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Abstract 
Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) is the most destruc-
tive invasive pests in agricultural production and has a high tolerance to heat. 
Heat shock proteins play an essential role in life activities such as growth and 
development, reproduction and diapause of B. tabaci. At the same time, they 
are also crucial in resisting adverse environments and in adaptive evolution. 
The expression of heat shock protein in B. tabaci is not only related to tem-
perature, but also to the tolerance of the environment. After receiving exter-
nal stimuli, the expression level can be increased or decreased to maintain the 
stability of cells in vivo. This paper reviews the classification, biological cha-
racteristics, biological functions, and research status of HSPs in recent years. 
This mini-review will provide helpful information related to the use of heat 
shock proteins to study the occurrence and damage of B. tabaci. This has im-
portant theoretical and practical significance for revealing Hsps in explaining 
the population expansion mechanism of B. tabaci invasion and predicting 
population dynamics. 
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1. Introduction 

B. tabaci was first reported in 1889 when it was found on tobacco in Greece and 
was named Aleyrodes tabaci [1]. B. tabaci belongs to Hemiptera, Aleyrodidae. It 
is a tiny, herbivorous piercing-sucking pest concentrated in tropical and sub-
tropical regions [2] [3]. B. tabaci is a species complex containing more than 30 
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cryptic species [4] [5]. Among the various biotypes of B. tabaci, it spreads 
worldwide through trade activities such as the transportation of poinsettia or 
other flower seedlings [6] [7]. B. tabaci has become an essential worldwide pest 
due to its sizeable feeding amount, broad host range, strong viability, large egg 
production, rapid development, and easy to develop drug resistance, with high 
ecological adaptability and thermotolerance [8] [9]. 

Heat shock proteins (HSPs) are anti-stress proteins when organisms are under 
the pressure of adverse environmental conditions for a certain period [10] [11]. 
HSPs can be used as molecular chaperones to transfer intracellular nascent pep-
tide chains and recognize denatured proteins, and it is an essential mechanism 
for organisms to cope with adverse environments [12] [13] [14] [15]. 

In 1962, Ritossa [16] first discovered that a brief heat shock could induce the 
formation of new bulges in the salivary gland chromosomes of Drosophila me-
lanogaster larvae, which is called heat shock response (HSR). After that, many 
studies have proved that heat shock proteins have the function of conferring 
heat resistance to organisms [17] [18] [19] [20]. Until 1974, Tissiéres et al. [21] 
used SDS-PAGE and autoradiography to confirm that the substance predicted 
by Ritossa at that time was a group of particular proteins and named these pro-
teins as HSP. Furthermore, whiteflies can utilize heat shock proteins (HSPs) 
(encoded by Hsp genes) and other stress-related genes to overcome thermal 
stress [22]. When B. tabaci is exposed to harsh environments to a sub-lethal lev-
el, heat shock proteins will increase or decrease protein expression to supple-
ment cellular toughness. This paper reviews the different types, characteristics 
and gene expression of HSP in B. tabaci, in order to illustrate the progress of 
HSP in B. tabaci research and provide reference information for further research 
of B. tabaci [23]. 

2. Classification of Heat Shock Proteins 

In recent years, with the rapid development of biological science and technology 
and the improvement of sequencing efficiency and accuracy, the research on 
HSPs has made significant progress. At present, we divide heat shock proteins 
into five families: Hsp90, Hsp70, Hsp60, small-molecule heat shock proteins, 
and ubiquitin according to their molecular weight and homology similarity [20] 
[24] [25] [26]. Within the HSPs, Hsp70s are the most studied group [27]. There 
are many reports on Hsp90 and Hsp70 of B. tabaci [28]. Salvucci et al. [22] 
found that Hsp70 and Hsp90 were the major polypeptides synthesized by whi-
teflies in response to heat stress. Wang et al. [29] observations highlighted the 
molecular evolutionary properties and the response mechanism to temperature 
assaults of Hsp genes in whitefly. 

2.1. Hsp90 

Hsp90 exists in various types of cytoplasm under normal or stress conditions. Its 
primary function is to bind to denatured proteins as a molecular chaperone and 
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participate in the regulation and maintenance of the conformation and role of 
various proteins in cells so that cells can usually survive under a stress environ-
ment [30] [31] [32]. Hsp90 can also interact with signal transduction proteins, 
promote the binding of steroid hormone receptors and protein kinases to form 
complexes, and regulate kinase phosphorylation activity [31] [33] [34] [35]. The 
interaction between environmental stress and Hsp90 of B. tabaci and the analysis 
of the molecular mechanism has practical significance for further understanding 
the resistance mechanism of B. tabaci to achieve the control effect [30] [36]. Ki-
nene [37] investigated the variability of the HSP90 gene in the B. tabaci species 
complex and found evidence of recombination in the coding region of the 
HSP90 gene in the B. tabaci species complex. 

2.2. Hsp70 

The Hsp70 family is a class of highly conserved heat shock proteins. Its main 
functions are: involved in protein folding and unfolding, protein translocation, 
and multimeric complex translocation. It has weak ATPase activity when com-
bined with ATP [38] [39]. When B. tabaci is under high-temperature stress, a 
large amount of Hsp70 is synthesized in the body to protect it from or reduce 
high-temperature damage [40] [41]. Differences in heat shock proteins (HSPs), 
especially Hsp70, which plays a vital role in heat tolerance, might cause the ob-
served differences between females and males of B. tabaci [36] [42].  

2.3. Hsp60 

Hsp60 usually exists in the cytoplasm and mitochondria. Hsp60 is not only in-
volved in the folding and assembly of proteins encoded by nuclear genes after 
entering mitochondria, but also in the folding, assembly and transport of pro-
teins encoded by mitochondria themselves [43]. Under stress conditions, Hsp60 
binds to ATP first, causing its own conformational change, so that it can bind 
proteins for maintenance and repair [44]. Wang et al. [29] employed compre-
hensive genomics approaches to identify one Hsp60 in the Middle East Asia 
Minor 1 whitefly genome. 

2.4. Small Heat Shock Proteins 

Small heat shock proteins exist in highly ordered oligomers in organisms. Be-
cause they have different biological functions in different environments, they are 
usually in two states of dissociation and aggregation. Their main parts are: par-
ticipating in protein folding, unfolding, and assembling multimeric complexes 
[25] [45] [46]. Improving diapause and cold tolerance for most insects is vital for 
their safe overwintering. Small heat shock proteins have an essential contribu-
tion to enhancing diapause and cold tolerance of insects [47] [48] [49]. Small 
heat shock proteins (sHSPs) are probably the most diverse in structure and 
function among the various superfamilies of stress proteins, and they play essen-
tial roles in different biological processes. Bai et al. [50] confirmed that the sHSP 
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genes of B. tabaci had shown differential expression changes under thermal 
stress. 

2.5. Ubiquitin  

Ubiquitin is a protein found in eukaryotic cells either free or covalently joined 
to a variety of cytoplasmic and nuclear proteins [51]. Its physiological function 
is to participate in protein degradation [52]. Xia et al. [53] found that ubiqui-
tin-proteasome system might help the whitefly to counteract the negative influ-
ence from TYLCV through degrading the virus directly or activating immune 
response. 

3. Characteristics of Heat Shock Proteins 

Heat shock proteins were initially considered unique proteins expressed by or-
ganisms in response to increased temperature. Still, studies have found that a 
class of heat shock genes is also significantly expressed in unstimulated cells or 
produced in specific cell cycle stages [48] [54]. Meanwhile, studies have shown 
that many heat shock proteins exist in mitochondria and chloroplasts. There-
fore, heat shock protein genes are a multigene superfamily in which not all 
members are regulated by heat shock [55] [56] [57]. Subsequent studies have 
shown that organisms may induce the synthesis of such stress proteins under 
stressful environmental conditions such as high temperature, salinity, drought, 
and osmosis, which function as molecular chaperones in cells and participate in 
folding new peptide chains, protein assembly, and transport [58] [59].  

The growth and development of insects are very complex, they go through 
different developmental stages, and insects in different developmental stages also 
have significant differences in their morphology [60]. Heat shock proteins can 
improve the tolerance of organisms to adverse environments and protect organ-
isms or cells from minor damage in subsequent lethal stress [61]. Organisms can 
often acquire heat tolerance under higher temperature stress after treating 
sub-lethal high temperatures [17]. Jinn et al. [62] [63] showed that the expres-
sion of HSPs is related to heat resistance, but also the thermal stability of differ-
ent kinds of HSPs can substitute for each other. Heat shock proteins (HSPs) as 
molecular chaperones to assist in the refolding, stabilization, intracellular trans-
port, and degradation of proteins to prevent the accumulation of damaged pro-
teins and maintain the stability of the intracellular environment [11] [56] [64].  

4. Heat Shock Protein Gene 

Studies have found that the heat tolerance of organisms is closely related to the 
structure and expression of their Hsp genes [37] [65] [66]. The regulation of heat 
shock gene expression includes selective transcription and alternative transla-
tion; the former is the main one [62]. Studies have shown that heat shock pro-
teins are not directly involved in protecting their intracellular environment in 
these organisms, but bind to the heat shock element (HSE) through heat shock 
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transcriptional factor (HSF), to form transcription complexes and promote the 
expression of heat shock protein genes [67] [68].  

In organisms, the structure and function of HSF have less variation in evolu-
tion and have extensive homology. It is a protein that is ubiquitous in eukaryotic 
cells. We divided them into four types according to their different functions, in-
cluding Hsf1, Hsf2, Hsf3, and Hsf4 [69]. Hsf1 is considered a major regulator of 
cellular heat shock protein expression. It is highly conserved in yeast, drosophila, 
and vertebrates, and the other three HSFs cannot replace Hsf1 [70] [71] [72] 
[73]. Hsf2 is resistant to heat-stimulating signals and is generally more sensitive 
to signals representing growth, development, and differentiation [74]. Hsf3 is a 
bird-specific heat-shock regulator [68] [75]. Hsf4 only exists in the human body, 
does not activate the transcription process, and plays an important role in cata-
ract occurrence. Hsf4 can inhibit the expression of heat shock genes under cer-
tain conditions [76]. The molecular mechanism of heat tolerance in females of B. 
tabaci MEAM1 cryptic species compared with males shows that the differential 
expression of multiple genes regulates the heat tolerance of females [77] [78] 
[79].  

5. Conclusion 

With the continuous development of sequencing technology and the continuous 
reduction of sequencing costs, we will identify more heat shock protein genes of 
B. tabaci. Identifying these sequences will reveal the evolution of heat shock 
proteins in B. tabaci. The research on the function of heat shock proteins in B. 
tabaci must also be related to the physiology, growth, and development of B. ta-
baci to understand the different roles in the physiology and evolution of B. taba-
ci. Studying the properties and expression levels of HSP genes in B. tabaci is 
helpful to clarify the mechanism of B. tabaci diapause induction. In terms of bi-
ological control, we can use the expression mechanism of heat shock protein-related 
genes to regulate the timing of diapause in B. tabaci. 

In conclusion, it is of great significance to study the heat shock protein of B. 
tabaci, which is helpful to understand the relationship between the growth and 
development of B. tabaci and various influencing factors (such as temperature, 
pathogen invasion, pesticides, et al.), to provide new ideas for the comprehensive 
control of B. tabaci, and better carry out plant protection and quarantine work.  
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