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Abstract 
In recent decades, the problem of drying out of conifers has become a subject 
of significant importance due to the widespread mortality of trees caused by 
stem pest’s damage. Early detection of areas affected by insect outbreaks is of 
great relevance for preventing the further spread of pests. Forests of Belarus 
are largely affected by conifers dieback caused by the bark beetle. The aim of 
the study was to identify drying out conifers using a TripleSat satellite mul-
tispectral image of a woodland area in Belarus based on preliminary airborne 
measurements. Spectrometers operating in a spectral range of 400 - 900 nm 
were used in airborne measurements, resulting in distinguishing various dry-
ing out stages with an accuracy of 27% - 74% for aerial data. In this study, a 
supervised classification of the TripleSat image based on the method of linear 
discriminant analysis (LDA) was performed. The input data for LDA algo-
rithm is a set of remote sensing vegetation indices. Results of the study dem-
onstrate that about 90% of the test site is at the green-attack stage that is con-
firmed by ground surveys of this area. 
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1. Introduction 

A noticeable deterioration of the state of coniferous forests is currently one of 
the most important problems of forestry in Belarus, many countries of Europe 
and North America [1] [2] [3]. The main predisposing factor causing conifers 
dieback is extreme climatic conditions—hurricanes [4] [5] and episodes of 
drought [6] [7] [8] [9] that provide necessary conditions for spreading of pests 
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and pathogens over new areas. Meanwhile, conifers dieback constitutes signifi-
cant damage to forest ecosystem and has a negative economic impact.  

As a result of dry weather established in Belarus in last decades, decline and 
dieback of the spruce (Picea abies L.) formation has begun [2] and is still contin-
uing. Colonization of weakened trees by the bark beetle (Ips typographus) [2] 
[10] was the major reason of spruce dieback in Belarus in 2019 [1] [11], being 
also the cause of drying out of spruce in 75% of cases in the forests of Central 
and Eastern Europe [12] [13]. Therefore, prompt monitoring of forest areas em-
ploying remote sensing methods is of interest in order to identify dying conifer-
ous trees at the initial stage for follow-up activities concerning preventing and 
mitigation of dieback [14].  

There are several stages of drying out of conifers [15]. The initial stage of con-
ifer damage by a bark beetle is the so-called green-attack stage, while the crown 
visually looks healthy, although by the time of attack, the tree is already wea-
kened. Red-attack stage begins, when the crown becomes thinner and the 
needles change their color to yellow or red-brown [16]. The gray-attack stage is 
the following, the needles fall off completely and the tree dries up.  

Most of the studies focused on the determining both green-attack stage and 
characteristic parameters of conifers (tree height, features of the crown structure, 
amount of biomass, leaf surface index, moisture content) use satellite imagery 
[17] [18] [19] [20] as well as lidar and radar data sets [21] [22]; researches on the 
temporal variations in the parameters of coniferous forests [17] [18] are con-
ducted so far. In addition to this, RGB- [18] or RGBNIR-bands [23] [24] air-
borne images are used as a priori data and Landsat, Sentinel-2, WorldView-2, 
IKONOS imagery are used as satellite data. The difficulty in green-attack stage 
detecting using broadband satellite sensors consists in significant similarity of 
the spectral responses of infected trees at an early stage and the uninfected ones 
[15], even in high spectral resolution data, and also in the difficulty of taking in-
to account the role of optical properties of an undergrowth. 

Until now, TripleSat sensor data has been used for crop monitoring and land 
cover analysis [25] [26] and has not been used for green-attack stage detection. 
In addition, the possibility of using classical wide range spectrometer’s data as a 
source of more detailed spectral information to improve the quality of detection 
of the green-attack stage is relevant, due to the lack of studies focused on me-
thods for determining the stages of drying out of conifers using such spectrome-
ters. 

In view of the foregoing, the aim of the study was to determine the green-attack 
stage detection potential of 4-band RGBNIR very high resolution (0.8 m) Trip-
leSat data in combination with a priori airborne spectrometer’s data in the range 
of 400 - 900 nm. The assumption is made that this approach will minimize the 
contribution of undergrowth to the resulting reflection spectrum due to careful 
selection of individual conifers, while recording a continuous spectrum makes it 
possible to separate the features inherent to the green-attack stage. Information 
provided by foresters about stages of conifers drying has been used as an addi-
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tional reference data.  
For the first time for the territory of Belarus (Novosady, Minsk region) esti-

mates of the green-attack stage for a test forest area were made using airborne 
measurements. The estimates were verified using high resolution aerial images 
of the test area. Results of the study demonstrate the deplorable state of the test 
site (about 90% at the green-attack stage) and it is well consistent with the fore-
ster’s expertise that there are almost no healthy trees in the study area. More ac-
curate evaluation of the accuracy of the applied method, however, is difficult due 
to insufficient data on the state of the trees of the test site. High quality imagery 
of forest area under study and detailed ground truth data of forest pathological 
services should be used to access the classification accuracy. 

2. Materials 
2.1. Study Area 

Forest site near the village of Novosady, Pukhovichi district, Minsk region 
(53˚39'15"N, 27˚38'25"E) covering 0.1 km2 was chosen as a test area for the re-
search (Figure 1). The site contains mainly spruce with a slight inclusion of de-
ciduous trees. The selection of the site was carried out jointly with the specialists 
of the Kaikovsky forestry of the General Directorate of Forestry “Minsk Fore-
stry” taking into account a priori data on the state of health of forest. 

The site belongs to the subzone of broadleaf-spruce (oak-dark coniferous) fo-
rests. The climate of the region is moderately continental. The height of the site 
above sea level is about 160 m. The average annual air temperature is +6.1˚С. 
The amount of precipitation per year is 676 mm, with an average amount per 
month of 44 mm in winter and 82 mm in summer. The average temperature in 
winter is −6˚С, in summer ±22˚С.  

In 2018 the forest area generally consisted of middle-aged spruce, according to 
the vegetation maps of Minsk forestry. By the time of the study, which was car-
ried out on the 10th of July 2020, the central part of the site had been subjected 
to sanitary cutting due to bark beetle infestation. When examining the remaining  
 

 
Figure 1. Location (a) and TripleSat image (b) of the study site near Novosady village, Minsk 
region. 
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growing trees the forest pathologist found that most of them are also infected. 
There were also areas with spruces in the gray-attack stage and fallen dry spruce. 

2.2. Remote Sensing Data 
2.2.1. Aerial Data 

1) Equipment 
Small-sized photo-spectral equipment – spectrometers FSR-02 and SSP-600 

[27] [28], operating in combination with survey cameras was applied in the re-
search. The equipment was developed and designed at the A.N. Sevchenko Re-
search Institute. Both spectrometers have a concave diffraction grating as a dis-
persing element and uncooled linear CCD detector Toshiba 1304DG. The 
FSR-02 spectrometer was installed on board the Diamond DA40NG aircraft 
(Figure 2), and the SSP-600 spectrometer was used for ground surveying of the 
diffuse plate. The technical characteristics of the spectrometers are presented in 
Table 1. 

An interference filter was installed in front of the detector in FSR-02 spectro-
meter to protect the detector from undesired radiation of the second order of dif-
fraction. Since there is no such filter in the construction of SSP-600 spectrometer, 
 

 
Figure 2. The FSR-02 spectrometer coupled with a survey camera installed on board the 
Diamond DA40NG aircraft: 1—FSR-02 spectrometer; 2—survey camera. 
 
Table 1. Technical characteristics of FSR-02 and SSP-600 spectrometers. 

Characteristic 
Spectrometer 

SSP-600 FSR-02 

Spectral range, nm 400 - 900 400 - 900 

Spectral resolution (450 nm), nm 4.5 4.3 

Angular field of view, ˚ 3 × 0.5 1.5 × 0.5 

ADC capacity, bit 12 12 

Number of pixels 3648 3648 

Built-in 2nd order diffraction correction plate − + 
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the correction was performed by the calculation method according to the me-
thod [29] at the stage of preliminary data processing. Laptops with internally 
developed software were used for the purposes of control and data storage. 

Defender WebCam G-Lens 2577 HD720p RGB survey camera was used for 
image registration during the airborne experiment. The survey camera has a res-
olution 640 × 480 pixels and a frame rate of 28 fps. Images of survey camera are 
linked to FSR-02 spectrometer’s field of view. The field of view was measured in 
the laboratory with FSR-02 focused on infinity and was added by software on 
each image in the process of image recording. An automatic adjustment of pho-
tosensitivity, exposure and white balance was made during the photographing 
process since it is not possible to adjust the photography settings in the process 
of flight experiment. The FSR-02 spectrometer was also equipped with a Garmin 
GLO 2 portable GPS/GLONASS navigation module (10 Hz update rate) that 
provided spatial referencing of spectral data in the airborne experiment. 

2) Experiment 
On July 10, 2020 a field experiment was carried out for measuring spectral 

reflectance of an underlying surface of the test forest area under study. Conti-
nuous recording of the reflected radiation spectra was implemented from Di-
amond DA40NG aircraft using FSR-02 spectrometer, together with the corres-
ponding imagery of Defender G-lens2577 survey camera. Airborne survey was 
performed at two heights above the underlying surface - 130 m and 450 m. 

Continuous quasi-synchronous ground recording of the diffuse plate spectra 
using SSP-600 spectrometer was being carried out along with airborne mea-
surements to ensure the possibility of calculating spectral reflectance of the ob-
jects of underlying surface at each moment of time. It is assumed that the illu-
mination of the horizontal surface at the ground level and at the level of tree 
crowns is the same. The brightness spectra of the diffuse plate and the airborne 
reflection spectra were recorded with a time resolution of 500 ms. Figure 3 shows  
 

 
Figure 3. Device for diffuse plate spectra registration: 1—SSP-600 spectrometer; 2—a 
tripod with a bracket; 3—diffuse plate; 4—laptop computer. 
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the external view of field device for diffuse plate spectra registration; the device 
was located about 120 m away from the edge of the test forest area. 

The duration of the airborne experiment was 1 hour 53 minutes, the average 
flight speed was 155 km/h. During the flight, reflection spectra and the corres-
ponding images of the investigated forest area were recorded. Spectra in both 
airborne and field measurements were obtained in auto exposure mode, provid-
ing the best signal-to-noise ratio under conditions of varying signal intensity. 
The auto exposure algorithm consists in proportional correction of the exposure 
time of each subsequent recorded spectrum based on the intensity of the pre-
viously recorded spectrum, its exposure time and the optimal signal level. The 
optimal signal level was considered to be 70% of the saturation signal level of 
detector of spectrometer. 

2.2.2. Satellite Data 
The TripleSat Constellation [30] provides daily ultra-high resolution data with 
large area coverage. To study the possibility of determining drying conifers from 
satellite data, we used a commercial image of a TripleSat sensor with a spatial 
resolution of 3.2 m in 4 spectral channels Blue (0.44 - 0.51), Green (0.51 - 0.59), 
Red (0.60 - 0.67), Near Infrared (0.76 - 0.91) and 0.8 m in panchromatic, ob-
tained on June 25, 2020. For the satellite image, the radiometric correction was 
performed using the ENVI 5.3 software. Atmospheric correction of the TripleSat 
image was not performed in order to eliminate the influence of inaccuracies as-
sociated with it on the classification results. 

Pan sharpening procedure was performed for the multispectral TripleSat im-
age using the nearest neighbor diffusion pan sharpening algorithm in the ENVI 
software, based on the corresponding high-resolution panchromatic image to 
increase the spatial resolution of the image. The pan-sharpened image with a 
spatial resolution of 0.8 m was used further in the study. 

3. Methods 

Identification of the drying out of conifers is based on a two-stage procedure 
using airborne and satellite data: control points with inherent stage of drying are 
identified based on results of airborne data classification, on the basis of which a 
supervised classification of the space image is carried out. At the first stage, ref-
erence points (objects) with known stages of drying and coordinates are deter-
mined from the reflection spectra and images of underlying surface obtained 
during the aviation experiment. At the second stage, the satellite image is classi-
fied with training sets using the reference points, the input data are a set of ve-
getation indices derived for each image pixel. The classification is carried out by 
the method of LDA for assignment to such types of underlying surface as “dry-
ing out spruce”, “dead-wood”, “vigorous spruce”, “undergrowth”, “soil”. On the 
basis of classification results, types of underlying surface have been mapped. The 
sequence of procedures used in this work is presented in the form of a flowchart 
in Figure 4.  
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Figure 4. Methodological flowchart for determining the drying out of conifers. 

3.1. Techniques for Handling Aviation Data 
3.1.1. Pre-Processing of Spectral Data. Spectral Reflectance Calculation 
The preliminary processing of the reflection spectra consisted in spectrometer 
wavelength calibration using mercury lines and subsequent radiometric calibra-
tion. Radiometric correction was carried out in order to convert the spectral data 
in relative units (DN) to the absolute units of spectral radiance. To calculate the 
spectral reflectance using formula (1) given below, data from both SSP-600 and 
FSR-02 spectrometers should be represented in the same units of spectral ra-
diance. Both wavelength and radiometric calibration of spectrometers were per-
formed in laboratory using a photometric complex [31]. 

The second-order diffraction signal was corrected for the data of the SSP-600 
spectrometer. The algorithm of the second-order diffraction correction is based 
on the decomposition of the spectrum by spectrometer’s slit functions. The 
second-order diffraction signal proportional to the amplitude of the slit function 
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in the first diffraction order that caused it [29] is then subtracted from initial 
spectrum. To determine spectrometer’s slit functions depending on the wave-
lengths, the spectra of a mercury lamp and laser diodes with known narrow 
emission lines (406.9, 435.8, 446.37, 516.37 nm) were previously registered in the 
laboratory. Figure 5 shows the result of applying the algorithm of the 
second-order diffraction correction for the brightness spectrum of a section of 
celestial sphere recorded by the SSP-600 spectrometer.  

The uncorrected spectrum has a clearly distinguishable signal in the 700 - 
1000 nm range, representing an effect of aliasing the second-order diffraction 
spectrum (generated from the first-order diffraction spectrum with a maximum 
at 480 nm) into true spectrum. As shown in Figure 5, the spectrum with correc-
tion matches the one registered through the KS10 filter in the wavelength region 
above 650 nm, confirming the validity of the algorithm of correction. The spec-
trum registered through the KS10 filter is a true reflection spectrum of an object 
in the 650 - 1000 nm range that is not affected by higher diffraction orders due 
to suppression of reflected radiation with a wavelengths less than 600 nm. 

The reflectivity of the object under study [32] was calculated by the formula: 

( ) ( )
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diffuse plate measured by SSP-600. Spectral radiance B  was calculated by the 
formula: 
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Figure 5. Result of second-order diffraction correction for SSP-600 spectrum of the sec-
tion of celestial sphere. 
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where ( )I λ  is the intensity of the signal at the wavelength λ  in DN units; 
exp —exposure of the spectrum in ms; 

1 2,k k  and , , , ,k b c d e —the coefficients of the polynomials of the first and 
fourth degrees, respectively, determined during the calibration on the photome-
tric sphere in the laboratory; 

( )max_sign λ —the maximum signal level, normalized to the exposure time, 
recorded by the spectrometer at a wavelength λ  while performing an absolute 
radiometric calibration. 

The coefficients 1 2, , , , , ,k b c d e k k  and ( )max_sign λ  values were determined 
for the SSP-600 spectrometer from the spectra of the photometric sphere cor-
rected for the removal of second orders during the calibration process. Formula 
(2) actually takes into account the nonlinearity of the detector response depend-
ing on the brightness of the photometric sphere by means of a 4th degree poly-
nomial. The values obtained in field measurements were also subjected to radi-
ometric calibration for the SSP-600 spectrometer. 

Figure 6(a) shows the examples of the diffuse plate spectra of the SSP-600 at 
different moments of registration after the second-order diffraction signal cor-
rection. An example of the reflection spectrum of an object recorded using the  
 

 
Figure 6. Diffuse plate spectra of SSP-600 at different moments of registration (a), image of 
a survey camera with an FSR-02 field of view (b), spectrum of FSR-02 (c). 
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FSR-02 is shown in Figure 6(c), and the corresponding image of the survey 
camera with the FSR-02 field of view is shown in Figure 6(b). 

3.1.2. Evaluation of Vegetation Indices 
58 different vegetation indices were evaluated for each spectral reflectance de-
pendency obtained over the investigated forest area. The following indices were 
chosen [33] [34]: ARVI, MCARI, MCARI2, MRENDVI, MRESR, MTVI, 
MTVI2, RENDVI, TCARI, TVI, VREI1, PRI531/570, PSRI, REP, NDVI, Datt1, 
DVI, SR750/700, GNDVI, mSR, SIPI1, LIC2, SR440/740, SR750/550, Ctr2, 
MD734/747/715/720, ARI2, CRI1, GNDVIhyper, D800/550, NPCI, Vog2, Ctr3, 
Ctr4, PSNDa1, PSNDb1, PSSRa1, PSSRb1, PSSRc2, RARS, SR675/700, SR800/680, 
as well as 16 indices developed according to previously conducted laboratory 
studies [35]. The indices were chosen as the ones sensitive to the content of 
chlorophyll and other pigments in vegetation. 

3.1.3. Training Sample Formation for Aerial Data 
The training sample was formed from sets of vegetation indices for the surface 
types “vigorous vegetation”, “drying out spruce”, “dead-wood”, “undergrowth” 
and “soil” for the purposes of supervised classification. The above types of un-
derlying surface were chosen as the most represented among the forest area un-
der study and suitable for visual identification using available aerial images. 
Characteristic objects were selected for inclusion in the training sample by visual 
analysis of the corresponding aerial images; the particular features of the process 
are described below. 

When shooting from a moving vehicle, each recorded reflection spectrum is 
an averaged spectrum of a certain area of the territory. Thus, for an average ex-
posure time of 100 ms at a speed of about 50 m/s, the aircraft covered a distance 
of about 5 m, which approximately corresponded to the crown width of a ma-
ture tree. In this regard, two images closest to the times of the beginning and the 
end of spectrum registration were considered in the process of training sample 
formation. A decision on including the registered object in one of the classes of 
the training sample was made by visual image interpretation, namely: during the 
exposure time the spectrum of the object belonging largely to a single class 
should be recorded. 

It was found out that it is preferable to use aerial data obtained at 130 m rather 
than at 450 m in the process of training sample formation, since the objects and 
details on the associated image are more distinguishable at low altitudes. The 
resolution of the airborne image is a determining factor for high-quality visual 
separation of objects of the class “drying out spruce” from objects of the class 
“vigorous vegetation”, the separation is done by detecting the thinned state of 
the crown and occasionally the yellowing of the crown. 

It should be noted that the values of spectral reflectance of objects of underly-
ing surface should range from 0 to 1. Nevertheless, there were a few spectral ref-
lectance curves obtained during aerial experiment in which maximum values 
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were >1 – as a rule, with a wavelength of more than 850 nm. This is due to the 
influence of variable cloudiness, since the spectral measurements of the object 
and the diffuse plate were carried out at different locations and, despite the qua-
si-synchronous measurements, this could lead to differences in lighting condi-
tions. Such spectral reflectance dependencies were excluded from further 
processing. 

The classes of the training set were presented as the sets of vegetation indices 
and served then as training data for LDA supervised classification. 

3.1.4. LDA Classification 
The classification of each spectrum registered during aerial experiment was car-
ried out using LDA method [36] based on the formed training sample contain-
ing sets of vegetation indices for different classes. As a part of its operation, the 
algorithm determined linear combinations of features (vegetation indices) that 
best separate the formed classes of objects. The resulting combinations were 
then used as a linear classifier for all aerial spectral data obtained. 

The classification results were validated by comparison with the data of visual 
analysis of airborne images. Successful validation results (i.e. coordinates and 
surface class) were used as reference data for the satellite image classification. 

3.2. Techniques for Handling Satellite Data 
3.2.1. Satellite Data and Preprocessing 
The TripleSat Constellation [30] provides daily ultra-high resolution data with 
large area coverage. To study the possibility of determining drying conifers from 
satellite data, we used a commercial image of a TripleSat sensor with a spatial 
resolution of 3.2 m in 4 spectral channels Blue (0.44 - 0.51), Green (0.51 - 0.59), 
Red (0.60 - 0.67), Near Infrared (0.76 - 0.91) and 0.8 m in panchromatic, ob-
tained on June 25, 2020. For the satellite image, the radiometric correction was 
performed using the ENVI 5.3 software. Atmospheric correction of the TripleSat 
image was not performed in order to eliminate the influence of inaccuracies as-
sociated with it on the classification results. 

Pan sharpening procedure was performed for the multispectral TripleSat im-
age using the nearest neighbor diffusion pan sharpening algorithm in the ENVI 
software, based on the corresponding high-resolution panchromatic image to 
increase the spatial resolution of the image. The pan-sharpened image with a 
spatial resolution of 0.8 m was used further in the study. 

3.2.2. Shadow Masking 
The presence of shadow pixels among the objects of the training sample of the 
satellite image can subsequently cause inaccuracies in the classification results 
[37]. Shadow pixels should be attributed to a separate class and excluded from 
further processing. For this purpose, the HSV (Hue, Saturation, Value) Pan 
Sharpening procedure was applied to the Red, Green and Blue TripleSat bands 
and thus the image was transformed into the space of value (Hue, Saturation, 
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Value). It was found out that shadows correspond to Value equal to less than 
10% of the maximum level of the dynamic range of image band values in (Hue, 
Saturation, Value) space, i.e. Value < 25 corresponds to shadows at the maxi-
mum value 255. A shadow mask was compiled by evaluating the value of each 
image pixel for matching the conditions of shadow pixels. 

3.2.3. Calculation of Vegetation Indices 
A set of 11 vegetation indices was calculated for each pixel of the pan-sharpened 
TripleSat image, including: MCARI2, MTVI, MTVI2, SIPI1, LIC2, GNDVIhy-
per, D800/550, NPCI, PSNDa1, PSSRa1, PSSRc2. The indices were selected from 
those listed in paragraph 3.1.2, taking into account the possibility of calculating 
them for TripleSat bands. 

3.2.4. Training Sample Formation for Satellite Image 
The control points resulting from the airborne experiment were used to form the 
training sample for TripleSat image classification. Using geographic coordinates 
of the control points, as well as corresponding images of the survey camera, 
these points were selected in the TripleSat image, avoiding the shadow pixels 
according to the shadow mask. The LDA supervised classification algorithm was 
applied to each pixel of the TripleSat image, sets of vegetation indices were used 
as input data. The results of classification were mapped then. 

4. Results 
4.1. Results of the Airborne Experiment 

Figure 7 shows spectral reflectance of spruce with different degrees of drying 
out, as well as undergrowth (shrubs and grass cover), according to the results of 
airborne measurements. Spectral reflectance of drying spruce are generally cha-
racterized by a decrease in reflection values in the near-IR region (760 - 900 nm)  
 

 
Figure 7. Spectral reflectance of various objects by airborne measurements. 
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and in the range of 520 - 570 nm and also an increase in reflection in red region 
(600 - 680 nm). The results are consistent with the existing in the literature fea-
tures of reflectivity of green-attack stage conifers [15]. The spectral reflectance 
dependences of vigorous spruce and undergrowth are similar to each other, ex-
cept the undergrowth has a higher reflectance in the range of 520 - 570 nm than 
vigorous spruce. 

The number of reflectance spectra constituting the training set was 20% of the 
total number of spectral reflectance curves recorded over the studied area which 
in turn was 249 pcs. The remaining 80% of the spectra were left as testing sam-
ple. 

For each of the spectral reflectance curves of the training sample, 58 vegeta-
tion indices were calculated, according to paragraph 3.1.2. When presenting the 
training sample data in a two-dimensional space of selected pairs of vegetation 
indices, it was noticed that objects of the same classes tend to group (clustering). 
More than 1200 different combinations of vegetation indices were analyzed to 
determine the combination of indices for which objects of the same classes cor-
relate the best. In particular, in the space of vegetation indices PRI531/570 and 
LIC2, objects of the training set class “drying out spruce” constituted a separate 
cluster (Figure 8), along with clusters “dead-wood”, “vigorous vegetation”, etc., 
and moreover, the cluster “drying out spruce” is located at the junction of the 
clusters “vigorous vegetation” and “dead-wood”. In Figure 8, each point of a 
certain color corresponds to the object of a certain class of the training sample. 
Vegetation indices PRI531/570 and LIC2 are known as chlorophyll-sensitive in-
dices for detecting plant stress and are calculated by the formulas: 

   531 570 440

531 570 690

PRI531 570 ,LIC2
R R R
R R R

−
= =

+
                 (3) 

where Rλ  is the value of spectral reflectance at a wavelength λ. 
While spectral reflectance of the undergrowth and vigorous vegetation are prac-

tically similar to each other in Figure 7, Figure 8 clearly shows the differences 
 

 
Figure 8. Scatter plot for PRI531/570 (LIC2) indices of the training sample. 
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between the clusters “vigorous vegetation” and “undergrowth”. The vegetation 
indices are therefore a more significant characteristic of the classes than original 
reflectance dependences. The representation of the training sample data in the 
form of points of the two-dimensional space of the vegetation indices can serve 
as a simple classifier. 

The LDA classification algorithm was applied to the formed set of 58 vegeta-
tion indices calculated for the objects of the training sample. Thus, a classifier 
was formed, the application of which to the entire array of the airborne data 
makes it possible to obtain information about the attribution of a particular 
spectrum to a certain class. The result of the classification plotted on the ESRI 
World Imagery map [38] is shown in Figure 9(b), where points of various colors 
correspond to various classes of the underlying surface. The result of spatial in-
terpolation of the obtained values to the study area is shown in Figure 9(c). The 
class values were interpolated by the method of nearest neighbors on a uniform 
coordinate grid of 1000 × 1000, followed by the application of a Gaussian filter 
for smoothing. 

Analyzing the data presented in Figure 9, it can be concluded that there are  
 

 
Figure 9. The result of the classification of airborne reflection spectra of the underlying 
surface by the LDA supervised classification: image of the survey camera (a), values at the 
points of survey (b), spatial interpolation of class values (с). 
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correspondences of the classified objects to those in the airborne image of the 
survey camera: vast areas of dead wood among the clearings and dry conifers are 
identified mainly as “dead-wood”, and the area of fields around the forest where 
only rare vegetation presented was classified as “soil”. It is noticeable that the 
class “undergrowth” is mostly present among the clearing in the middle of the 
forest area, and the trees practically did not fall into this class, which also indi-
cates the ability of the obtained classifier to distinguish the undergrowth from 
other plant objects. 

To check the quality of the classification, the photographic images corres-
ponding to 249 flight spectra were analyzed by the method of visual recognition 
of the types of underlying surface. The result of the visual estimation of the types 
of underlying surface was then compared with the result of the LDA classifica-
tion, the confusion matrix is presented in Table 2. 

It became possible to divide 211 airborne images (out of 249) into classes des-
ignated as “Reference values” in Table 2. The best classification results are ob-
served for the classes “soil” (78%) and “vigorous vegetation” (74%). The classifi-
cation accuracy for the “drying out spruce” class was 27%. In case of misclassifi-
cation, the “drying out spruce” class, like the “undergrowth” class, was most of-
ten wrongly assigned to the “vigorous vegetation” class. 

4.2. Results of TripleSat Image Classification 

The aerial experiment spectra that have successfully passed the classification 
check, the number of which are presented as diagonal elements in Table 2, can 
be interpreted as reference points with known types of underlying surface and 
corresponding geographic coordinates. The reference points defined in this way 
are used as a ground truth information for the formation of a training sample 
and the subsequent classification of the satellite image. The result of the super-
vised classification of the TripleSat image of the study area with shadow mask 
applied is shown in Figure 10(b). 

It can be seen from Figure 10 that the “vigorous vegetation” class is present 
not only in the considered forest area, but also in the area corresponding to the  
 
Table 2. LDA classification confusion matrix. 

Reference 
values 

Classifier values 

Drying out 
spruce 

Vigorous 
vegetation 

Soil Undergrowth Dead-wood Total 

Drying out spruce 8 (27%) 18 1 1 2 30 

Vigorous vegetation 2 20 (74%) 3 0 2 27 

Soil 0 4 49 (78%) 9 1 63 

Undergrowth 6 24 2 20 (31%) 12 64 

Dead-wood 1 9 0 4 13 (48%) 27 

Total 17 75 55 34 30 211 
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Figure 10. The result of the classification of TripleSat image by the LDA supervised classification: pan sharpened TripleSat image 
(а), class values at image points (b). 

 
corn field, at the bottom of the image, which indicates the fact that the algorithm 
does not distinguish between vigorous tree species and meadow vegetation. 
There are rare pixels corresponding to the soil cover and incorrectly classified as 
“dead-wood” or “drying out spruce”. 

Such types of underlying surface as “soil”, “undergrowth” and “dead-wood” 
were determined mainly correctly using LDA classification of the satellite image, 
as can be seen by comparing the classification results presented in Figure 10 
with the image of the survey camera in Figure 9(a). 

5. Discussion 
5.1. Accuracy of Classification 

The accuracy of the classification of the stages of spruce drying out was esti-
mated quantitatively for an airborne experiment. The classification accuracy for 
different stages of spruce drying was as follows: “drying out spruce” 27%, “vi-
gorous vegetation” 74%, “dead-wood” 48%. Insufficient accuracy of classifica-
tion of the stages of spruce drying out is associated with inaccuracies in georefe-
rencing, small sizes of the objects under study and also blur due to aircraft 
movement. The classification accuracy was 78% for the “soil” class being pre-
sented by extended objects that largely excludes georeferencing errors. In case of 
misclassification, the class “drying out spruce” was most often wrongly assigned 
to the class “vigorous vegetation” due to the similarity of the reflection spectra of 
objects of these classes and also blur. It should be noted that the visual method 
for verifying the classification results can significantly distort the classification 
accuracy evaluation due to impossibility of accurately delineation the stage of 
spruce drying out with aerial images. 

The classification accuracy for the satellite image was assessed qualitatively by 
visual comparing the classification results with aerial images of the same territo-
ry. For this purpose, the southern section of the investigated forest area was se-
lected (Figure 11). The airborne frames of the RGB camera of this area were com-
bined into a mosaic, shown in Figure 11(a), which shows spruce trees, deciduous  
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Figure 11. Mosaic of airborne frames (a); result of classification of the TripleSat image 
(b); classification results layer overlaid on the mosaic of territory (with some transparen-
cy) (c). 
 
trees, fallen spruce trees, and areas of undergrowth. Result of LDA classification 
is shown in Figure 11(b), the classification results layer overlaid on the mosaic 
of the territory (with some transparency) is shown in Figure 11(c). From Figure 
11(c), one can see a clear distinction between deciduous trees, which are in-
cluded in the “vigorous vegetation” class, and spruces, which are included in the 
“drying out spruce” class. The area of fallen trees corresponds to the classes 
“dead-wood” and “drying out spruce”. Shaded areas correspond to areas be-
tween trees where shading naturally occurs. Due to the lack of additional a priori 
data on the state of health of trees and the impossibility of identifying vigorous 
spruce trees from the mosaic image, there is no currently way to verify the cor-
rectness of classification of the types “drying out spruce” and “vigorous vegeta-
tion”. 

Thus, having images of the aerial camera for reference, it is possible to draw 
only a qualitative conclusion about the generally satisfactory result of the Trip-
leSat image classification of the stages of spruce drying. To quantify the accuracy 
of the satellite image classification, higher spatial resolution images and 
up-to-date information from the databases of forest pathological services on the 
health status of individual trees are required. 

5.2. Aerial Data 

It is shown in the study that the data of the spectrometers used in the airborne 
experiment are suitable for distinguishing the stages of drying out of spruce 
trees. The advantages of spectrometers are a high spectral resolution, a wide 
range of registered wavelengths, and, as a consequence, it is possible to obtain 
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complete spectral information in the range of 400 - 900 nm about the objects of 
study. As known from the literature, visible and near-IR ranges of detected radi-
ation play a crucial role in identifying the stages of coniferous desiccation. Com-
bination of the reflectance spectra of objects and the corresponding pho-
to-images provides more opportunities in terms of recognizing the stages of 
drying out than using them separately. At the same time, the calculation of ve-
getation indices allows for an even better delineation of the stages of drying out 
of spruce. 

Registration of spectra of the underlying surface from an airplane cause sig-
nificant inaccuracies in the subsequent interpretation of airborne data, since the 
blur arising from the motion of the airplane worsens the spatial resolution of the 
spectral data. In this regard a possible solution in future research could be the 
use of an unmanned aerial vehicle with a lower movement rate. 

5.3. TripleSat Data 

The results of the classification (Figure 10(b)) show that the majority (about 
90%) of the forest area under study is in the drying stage, with slight inclusions 
of healthy trees. This fact is well consistent with the forest pathologist expertise 
about that there are almost no healthy trees in the study area and it is subjected 
to regular sanitary cuttings due to bark beetle infestation. 

The study of a forest of a relatively small area carried out in this work entails 
the determination of the stages of drying out of individual trees, which can only 
be carried out using satellite data of ultra-high spatial resolution. At the same 
time, from the results of the airborne experiment presented in Table 2, it can be 
seen that there is a correct separation of the “soil” and “dead-wood” classes from 
each other. On the satellite image there are soil areas classified as “dead-wood” 
or “drying out spruce” (Figure 10(b)). Hence, it can be concluded that the in-
correct assignment of the TripleSat image pixels corresponding to the soil to the 
“dead-wood” or “drying out spruce” classes is obviously due to the lack of spec-
tral resolution of the TripleSat sensor. 

Atmospheric correction of the TripleSat image was not applied in the study in 
order to avoid inaccuracies associated with it. Radiometric correction was ap-
plied. Nevertheless, both radiometric and atmospheric correction should be ap-
plied for developing a general methodology for the classification of drying stages 
from Triplesat images. Only pixels corresponding to the sunlit parts of trees 
were used in classification, and shadow pixels were excluded by applying a sha-
dow mask, which made it possible to reduce the variability of classes of training 
sample. 

The accuracy of classification of dying spruce trees using TripleSat data was 
found to be satisfactory. 

6. Conclusion 

The study presents the results of determining the three stages of the state of 

https://doi.org/10.4236/ars.2021.102002


S. I. Guliaeva et al. 
 

 

DOI: 10.4236/ars.2021.102002 43 Advances in Remote Sensing 
 

spruce (vigorous, drying out spruce and dead wood) also as two additional types 
of underlying surface (soil, undergrowth) based on the classification of the Trip-
leSat image by vegetation indices. The reference data for the classification were 
the results of the airborne experiment. Using vegetation indices calculated from 
the data of airborne spectrometers in a wide spectral range of 400 - 900 nm, it is 
possible to identify three stages of drying out spruce. The accuracy of determin-
ing the stages of drying out in an airborne experiment is: “vigorous vegeta-
tion”—74%, “drying out needles”—27%, “dead wood”—48%. The accuracy of 
the TripleSat image classification by the LDA method was assessed as satisfacto-
ry by comparing the classification maps with the aerial images. To determine 
more accurately the drying out of spruce and access the classification accuracy, 
future studies should use an unmanned aerial vehicle with a lower speed of 
movement, high quality photographic images of forest area, and detailed data 
from forest pathological services on the presence of forest diseases. 
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