
Agricultural Sciences, 2022, 13, 936-946 
https://www.scirp.org/journal/as 

ISSN Online: 2156-8561 
ISSN Print: 2156-8553 

 

DOI: 10.4236/as.2022.138058  Aug. 16, 2022 936 Agricultural Sciences 
 

 
 
 

Temporal Comparisons of Apparent Electrical 
Conductivity: A Case Study on Clay and Loam 
Soils in Mississippi 

Reginald S. Fletcher 

USDA, Agricultural Research Service, Stoneville, USA 

 
 
 

Abstract 
On-the-go soil sensors measuring apparent electrical conductivity (ECa) in 
agricultural fields have provided valuable information to producers, consul-
tants, and researchers on understanding soil spatial patterns and their rela-
tionship with crop components. Nevertheless, more information is needed in 
Mississippi, USA, on the longevity of ECa measurements collected with an 
on-the-go soil sensor system. That information will be valuable to users in-
teresting in employing the technology to assist them with management deci-
sions. This study compared the spatial patterns of ECa data collected at two 
different periods to determine the temporal stability of map products derived 
from the data. The study focused on data collected in 2016 and 2021 from a 
field plot consisting of clay and loam soils. Apparent electrical conductivity 
shallow (0 - 30 cm) and deep (0 - 90 cm) measurements were obtained with a 
mobile system. Descriptive statistics, Pearson correlation analysis, paired t-test, 
and cluster analysis (k-means) were used to compare the data sets. Similar 
trends were evident in both datasets; apparent electrical conductivity deep 
measurements were greater (P < 0.05) than the ECa shallow measurements; a 
strong positive correlation (P < 0.05, r > 0.90) existed between the ECa shal-
low and deep measurements. Also, a high correlation (r ≥ 0.79) was observed 
between the ECa measurements and the y-coordinates recorded by a global 
positioning system, indicating a spatial trend in the north and south direction 
(vice versa) of the plot. Comparable spatial patterns were observed between 
the years in the ECa shallow and deep thematic maps developed via clustering. 
Apparent electrical conductivity data measurement patterns were consistent 
over the five years of this study. Thus the user has at least a five-year window 
from the first data collection to the next data collection to determine the rela-
tionship of the ECa data to other agronomic variables. 
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1. Introduction 

Proximal or on-the-go sensors measuring soil electrical conductivity have shown 
good relationships with soil properties affecting crop production, including tex-
ture [1] [2], cation exchange capacity [3] [4], soil water content [3] [5], drainage 
condition [6], salinity [7] [8] [9], and subsoil characteristics [8] [10] [11]. The 
systems have shown promise in improving and developing soil boundaries be-
cause of their links to the global positioning system [2] [12]. Their popularity is 
increasing because of the various configurations available for integrating them 
with farm and commercial equipment [8] [9]. They can acquire large amounts of 
data cheaply and more quickly than manual surveys, thus, providing more detail 
on the spatial variability of an area [13]. Other systems such as ground pene-
trating radar [14], multispectral and hyperspectral imagery [6] [14], and time 
domain reflectometry [15] have shown potential to map soil spatial variability. 
Nevertheless, apparent electrical conductivity (ECa) has been evaluated more 
than any other technique for studying soil spatial patterns [9] and has been rec-
ognized as a valuable tool to study soil spatial variability in agricultural settings 
[7] [16]. At the current rate, apparent electrical conductivity (ECa) systems will 
be the staple equipment for mapping soil spatial variability now and in the im-
mediate future.  

Yet, a better understanding of the stability of ECa measurements is needed so 
that users of the equipment have insight into the temporal stability of the read-
ings. Using electromagnetic induction or the Veris mobile platform [17] [18] 
[19] [20] reported ECa stability ranging from 2 months to 4 years. Also, more 
information is needed on comparing ECa maps derived from over a period of 
time because the information would be valuable to farmers, consultants, and re-
searchers interested in using the equipment to make management decisions.  

Mississippi, USA, consists of various soils with different characteristics. Re-
search is lacking in this area on the stability of apparent electrical conductivity 
measurements over time on soils used for agricultural production. The objective 
of this study was to compare spatial patterns of ECa data collected at two differ-
ent periods to determine the temporal stability of map products derived from 
the data. The study focused on data collected in 2016 and 2021 from a field plot 
consisting of clay and loam soils in Mississippi.  

2. Materials and Methods 
2.1. Study Area 

The study was conducted at the United States Department of Agriculture, Agri-
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culture Research Service Farm (−90.872157 Longitude, 33.446486 Latitude), near 
Stoneville, Mississippi, USA. The average precipitation and temperature were 
approximately 133 cm and 17.5˚C, respectively [21]. The field plot was 4.6 ha 
and consisted of the following soil types: Commerce silty clay loam, 0% to 2% 
slopes (Ch), Commerce very fine sandy loam, 0% to 2% slopes, Sharkey clay, 
0.5% to 2% slopes, and Tunica clay, 0% to 2% slopes [22]. The field was in a con-
tinuous soybean (Glycine max L.) and corn (Zea mays L.) rotation. The plot was 
subjected to the standard agricultural practices of the area related to irrigation, 
weed treatment, and fertilization. 

2.2. Data Collection 

Apparent electrical conductivity readings were collected with the Veris MSP 3 
(Veris Technologies, Salina, KS, USA, Figure 1) system. It collected shallow (0 - 
30 cm) and deep (0 - 90 cm) measurements, representing the topsoil and subsoil. 
The ECa system was moved through the field by a tractor. It used six coulters to 
penetrate the soil surface to a 6 cm depth. The coulters work in pairs with dis-
tinct functions. Coulters two and five injected the electrical current into the soil; 
coulters three and four recorded the EC shallow readings; coulters one and six 
recorded the deep readings. The sensor’s output was in millisiemens (mS) per 
meter. A Garmin global positioning system recorded each measurement’s lati-
tude and longitude coordinates (WGS84). It recorded the location information 
when receiving differential global positioning data. A laptop computer inside the 
tractor’s cab served as the data logger for the system. On March 29, 2016, and 
April 22, 2021, data were collected from 19 transects separated by 8 m within the 
field. The data were collected from bare soil. 

2.3. Data Analysis 

Post-processing of the data included assigning each measurement an identifica-
tion number, changing the longitude and latitude coordinate information to the 
UTM coordinate system (UTM 15N, WGS84), and cleaning the data (i.e., re-
moval of negatives values, duplicated x-y coordinates, and outliers). Assigning 
point identification numbers, converting the latitude and longitude values, and  
 

 
Figure 1. Veris MSP3 implement and tractor. 
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removing negative values and duplicate x-y coordinates were accomplished with 
QGIS (version 3.18.3-Zürich [23]).  

Then, the data were transferred to the R software (R version 4.1.0, “Camp 
Pontanezen,” [24]) to calculate histograms, boxplots, and descriptive statistics. 
That information was used to identify outliers and better understand the data-
sets. After the initial cleaning process, 1998 and 1765 data points were assessed, 
respectively, for analysis of the 2016 and 2021 datasets. Descriptive statistics (i.e., 
mean, median, minimum, maximum, and coefficient of variation) and the 
paired t-test (P < 0.05) were used to compare the differences between the shallow 
and deep ECa measurements. Pearson correlation coefficients (P < 0.05) were 
tabulated to evaluate the relationship between ECa measurements and between 
the ECa measurements and the x and y location coordinates. The relationship 
between the x and y coordinates and ECa would give some insight into the direc-
tional trends in the dataset.  

The cleaned data were clustered using the attributes clustering plug-in of 
QGIS. The following parameters were used for clustering: 1) method-k-means, 
2) the number of times to repeat the classification-20, and 3) the threshold- 
0.00001. The clusters’ summary statistics (i.e., mean, median, minimum, and 
maximum values) were determined with the QGIS prepared initial statistical 
summary module. The cluster summary statistics were employed to assign a clus-
ter to ECa zones ranging from low to high. Note: the low to high assignment was 
based on the data obtained from this field. The final maps displayed in the fig-
ures were created with the QGIS software. 

3. Results 

The descriptive statistics are summarized in Table 1 for both years. The ECa 
shallow mean (t = 117.85, df = 1997, P < 0.05, 2016; t = 106.01, df = 1764, P < 
0.05, 2021), median, minimum, and maximum values were less than the ECa 
deep mean, median, minimum, and maximum values. The ECa shallow readings 
were more variable than the ECa deep readings according to the coefficient of 
variation values. Statistically significant positive correlation coefficients (Table 2)  
 
Table 1. Descriptive statistics of apparent electrical conductivity shallow (ECas) and deep 
(ECad) readings of the study site collected in 2016 and 2021. 

Year na Variable Mean Median Min Max CV (%) 

2016 1998 
(ECas) (mS·m−1) 68.7a 75.8 11.9 104.6 31.0 

(ECad) (mS·m−1) 86.8b 94.0 16.6 129.3 27.0 

2021 1765 
(ECas) (mS·m−1) 68.5a 70.6 12.7 124.7 30.0 

(ECad) (mS·m−1) 87.9b 94.2 18.3 137.7 26.0 

an = number of samples, Min = minimum, Max = maximum, and CV = coefficient of 
variation; for each year, mean values followed by a different letter represent statistical 
significance at P < 0.05 according to paired t-test. 
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Table 2. Pearson correlation analysis between apparent electrical conductivity shallow 
(ECas) and deep (ECad) measurements and x (x cor) and y (y cor) coordinates. 

Year na Variable ECas ECad x cor 

2016 1998 

ECas    

ECad 0.96*   

x cor −0.46* −0.46*  

y cor 0.81* 0.79* −0.05* 

2021 1765 

ECas    

ECad 0.94*   

x cor −0.47* −0.41*  

y cor 0.82* 0.80* −0.04 

an = number of samples, *statistically significant at P < 0.05. 
 
were observed between each measurement data’s ECa shallow and deep readings. 
Also, both ECa measures had a strong positive relationship with the y-coordinate, 
indicating a linear trend in the dataset based on direction.  

Figure 2 and Figure 3 illustrate the map derived from clustering the ECa 
shallow and deep values collected in 2016 and 2021, respectively. The lowest 
values were observed in the southeastern corner of the field. In contrast, the 
highest values were detected in the northern section of the plot. Low-Medium, 
Medium, and Medium-High values occurred from south to north in the field. A 
noticeable trend was observed on the maps; the values were similar in the south-
west to the northeast direction (the other way around) and more variable in the 
south to the north direction (the other way around). 

Descriptive statistics derived from the ECa readings of the clusters are pre-
sented in Table 3. The clustering algorithm assigned the lowest number of points 
to the lowest zone for each dataset. These points were clustered in the southeas-
tern section of the field (Figure 2 and Figure 3). The second-highest number of 
points was assigned to the Medium-High to High zones established by the clus-
tering algorithm for this field. These areas were primarily in the northern part of 
the field (Figure 2 and Figure 3). The difference between the low and high clus-
ters means was approximately 67.2 mS·m−1. 

4. Discussion 

The descriptive statistics patterns were consistent between the ECa shallow and 
deep values measured in 2016 and 2021. That pattern was higher mean, median, 
minimum, and maximum values for the ECa deep readings. Others documented 
the same pattern for soil ECa shallow and deep readings in The Republic of Tri-
nidad and Tobago [20], Belgium [25], Canada [26], and Spain [27]. Also, these 
findings agreed with the findings of [20] [28], who observed positive, statistically 
significant correlations between ECa shallow and deep measurements. The cor-
relation values between ECa shallow and deep values were greater than 0.80,  
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Figure 2. 2016 apparent electrical conductivity (EC) (A) shallow and (B) deep maps. (C) Soil survey map. Ch = Com-
merce silty clay loam, Cn = Commerce very fine sandy loam, Sb = Sharkey clay, and Ta = Tunica clay. 

 

 
Figure 3. 2021 apparent electrical conductivity (EC) (A) shallow and (B) deep maps. (C) Soil survey map. Ch = Com-
merce silty clay loam, Cn = Commerce very fine sandy loam, Sb = Sharkey clay, and Ta = Tunica clay. 
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Table 3. Descriptive statistics of clusters derived from the apparent electrical conductivity 
shallow (ECas) and deep (ECad) readings. 

Study Site Variable Group na Mean Median Min Max 

2016 

ECas (mS·m−1) 

Low 230 29.0 30.3 11.9 38.1 

LM 301 46.7 47.0 38.2 54.3 

M 318 61.8 61.3 54.6 70.2 

MH 557 78.4 79.0 70.3 84.1 

High 592 89.9 89.2 84.2 104.6 

ECad (mS·m−1) 

Low 223 39.7 41.0 16.6 53.0 

LM 340 65.8 66.3 53.2 75.9 

M 393 85.3 85.8 76.0 92.5 

MH 615 99.4 99.5 92.6 105.3 

High 427 111.3 110.2 105.4 129.3 

2021 

ECas (mS·m−1) 

Low 218 31.0 33.4 12.7 41.1 

LM 313 50.4 51.0 41.2 58.1 

M 317 65.7 65.5 58.3 72.5 

MH 565 79.7 80.0 72.6 85.8 

High 352 92.4 90.9 85.9 124.7 

ECad (mS·m−1) 

Low 122 35.1 35.0 18.3 47.5 

LM 240 60.0 60.4 48.0 69.2 

M 311 78.4 78.1 69.3 86.8 

MH 537 95.3 95.5 87.1 102.5 

High 555 110.0 108.9 102.6 137.7 

an = number of samples, Min = minimum, Max = maximum, LM = low-medium, M = 
medium, and MH = medium-high. 
 
indicating good quality data [9]; the ratio between the ECa shallow and deep 
values were less than one signifying a regular soil profile, meaning for this field, 
soil properties that may be correlated with ECa increases with depth [9].  

The relationship between ECa data and soil physical and chemical properties 
can be complex [8] [9]. Apparent electrical conductivity measurements have 
provided a general estimate of soil texture and have shown promise for mapping 
soil spatial variability [9]. On non-saline soils, increases in clay content were as-
sociated with increases in ECa shallow and deep readings [19]. The soil in this 
study’s field was not classified as being saline [22]. Hence, it was assumed that 
the northern portions of the field contained more clay than the southern sec-
tions of field. Points in the northern section of the field were grouped into the 
High ECa zone. Furthermore, similarities and differences were apparent in the 
spatial patterns of the ECa shallow and deep measurements.  

Furrow irrigation was used to supply water to the crops grown in this field 
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when needed. Yearly, the plot was irrigated from south to north. Some of the va-
riability seen on the field maps could be attributed to irrigation. Furthermore, 
irrigation and other farm management practices would have affected the topsoil 
more than the subsoil, thus contributing to the topsoil having more variability 
than the subsoil (ECa deep readings). 

The results supported the theory that soil maps derived from the ECa data 
should show the same pattern over time [19]. They are additional to the times 
reported in other studies reporting comparisons ranging from 2 months to 4 
years [17] [18] [19] [20]. Others have reported positive results of using georefe-
renced ECa data to be reliable for developing soil sampling strategies for non- 
point source pollutants [29], soil quality [30], and variations in crop yields [31]. 
Sampling schemes can be easily developed from the maps produced in this study.   

The soil spatial variability map derived from the EC data is totally different 
from the field’s USDA soil survey map. The ECa map shows smoother transi-
tions compared with the hard breaks between the soil survey map units. It is es-
sential to point out that those differences are not new for maps derived with ECa 
data. Nevertheless, the ECa and USDA soil survey map provides important in-
formation for agricultural production. 

5. Conclusion 

The findings of this case study indicated that ECa measurements have a longevity 
of at least five years, supporting backward compatibility between ECa data and 
other types of data collected in the past. For example, a producer may have yield 
monitor data collected in 2020. However, apparent electrical conductivity data 
were not collected by the producer, consultant, etc., of the field until 2021. Thus, 
if the patterns observed on the 2021 ECa maps are good for five years or more, 
then the producer, consultant, etc., should be able to evaluate the relationships 
between the different datasets. Future research will continue to focus on that 
point and others to determine the agronomic significance of ECa maps derived 
from mobile sensors in agricultural fields in Mississippi, USA, over various time 
periods. 
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