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Abstract 
Simulated Annealing (SA) is used in this work as a global optimization tech-
nique applied in discrete search spaces in order to change the characterization 
of pixels in a Polarimetric Synthetic Aperture Radar (PolSAR) image which 
have been classified with different label than the surrounding land cover type. 
Accordingly, Land Cover type classification is achieved with high reliability. 
For this purpose, an energy function is employed which is minimized by 
means of SA when the false classified pixels are correctly labeled. All PolSAR 
pixels are initially classified using 9 specifically selected types of land cover by 
means of Google Earth maps. Each Land Cover Type is represented by a his-
togram of the 8 Cameron’s elemental scatterers by means of coherent target 
decomposition (CTD). Each PolSAR pixel is categorized according to the lo-
cal histogram of the elemental scatterers. SA is applied in the discreet space of 
nine land cover types. Classification results prove that the Simulated Anneal-
ing approach used is very successful for correctly separating regions with dif-
ferent Land Cover Types. 
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1. Introduction 

Land use and land cover changes constitute a challenging goal in Land cover 
classification procedures [1] [2]. Various types of satellite sensors provide in-
formation for Earth land cover based on all electromagnetic spectrum bands for 
which the atmosphere is transparent. Fifty research papers on land cover classi-
fication using satellite images are surveyed in [3]. The research papers are cate-
gorized based on different classification techniques, such as Fuzzy, Support 
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Vector Machine (SVM), Neural Network (NN), Bayesian models and Decision 
Trees. In [4] six machine-learning algorithms for land cover and land use were 
examined. The review in [5] shows that Sentinel-2 has a positive impact on land 
cover/use monitoring, specifically in monitoring of crop, forests, urban areas, 
and water resources. The aim of [6] is to provide the state of the art in the use of 
Earth Observation technology in land cover classification. The work in [7] deals 
with the traditional change detection techniques. In [8], the multispectral im-
agery of 10 m spatial resolution of a densely populated urban area, obtained 
from sentinel-2, is classified using Support Vector Machines, Artificial Neural 
Networks and Maximum Likelihood Classifiers. 

Earth observation has to gain a lot from the fully polarimetric views that SAR 
imaging provides. In [9] a thorough analysis of polarimetry is given and the 
most significant target decomposition approaches are described. Inherent scat-
terer polarimetric properties have been exploited in SAR imagery to facilitate the 
detection of man-made objects in [10]. Automatic classification of the dominant 
scattering mechanisms associated with the pixels of polarimetric SAR images is 
carried out in [11]. In [12] for each pixel of the considered scene, the polarime-
tric covariance matrix, the coherence matrix, and the Muller matrix are ex-
ploited. Coherent Target Decomposition (CTD) methods for ship detection were 
proposed in [13] [14] [15] where systematic approaches for ship detection by 
means of the Cameron CTD [16] were presented describing the dominant scat-
tering mechanisms of sea and ships. In [17] the co-diagonalization of the Sinclair 
backscattering matrix is revisited to overcome the Huynen decomposition issues. 
Consequently, scatterer polarimetric properties are correctly extracted leading to 
the proper selection of the predominant scattering mechanism. In [18] a twofold 
approach is presented by employing Cameron’s CTD for automatic ship scatter-
ers characterization and simultaneously mutual statistics of the scatterers are 
incorporated by means of the Markov property [19] [20] for correctly assessing 
the alternation among the elementary scatterers for ship detection. Finally, Pol-
SAR data have been used in [21] for land cover classification by means of Mar-
kov chains representing the alternation of elementary scatterers. 

Simulated annealing is a probabilistic technique for approximating the global 
optimum of a given function. It is often used when the search space is discrete. 
In land cover classification tasks, it is useful when discrete type scatterers are 
employed to represent the electromagnetic behavior of each SAR pixel. Accor-
dingly, in [22] simulated annealing is applied to unsupervised SAR classification 
problems. A classification algorithm for multi-temporal SAR images and InSAR 
coherence images is developed in [23]. The research in [24] is designed to de-
velop algorithms to apply the simulated annealing to unsupervised classification 
and compare the classification results with that of the K-means. In [25] two po-
larimetric segmentation techniques for polarimetric SAR images are compared. 
The proposed process in [26] helps to detect oil spills using SAR images and es-
timate the amount of oil spilled in a region. A sample image is evaluated using 
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three different meta-heuristic search algorithms including Simulated Annealing. 
A calculation method of simulated annealing (SA) is proposed in [27] for proba-
bility integral parameters based on single line of sight D-InSAR. A new method 
[28] employing Simulated Annealing in polarimetric SAR data decomposition 
extracts additional polarimetric information from the Synthetic Aperture Radar 
(SAR) images compared to other existing decomposition methods. In [29] a new 
optimization-based reallocation model using Simulated Annealing has been de-
veloped to realize block reallocation by evaluating the requests of landowners. 
Finally, significant contribution regarding Land Cover type classification has 
been made in [30] [31] [32] [33] and [34] regarding the formation of natural 
river networks under changing climate, using their spectral properties. 

In the present work, the Cameron CTD is employed to characterize land cover 
types with the histogram of 8 different elemental scatterers. Each separate pixel 
of the fully polarimetric SAR image is represented by one of the elementary 
scatterers. The novelty of the proposed land classification approach lies on the 
use of Simulated Annealing global optimization method to clear up isolated 
scattering mechanisms in the location found in case these pixels are false classi-
fied and replace them with the behavior of their eight-connected neighbors. 
Nine different types of land cover are used for testing the proposed method. The 
achieved classification performance is significantly high. The proposed metho-
dology is depicted in the block diagram of Figure 1. 

The SNAP open source architecture for ESA Toolboxes [35] is used for 
geo-coding and rectification using ground control points. The geocoded SAR 
images are employed to create the scattering mechanisms map so that full cor-
respondence with the Google Earth maps exists. 

The paper is organized as follows. In section 2 the use of elemental scatterers 
for characterizing each pixel is explained. In section 3 the creation of the feature  

 

 
Figure 1. The proposed methodology with its three main stages. 
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for land cover classification by means of local histograms of elemental scatterers 
is discussed. In section 4 is analyzed the way the Simulated Annealing global op-
timization technique is applied to successfully categorize SAR pixels in various 
land cover types. The conclusions are drawn in section 5. 

2. Elemental Scattering Features 

Essential scattering features that can be used to represent the SAR pixel behav-
iour are those coming from the analysis of the scattering matrix of the pixel. 
Scattering matrix decomposition [9] [14] [16] [36] is a robust mathematical 
procedure to extract information from PolSAR pixels. Cameron decomposition 
[16] is giving emphasis to elementary scattering mechanisms with physical 
meaning. Reciprocity and symmetry are the two basic properties of the scatterers 
that can be exploited with Cameron coherent decomposition. For all monostatic 
SAR systems, the non-diagonal elements of the relevant backscattering matrix S 
of a scatterer are pair wise equal. This corresponds to the reciprocity property. 
Furthermore, the property of symmetry is attributed to a reciprocal scatterer if it 
presents an axis of symmetry in the plane perpendicular to the radar line of sight 
(LOS). Based on Cameron’s target decomposition eight elementary scatterers 
can be distinguished based on the properties of reciprocity and symmetry 
namely the trihedral, the dihedral, the dipole, the cylinder, the 1/4 wave devices 
and the narrow diplane. Additionally, two non-symmetric scattering mecha-
nisms the left and the right helix are considered as elementary scattering mecha-
nisms. As exposed analytically in [21] Cameron decomposition transforms the 
backscattering matrix S to the backscattering vector S



: 

{ }max min
sym sym sym symcos sing τ τ= +S S S

  

                 (1) 

The degree of symmetry of the scatterer expresses the degree to which S


 
deviates from max

symS


. In (1) if sym 0τ =  then the max
symS


 corresponds to a fully 
symmetric scatterer and if the angle reaches its maximum of 45˚ then it corre-
sponds to a fully asymmetric scatterer. The maximum symmetric component 

max
symS


 can be transformed into a normalized complex vector ( )ˆ zΛ  with z be-
ing referred to as the complex parameter that eventually determines the scatter-
ing mechanism. The normalized complex vector ( )ˆ zΛ  is given by 
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Values of z corresponding to elementary scattering mechanisms are given in 
Table 1. In order to determine the scattering mechanism, we are based on the 
distance [21] of the complex parameter z of the scatterer under study and the 
reference complex parameters zref as they appear in Table 1: 

( ) ( ) ( )( )1
ref ref ref, sin min , , ,d z z d z z d z z−

− ∗ =               (3) 
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In Table 2 a specific color palette (MATLAB JET color map) is shown and is 
used for demonstration purposes for mapping the elementary scatterers revealed 
by the above described Cameron decomposition procedure. The employed fully 
polarimetric SAR data containing a part of the Vancouver region are depicted in 
Figure 2. 

The high-resolution fully polarimetric SAR imagery (C-band, 5.6 cm) is coming 
from RADARSAT-2 platform with primary mission the all-weather maritime and  

 
Table 1. Complex parameter z corresponding to elementary scattering mechanisms. (Ob-
tained from [21] with the permission of the Authors). 

Complex Parameter z Normalized Complex Vector ( )ˆ zΛ  Scattering Mechanism 

1 ( )ˆ 1Λ  Trihedral 

−1 ( )ˆ 1−Λ  Diplane 

0 ( )ˆ 0Λ  Dipole 

+1/2 ( )ˆ 1 2+Λ  Cylinder 

−1/2 ( )ˆ 1 2−Λ  Narrow Diplane 

±j ( )ˆ j±Λ  1/4 wave device 

 
Table 2. Cameron eight Elemental Scatterers color-coding. JET color map is from MATLAB 
color processing. (Obtained from [21] with the permission of the Authors). 

Symmetric Elementary Scatterer Class Cameron Color Representation 

Trihedral 1 

 

Diplane 2 

Dipole 3 

Cylinder 4 

Narrow Diplane 5 

1/4 Wave Device 6 

Left Helix 7 

Right Helix 8 
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land observation. The used fully polarimetric SAR imagery is of the Wide Fine 
Quad-Pol, Single Look Complex, in SLC products [37]. Each pixel of the four 
polarimetric returns is of complex value having its I and Q components in 16-bit 
representation. The nominal resolution is 13.6 × 7.6 meters with nominal scene 
size 50 × 25 Km and incidence angle range 18 to 42 degrees. Geo-referenced data 
can be easily corresponded into Google Earth maps as shown in Figure 2(a) 
(Google Earth and HV SAR images co-registered by means of SNAP platform) 
for creating the truth maps for training and testing purposes in the land cover 
classification procedure to be followed. In Figure 2(b) each pixel of the SAR 
image of Figure 2(a) is represented by a colour from Table 2 giving thus a sense 
of the elementary scatterer in each SAR cell. 

3. Land Cover Type Classification 

In this work the proposed feature vector for polarimetric SAR land cover classi-
fication is a simple vector of eight elements representing the elemental scatterers 
as they are given in Table 2. The land cover classification procedure is based on 
two distinct stages. Firstly, the normalized histogram of the eight elemental scat-
terers of Table 2, is evaluated using the regions shown in blocks in Figure 3 
which correspond to 9 different land cover types. In this way we can record the  

 

 
(a) 

 
(b) 

Figure 2. (a) Google Earth and HV SAR images co-registered by means of SNAP plat-
form. (b) Each pixel of the SAR image in (a) is represented by a color from Table 2 giving 
thus a sense of the elementary scatterer in each SAR cell. 
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scattering behaviour of the specific land cover types by creating 9 histograms as 
reference prototypes for comparison. Indicative elemental scatterers’ histograms 
of the dense residential region and the industrial regions (blocks 5 and 9 respec-
tively in Figure 3) are depicted in Figure 4. 

In the second stage, in each position (pixel) of Figure 2, the local normalized 
scatterers histogram is evaluated using a window of size 7 × 7 around the specific 
pixel. This histogram is compared with the 9 normalized reference histograms 
created in first stage by means of the 9 land cover types shown in Figure 3. The  

 

 
Figure 3. The ten regions with distinct Land Cover types. 1. Water A, 2. Water B, 3. Low 
vegetation, 4. Clear land, 5. Dense residential area, 6 and 7. Industrial fields, 8. Normal 
residential area, 9. Industrial Buildings, 10. Forest. 

 

 
Figure 4. Normalized histograms of the eight elemental scatterers as they are given in Table 2. These histograms are used as ref-
erence prototypes for classifying all PolSAR pixels of Figure 2. (a) Scatterers histogram of the dense residential area included in 
block 5 of Figure 3. (b) Scatterers histogram of the industrial area included in block 9 of Figure 3. 
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central pixel of the 7 × 7 window is assigned to the land cover type for which the 
reference histogram is closer. Histogram closeness is found using the simple 
Euclidean distance of the local histogram and each one of the 9 reference histo-
grams. 

After classifying each of the PolSAR pixels by means of the above procedure 
the Simulated Annealing optimization method is applied in order to correct 
classification errors. These errors correspond to pixels labelled to belong to a 
specific land cover type but the surrounding 8-connected neighbours belong to a 
different land cover type. 

Elaborating on the prototype reference histograms as those presented in Fig-
ure 4, the following conclusions can be drawn regarding the dominating scat-
terers in each type of Land Cover: 
• Dense Residential area. The dominant scatterer is the 6th with the 3rd, 4th and 

5th quite strong. 
• Industrial area. The dominant scatterers are the 6th and the 4th with the 3rd 

quite strong. 
• Industrial Buildings. The dominant scatterers are the 6th and the 4th with the 

3rd quite strong. 
• Normal Residential Area. The dominant scatterers are the 6th and the 4th with 

the 3rd quite strong. 
• Clear Land. The dominant scatterer is the 4th with the 1st quite strong. 
• Grass area and Low Vegetation. The dominant scatterers are the 6th and the 

4th with the 3rd quite strong. 
• Trees area (Forest). The dominant scatterer is the 6th with the 4th and the 3rd 

quite strong. 
• Water 1 and Water 2. The dominant scatterer is the 4th with the 1st quite 

strong. 

4. Simulated Annealing and Classification Performance 

According to the land cover classification procedure described in the previous 
section, the pixels of the whole image in Figure 2 are classified by assigning to 
each one a label of a specific land cover. The labels l = 1, ... 9, correspond to in-
teger values and represent land cover types as they are distinguished in Figure 3. 
Since the classification is carried out according to the Euclidean distance be-
tween the reference prototype histograms and local histogram derived from the 
information inside the window 7 × 7 pixels, some areas in the final land cover 
mapping appear somewhat spotted, with single pixels of a category embedded in 
larger areas of another class. Generally, one expects the neighboring pixels to 
belong to the same category unless there is a real border between the areas. In 
order to clear spotted regions from pixels that are irrelevant to the surrounding 
land cover type an energy function f(U) is established and its minimization is 
sought. This minimization is achieved by means of the Simulated Annealing 
global optimization technique and the energy U is decreased when a SAR pixel 
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categorized in a different land cover type than its eight-connected neighbors 
(which are of the same land cover type) it is changed to the land cover type of its 
neighbors. 

The concept of Simulated Annealing is based on an analogy between the 
thermodynamic behavior of solids and large combinatorial optimization. The 
basic procedure involves a cooling procedure, in which a “temperature” para-
meter starts out high and is gradually lowered until the system is “frozen” (in a 
state of minimal energy U). In the simulated annealing algorithm, not only are 
state changes which decrease energy are accepted, but also are accepted some 
state changes which increase energy with a defined probability. However, the 
lower the temperature, the less likely is any significant energy increase. The Si-
mulated Annealing algorithm is implemented as follows: 

1) Choose initial temperature T0 and assign the class label (1 to 9) to every 
pixel. 

2) For each isolated pixel, change its label to the class of its eight-connected 
neighbors. 

3) Compute dU and accept the change when dU = 0 or with a probability 
exp(−dU/T), when dU > 0. 

4) Set ( )new old 0 1T u T u= ∗ < < . 
5) Continue until Tnew = Tend where Tend is the freezing temperature. 
The SA was applied simultaneously for all cover types and overall area of the 

image in Figure 2. The classification results regarding two of the land cover 
types are shown in Figure 5 and Figure 6. In Figure 5 are shown the classified 
regions belonging to Industrial Buildings land cover, while in Figure 6 the clas-
sified regions of clear land are depicted. Similar results have been obtained for all 
cover types. 

 

 
Figure 5. Industrial buildings as they are isolated when running the Simulated Annealing 
global optimization approach. 
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Figure 6. Regions characterized as being clear land, as they are isolated when running the 
Simulated Annealing global optimization approach. 

 
Table 3. Land cover classification success by mean of Simulated Annealing. 

Land Cover Type Classification success % 

Water A 100 

Water B 100 

Low vegetation 98 

Clear Land 99 

Dense residential area 97 

Industrial fields 97 

Normal residential area 99 

Industrial buildings 97 

Forest 100 
 

The classification results obtained using the SA optimization approach are 
presented in Table 3. From the table it is obvious that the classification success 
is high and the application of SA radically concentrates the same pixels to the 
correct land cover types. 

5. Conclusions 

Experimentally, land cover classification is carried out using 9 specific land 
cover types along with the eight elemental scatterers obtained from Camerons’ 
CTD. Firstly, the PolSAR pixels are classified based on the comparison of the 
histograms of the elemental scatterers in the 9 specific land cover types and the 
local histogram of the elemental scatterers at the position of each pixel. This first 
stage gives a successful land cover classification which however leads to many 
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pixels being categorized in a different land cover type than the surrounding pix-
els. To avoid this incompatibility the Simulated Annealing is used in this work as 
a global optimization technique applied in the discrete search space of the land 
cover types in order to change the characterization of these pixels to match the 
surrounding land cover type. An energy function was employed which is mini-
mized by means of the Simulated Annealing method when the false classified 
pixels are correctly labeled. For the Vancouver region in which the whole pro-
cedure was applied a totally successful classification performance was achieved. 

Comparisons with already existing techniques with the method proposed in 
this paper reveal that the method proposed here is unique in the sense that SA is 
for first time applied in the discreet space of N = 9 Land Cover Types in order to 
reorganize false labeled PolSAR pixels. 
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