MLR) 

Multiple linear regression is the statistical tool which consists in modeling, using 
a multiple linear combination, a dependent quantitative variable Y by several 
independent quantitative explanatory variables iX  ( 1, ,i p=  ), according to 
the Equation (2) [35]. 

0 1 1 2 2 3 3 p pY X X X Xβ β β β β ε= + + + + + +              (2) 

where iβ  are the regression coefficients and ε  is the model error. These coef-
ficients iβ  and the variance 2σ  are estimated by minimizing the least squares 
criterion. The analysis of variance, which is generally done using an ANOVA ta-
ble, provides access to various model validation parameters such as R2, 2

ajR , 
RMCE and F defined below [36]: 

2 SSM SSR1
SST SST

R = = −                         (3) 

( )( )2
2

1 1
1aj

n R
R

n p

− −
= −

−
                       (4) 

SSRSD RMCE
1n p

σ = = =
− −

                    (5) 

1 SSM
SSR

n pF
n

− −
=                          (6) 

with:  

( )2

1
SSM

n

ipred TS
i

Y Y
=

= −∑                        (7) 
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( )2

1
SST

n

iexp TS
i

Y Y
=

= −∑                       (8) 

( )2

1
SSR

n

iexp ipred
i

Y Y
=

= −∑                      (9) 

SST SSM SSR= +                        (10) 

n is the number of molecules in the training set (TS) and p the number of de-
scriptors in the model. iexpY  and ipredY  are the experimental and predicted 
values of the dependent variable iY  for molecule i; TSY  is the mean value of 
the dependent variable for the training set. 

2.5. Artificial Neural Network (ANN) 

An artificial neural network (ANN) is a biologically inspired computer algo-
rithm designed to work in the same way as the human brain processes informa-
tion [37]. It consists of a number of processing elements (or cells) which 
represent artificial neurons. Each neuron has an input, weights (wi) associated 
with each input, a transfer function (f) and an output (a) [38] (see Figure 1(a)), 
which can then branch out to feed a variable number of other neurons [39]. The 
neurons are interconnected to form the artificial neural network with variable 
coefficients or weights and are organized into layers: input layer, hidden layers 
and output layer [40] (see Figure 1(b)). 

Artificial neural networks have shown great efficiency in modeling nonlinear 
relationships [15]. The algorithm of multilayer neural networks (or Multilayer 
Perceptrons) with backpropagation remains the most productive model at the 
application level and the most widely used [41]. The MATLAB 2017a program 
was used to build the artificial neural networks of this work.  

 

 
(a) 

 
(b) 

Figure 1. (a) Single neuron with 4 inputs and one output and (b) multilayer perceptron. 
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3. Results and Discussion 
3.1. Analysis of Molecular Descriptors 

The work of Vishal et al. [42] and Yejella et al. [43] provided twenty-eight 
tri-substituted pyrimidine derivatives with anti-inflammatory activity expressed 
as a percentage. The general structure of these molecules is as shown in Figure 2. 
The designation codes of the derivatives, the substituents and the percentages of 
inhibition of inflammation (PI), are collated in Table 1. 

The results of the calculations of the various molecular descriptors, namely, µD, 
EHOMO, α and logP, for the 28 molecules, are collated in Table 2. This table also 
contains the anti-inflammatory activity expressed by logAI for each derivative of 
the series. Indeed, the values of the percentages of inhibition of inflammation 
(PI), were transformed into decimal logarithms logAI according to the expres-
sion (12). These new values are collated in Table 2. 

The decimal logarithm of the anti-inflammatory activity logAI [44] represents 
the magnitude to be explained in this study. This quantity takes into account 
both the experimental dose D (10 or 100 mg/kg) of the molecule injected into  
 

 
Figure 2. General structure of pyrimidine derivatives. 

 
Table 1. Designation codes, substituents Ar1, Ar2 and YHn and percentages of inhibition of inflammation (PI) of the 28 Pyrimi-
dine derivatives. 

CODE Ar1 Ar2 YHn PI CODE Ar1 Ar2 YHn PI 

DP01 C4H3O 4-C6H4Br OH 53.86 DP15 C4H3O 4-C6H4-CH3 NH2 64.10 

DP02 C4H3O 4-C6H4Br SH 43.82 DP16 C6H4-NH2 4-C6H4-Cl NH2 82.54 

DP03 C4H3O 4-C6H4Br NH2 48.16 DP17 C6H4-NH2 1.4-C6H4-Cl2 NH2 87.23 

DP04 C4H3O 4-C6H4Cl OH 49.93 DP18 C6H4-NH2 4-C6H4-F NH2 83.46 

DP05 C4H3O 4-C6H4Cl SH 41.08 DP19 C6H4-NH2 3-C6H4-Br NH2 86.99 

DP06 C4H3O 4-C6H4Cl NH2 46.53 DP20 C6H4-NH2 4-C6H4-F NH2 83.47 

DP07 C4H3O 4-C6H4F OH 51.43 DP21 C6H4-NH2 4-C6H4-OCH3 NH2 85.60 

DP08 C4H3O 4-C6H4F SH 54.28 DP22 C6H4-NH2 3.4-C6H4-(OCH3)2 NH2 82.13 

DP09 C4H3O 4-C6H4F NH2 43.40 DP23 C6H4-NH2 1.3.4-C6H4-(OCH3)3 NH2 82.82 

DP10 C4H3O 4-C6H4-NH2 OH 89.71 DP24 C6H4-NH2 4-C6H4-C6H3 NH2 83.50 

DP11 C4H3O 4-C6H4-NH2 SH 69.71 DP25 C6H4-NH2 9-C14H9 NH2 91.26 

DP12 C4H3O 4-C6H4-NH2 NH2 90.21 DP26 C6H4-NH2 2-NC5H4 NH2 83.53 

DP13 C4H3O 4-C6H4-CH3 OH 68.54 DP27 C6H4-NH2 4-NC5H4 NH2 85.12 

DP14 C4H3O 4-C6H4-CH3 SH 37.54 DP28 C6H4-NH2 3-NC5H4 NH2 83.96 
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Table 2. Anti-inflammatory activities (logAI), dipole moment μD(Debye), energies of the highest occupied molecular orbital 
EHOMO(eV), isotropic molecular polarizability α(Bohr3) and logP lipophilicity of tri-substituted pyrimidine derivatives. 

Derivatives logAI µD EHOMO α logP Derivatives logAI µD EHOMO α logP 

DP01 0.567 4.252 −6.208 201.710 2.440 DP15 0.640 0.833 −5.731 196.720 3.530 

DP02 0.413 4.278 −6.227 219.400 2.790 DP16 2.146 4.716 −5.473 231.730 3.240 

DP03 0.466 2.342 −5.875 205.490 3.980 DP17 2.353 3.841 −5.467 239.920 3.740 

DP04 0.433 4.321 −6.216 192.590 2.100 DP18 2.150 4.018 −5.428 216.110 2.610 

DP05 0.303 4.329 −6.234 210.220 2.450 DP19 2.357 3.349 −5.463 234.920 3.350 

DP06 0.373 2.430 −5.885 196.330 3.640 DP20 2.169 1.597 −5.302 239.440 2.490 

DP07 0.433 3.928 −6.154 177.320 1.470 DP21 2.282 2.554 −5.358 252.320 2.160 

DP08 0.509 4.092 −6.175 194.720 1.820 DP22 2.209 3.554 −5.342 270.040 1.710 

DP09 0.291 1.791 −5.820 181.230 3.010 DP23 2.124 2.739 −5.346 231.160 3.130 

DP10 1.484 3.538 −5.476 198.280 0.330 DP24 2.189 2.982 −4.966 265.160 2.780 

DP11 1.596 4.353 −5.558 216.090 0.680 DP25 2.578 3.433 −5.097 313.030 4.640 

DP12 1.615 2.558 −5.326 199.000 1.870 DP26 2.125 1.958 −5.310 211.860 1.330 

DP13 0.408 2.944 −6.037 194.070 1.990 DP27 2.178 5.441 −5.529 208.820 1.290 

DP14 0.504 3.435 −6.073 210.520 2.340 DP28 2.139 5.040 −5.478 209.650 1.360 

 
the animal, the molar mass M of this injected molecule as well as the physiologi-
cal response of the animal expressed as a percentage of inhibition (PI) of in-
flammation [45] according to the expression (12). 

PIlog AI log log
100 PI

D
M

= −
−

                  (12) 

The analysis of the results of this table reveals that these descriptors vary from 
one derivative to another and thus depend on the substituents attached to the 
nucleus of the pyrimidine. 

3.2. Statistical Analysis of Data 

We seek to build mathematical models capable of explaining and predicting an-
ti-inflammatory activity based on descriptors of free molecules. 

For the QSAR model to be simple and understandable, the descriptors used 
must be meaningful and interpretable [46]. The selection of candidate descrip-
tors for the model is a crucial step and the quality of the model will depend on 
their relevance because they must provide information that can explain the re-
sponse (biological activity). To this end, the processing of the descriptors was 
carried out on the one hand using the one-factor variances and on the other 
hand using the Pearson correlation coefficients. The analysis of variances makes 
it possible to eliminate constant or little varied descriptors [28] [47]. The corre-
lation coefficients of the descriptors are calculated taking into account the bio-
logical activity expressed by logAI. This consists in bringing the descriptors 
strongly correlated with each other to the one which is most strongly correlated 
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with the biological activity. Indeed, descriptors strongly correlated between them 
are redundant, because they have the same information [48]. These two methods, 
the results of which are presented in Table 3 and Table 4, show that the four 
descriptors which are the dipole moment µD, the energy of the highest occupied 
molecular orbital EHOMO, the isotropic polarizability α and the lipophilicity logP, 
vary well from one derivative to another and that they are linearly independent.   

3.3. Prediction of Anti-Inflammatory Activity by Multiple Linear  
Regression (MLR) 

To build and test the multiple linear regression (MLR) model, the initial set of 28 
molecules was subdivided into a training set (75%) and a test set (25%) [33] us-
ing hierarchical ascending clustering (CAH) [49]. The Euclidean distance be-
tween the observations, in the space defined by the descriptors, was retained as 
the dissimilarity criterion and Ward’s method as the aggregation criterion [49]. 
The multiple linear regression method applied to the training set, using the four 
descriptors, gave the Equation (13) below: 

( )MLR HOMOPred log AI 11.1714 0.2822 2.0471
0.0034 0.0772 logP

D Eµ
α

= + ∗ + ∗

+ ∗ + ∗
     (13) 

The statistical indicators of this model are: 
21N = , 7n = , 2 91.28%R = , 2 89.11%ajR = , RMCE 0.2831= ,  

41.8959F = , 0.0001p < , ( )2 LOO 84.26%cvQ = , Randomization 2 0.7160pR = , 
2 86.50%extR = , 2 0.7978mr = , 2 0.7928mr′ = , 2 0.005mr∆ =  
All these statistical indicators are strongly different from the defined limit 

values [28] [34]. They thus show that the developed MLR model explains the an-
ti-inflammatory activity of this series of pyrimidine derivatives in a statistically 
significant and satisfactory manner. This model can thus be considered robust 
and stable. The predicted values for each set are recorded in Table 5 as well as 
the residuals between experimental and predicted values. 

 
Table 3. Variances of anti-inflammatory activity (logAI) and various descriptors. 

Grandeurs logAI µD EHOMO α logP 

Variance 0.753 1.218 0.145 885.21 1.034 

 
Table 4. Correlation matrix of the 4 calculated descriptors and the logAI anti-inflammatory 
activity. 

 logAI µD EHOMO α logP 

logAI 1     

µD 0.09 1    

EHOMO 0.90 −0.22 1   

α 0.71 0.01 0.67 1  

logP 0.01 −0.33 0.07 0.38 1 
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Table 5. Experimental logAI values, predicted values and residuals e(MLR) of the mul-
tiple linear regression model. 

TRAINING 

Derivatives logAI PredMLR(logAI) e(MLR) 

DP01 0.5668 0.4731 0.0937 

DP02 0.4132 0.5235 −0.1103 

DP03 0.4664 0.7458 −0.2794 

DP05 0.3028 0.4688 −0.1661 

DP06 0.3727 0.6972 −0.3245 

DP07 0.4332 0.3424 0.0908 

DP08 0.5092 0.4264 0.0828 

DP10 1.4838 1.5966 −0.1128 

DP12 1.6146 1.7483 −0.1337 

DP13 0.4076 0.3962 0.0114 

DP14 0.5037 0.5384 −0.0346 

DP15 0.6403 0.5545 0.0859 

DP17 2.3530 2.0932 0.2598 

DP18 2.1503 2.0612 0.0891 

DP19 2.3567 1.9162 0.4405 

DP20 2.1688 1.6999 0.4689 

DP22 2.2091 2.2025 0.0066 

DP23 2.1242 1.9556 0.1686 

DP24 2.1887 2.8790 −0.6902 

DP27 2.1776 2.1320 0.0456 

DP28 2.1390 2.1310 0.0080 

TEST 

DP04 0.4334 0.4209 0.0125 

DP09 0.2914 0.5542 −0.2628 

DP11 1.5957 1.7407 −0.1450 

DP16 2.1460 2.2623 −0.1163 

DP21 2.2822 1.8686 0.4136 

DP25 2.5777 3.0684 −0.4908 

DP26 2.1253 1.6098 0.5155 

 
The analysis of these results shows that, for the two sets, the absolute values of 

the residuals range from 0.01 to 0.69 with a mean absolute difference (RMCE) of 
0.27 defined for the two sets. This result confirms that the predicted values are 
close to the experimental values overall. The MLR model therefore has a good 
predictive performance of the anti-inflammatory activity of this series of deriva-
tives. 
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3.4. Prediction of Anti-Inflammatory Activity by Artificial Neural  
Networks (ANN) 

A feed-forward Backpropagation neural network (a multilayer perceptron) [40] 
was used, with four inputs corresponding to the four descriptors (μD, EHOMO, α 
and logP), ten hidden layers and one output. The 28 derivatives are randomly 
divided into three subsets. Training (70%) (20 molecules), validation (15%) (4 
molecules) and test (15%) (4 molecules). The training set adjusts the connection 
weights and model-fitting biases. The validation set verifies the performance of 
the model throughout the training process and stops training to avoid over- 
training [38]. The activation functions are the hyperbolic tangent function for 
the hidden and output layers and the Levenberg-Marquard function for the 
training set. The performance of the developed model was evaluated by the re-
sidual e (ANN) between the predicted and experimental values for each value of 
logAI. The predicted and experimental values as well as the residuals are pre-
sented in Table 6. 

These results indicate that, for all three sets, the absolute values of the resi-
duals range from 0.00 to 0.29 with a mean absolute deviation (RMCE) of 0.11. 
This confirms that the predicted values are very close to the experimental values. 
The ANN model therefore has a very good predictive performance of the an-
ti-inflammatory activity of this series of derivatives. 

3.5. Comparison of the Two Established Models 

Table 7 brings together the values predicted by each of the two models as well as 
the residuals and the experimental values for the 28 derivatives studied. 

The statistical parameters of the two models are collected in Table 8. These 
parameters show that the two models can predict the anti-inflammatory activity 
of this series of pyrimidine derivatives, in a statistically significant and satisfac-
tory way. But the results obtained with the model of artificial neural networks 
are better than those of multiple linear regression. This demonstrates that the 
model obtained with artificial neural networks has a better predictive capacity of 
anti-inflammatory activity than that obtained by multiple linear regression. Fig-
ure 3 shows the fit of predicted values and experimental values for the two mod-
els. We can see a better match between the values predicted by the artificial 
neural networks and the experimental values. 

 
Table 6. Experimental values, predicted values of logAI and e(ANN) residuals of the ar-
tificial neural network model. 

TRAINING 

Derivatives logAI PredANN(logAI) e(ANN) 

DP02 0.4132 0.3976 0.0156 

DP03 0.4664 0.4716 −0.0052 

DP05 0.3028 0.4259 −0.1231 

DP06 0.3727 0.3974 −0.0247 
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Continued 

DP08 0.5092 0.5092 0.0000 

DP11 1.5957 1.6404 −0.0447 

DP12 1.6146 1.6358 −0.0212 

DP13 0.4076 0.4153 −0.0077 

DP14 0.5037 0.4135 0.0902 

DP15 0.6403 0.4434 0.1969 

DP18 2.1503 2.1969 −0.0466 

DP19 2.3567 2.2501 0.1066 

DP20 2.1688 2.1872 −0.0184 

DP21 2.2822 2.2725 0.0097 

DP22 2.2091 2.1071 0.1020 

DP23 2.1242 2.2650 −0.1408 

DP25 2.5777 2.2884 0.2893 

DP26 2.1253 1.9419 0.1834 

DP27 2.1776 2.0162 0.1614 

DP28 2.1390 2.0904 0.0486 

VALIDATION 

DP01 0.5668 0.4425 0.1243 

DP09 0.2914 0.3759 −0.0845 

DP10 1.4838 1.3969 0.0869 

DP16 2.1460 2.3098 −0.1638 

TEST 

DP04 0.4334 0.4938 −0.0604 

DP07 0.4332 0.5406 −0.1074 

DP17 2.3530 2.3101 0.0429 

DP24 2.1887 2.3704 −0.1817 
 

Table 7. Experimental logAI values, predicted values PredMLR(logAI), PredANN(logAI), re-
siduals e(MLR) and e(ANN) of the MLR and ANN models for the 28 derivatives studied.  

  MLR ANN 

Derivatives logAI PredMLR(logAI) e(MLR) PredANN(logAI) e(ANN) 

DP01 0.5668 0.4731 0.0937 0.4425 0.1243 

DP02 0.4132 0.5235 −0.1103 0.3976 0.0156 

DP03 0.4664 0.7458 −0.2794 0.4716 −0.0052 

DP04 0.4334 0.4209 0.0125 0.4938 −0.0604 

DP05 0.3028 0.4688 −0.1661 0.4259 −0.1231 

DP06 0.3727 0.6972 −0.3245 0.3974 −0.0247 

DP07 0.4332 0.3424 0.0908 0.5406 −0.1074 

DP08 0.5092 0.4264 0.0828 0.5092 0.0000 

DP09 0.2914 0.5542 −0.2628 0.3759 −0.0845 
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Continued 

DP10 1.4838 1.5966 −0.1128 1.3969 0.0869 

DP11 1.5957 1.7407 −0.1450 1.6404 −0.0447 

DP12 1.6146 1.7483 −0.1337 1.6358 −0.0212 

DP13 0.4076 0.3962 0.0114 0.4153 −0.0077 

DP14 0.5037 0.5384 −0.0346 0.4135 0.0902 

DP15 0.6403 0.5545 0.0859 0.4434 0.1969 

DP16 2.1460 2.2623 −0.1163 2.3098 −0.1638 

DP17 2.3530 2.0932 0.2598 2.3101 0.0429 

DP18 2.1503 2.0612 0.0891 2.1969 −0.0466 

DP19 2.3567 1.9162 0.4405 2.2501 0.1066 

DP20 2.1688 1.6999 0.4689 2.1872 −0.0184 

DP21 2.2822 1.8686 0.4136 2.2725 0.0097 

DP22 2.2091 2.2025 0.0066 2.1071 0.1020 

DP23 2.1242 1.9556 0.1686 2.2650 −0.1408 

DP24 2.1887 2.8790 −0.6902 2.3704 −0.1817 

DP25 2.5777 3.0684 −0.4908 2.2884 0.2893 

DP26 2.1253 1.6098 0.5155 1.9419 0.1834 

DP27 2.1776 2.1320 0.0456 2.0162 0.1614 

DP28 2.1390 2.1310 0.0080 2.0904 0.0486 

RMSE(RMCE)  0.2715  0.1138 

 
Table 8. Statistical parameters R2, 2

ajR , MCE and 2
extR  of each of the two models.  

Model R2 2
ajR  MCE 2

extR  

MLR 91.28 89.11 0.0802 0.8650 

ANN 98.22 97.75 0.0128 0.9854 

 

 
(a) 
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(b) 

Figure 3. Similarity between predicted and experimental values of logAI. (a) Similarity 
Between Exp(logAI) and PredMLRlogAI; (b) Similarity Between Exp(logAI) et PredRNAlo-
gAI. 

4. Conclusion 

This work allowed us to build two models for predicting the anti-inflammatory 
activity of a series of tri-substituted derivatives of pyrimidine using quantum 
descriptors such as the dipole moment µD, the energy of the highest occupied 
molecular orbital EHOMO, isotropic polarizability α and molecular lipophilicity 
logP. Multiple linear regression (MLR) and artificial neural networks (ANN) 
methods were used to develop these models. The multiple linear regression model 
has obtained the following statistical parameters: 2 91.28%R = , 2 89.11%ajR = , 
RMCE = 0.2831, 2 86.50%extR =  while that of the artificial neural networks has 
the following values: 2 98.22%R = , 2 97.75%ajR = , RMCE = 0.1131,  

2 98.54%extR = . The results obtained with RNA are better than those obtained 
with RLM. However, the statistical parameters show that the two models have a 
very good predictive performance of anti-inflammatory activity. In short, the 
two models developed make it possible to explain the anti-inflammatory activity 
of this series of pyrimidine derivatives, in a statistically significant and satisfac-
tory manner. They can be considered sturdy and stable. In perspective, these two 
models can be used to predict the anti-inflammatory activity of new pyrimidine 
derivatives for which no experiment has yet been carried out in this direction. 
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