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Abstract

The existence of “strange trees” is proven and their paradoxical nature is dis-
cussed, due to which set theory is suspected of being contradictory. All proofs
rely on informal set-theoretic reasoning, but without using elements that
were prohibited in axiomatic set theories in order to overcome the difficulties
encountered by Cantor’s naive set theory. Therefore, in fact, the article deals
with the possible inconsistency of existing axiomatic set theories, in particu-
lar, the ZFC theory. Strange trees appear when uncountable cardinals appear.
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1. Introduction

Set theory was created by the outstanding German mathematician Georg Cantor
in the last third of the 19th century. Cantor’s ideas were met at first with great
caution, then by many (but not all) with admiration. One of the greatest mathe-
maticians of all time, David Hilbert, wrote: “I believe that it [Cantor’s set theory]
represents the highest manifestation of human genius, as well as one of the
highest achievements of human spiritual activity”. And even when the paradoxes
of set theory began to shake mathematics and another outstanding mathemati-
cian, Henri Poincaré, subjected Cantor’s ideas and achievements to harsh criti-
cism, Hilbert insistently asserted: “No one will expel us from the paradise that
Cantor created for us.” At present, set theory is the foundation on which the en-
tire edifice of modern mathematics is built.

Paradoxes in set theory were discovered at the end of the 19th century, when

it seemed that everything essential in a new building had already been built. In
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1899, Cantor described the paradox of the set of all sets. According to this para-
dox, it cannot be argued that the set of subsets of the set of all sets is greater (in
the language of set theory, has greater cardinality) than the set of all sets, which
contradicted the theorem that Cantor proved in 1891.

Along with the paradox of the set of all sets, several other paradoxes (mathe-
matical and semantic) were discovered and described, the most famous and of-
ten cited of which is Russell’s paradox about the set of all sets that are not ele-
ments of themselves. This set, as is easy to see, is and is not at the same time an
element of itself, which means a contradiction. And, as the mathematician Ha-
damard put it, an earthquake in mathematics began, real battles in which the
creator of set theory could no longer take part due to health reasons. We will call
that situation the first crisis in mathematics, “the crisis of unexpected paradox-
es”.

The solution, according to most mathematicians, was found by Zermelo, who
created the first axiomatic set theory in 1908. After the improvement made by
Frenkel, this theory came into general use as the Zermelo-Frenkel theory, abbre-
viated as the ZF theory [1] [2]. Zermelo set the goal of preserving the existing
means of mathematics without leading to paradoxes as much as possible, and he
achieved his goal. The ZF theory retains the possibility of using impredicative
definitions (Ze., those when the definition of a set includes an object that is an
element of this set), which, as it has been established, is impossible to do without
in mathematics. Thus, Weil especially emphasized the impredicative nature of
some definitions of calculus. The restrictions were introduced only on the means
of constructing new sets to make it impossible to obtain too large sets like the set
of all sets or the set of all sets that are not elements of itself, leading to paradoxes.
These sets simply do not exist in ZF. Note that in all obtained paradoxes non-
predicative definitions of sets are given.

Then the axiom of arbitrary choice was added to the ZF axioms (the author of
this axiom was also Zermelo). The ZF theory with the axiom of arbitrary choice
is called the ZFC theory [2]. Subsequently, other axiomatic set theories appeared
[3], but the ZF and ZFC theories (let us note for clarity that these theories, as it
was established, have the same strength: if one is consistent, then the other is
consistent) retained their leading position and are now considered as standard.
This is probably due to the simplicity, clarity of construction and the possibilities
of the theories. These theories are usually considered as two variants of the same
theory—ZFC is a strengthened version of ZF.

The ZFC theory is simple and elegant. The number of its axioms is small, and
there are only two initial mathematical concepts: “set” and “belonging”. It con-
tains only one mathematical symbol, denoting the two-place predicate of mem-
bership. At the same time, it turns out that everything that has been and is being
done in mathematics (with the exception of that part of it that deals with some
specific problems of set theory itself) can be done in the ZFC theory. That is why
it has received universal recognition. Of course, in ordinary research mathema-

ticians do not explicitly use the ZFC axiomatics, but for everyone who is well
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acquainted with it, it is obvious that translating the obtained results into the ZFC
language is only a matter of technique and time.

Meanwhile, the emergence of axiomatic set theories was not at all a solution to
the problem of paradoxes (i.e., the problem of consistency). The old, well-known
paradoxes have disappeared. But new ones could appear. And set theory was not
something exceptional in this regard. In principle, contradictions could arise in
calculus and even in arithmetic (where there are no non-predicative definitions).
But, of course, for set theory the question of consistency was especially acute.
And then Hilbert set a grandiose task for mathematics (this task was called the
Hilbert program)—to prove directly by finite means (constructive proofs forma-
lized in arithmetic), as such generally accepted mathematical means with which
all mathematicians would agree, the consistency of all significant existing axi-
omatic theories. Previously, evidence of consistency was always relative. It was
proven, for example, that if it is known that the geometry of Euclid is consistent,
then the Lobachevsky-Bolyai geometry is also consistent. And it was supposed to
start with Peano arithmetic, as the simplest significant axiomatic theory, from
the inconsistency of which the inconsistency of all other theories would follow.
At the heart of Hilbert’s program was his confidence in the scientific knowability
of the world. Hilbert was confident that everything true in mathematics could be
proven. “Wir miissen wissen—wir werden wissen.”

Hilbert’s program meant the creation of a new branch of mathematics—“me-
tamathematics”, which deals with the study of the logical foundations of ma-
thematics itself. It was a grandiose program in its conception. But its goal turned
out to be unattainable. This became clear when Godel’s famous first theorem
was published in 1931, which established the existence of true arithmetic state-
ments that cannot be proven by arithmetic. Godel’s second theorem followed
from the first theorem (for a clear and complete presentation of Godel’s theo-
rems and the first crisis in mathematics, see, for example, [4]). By virtue of
Godel’s second theorem, the consistency of a consistent axiomatic system cannot
be proven by means formalized in the system itself (since such a proof imme-
diately implies the inconsistency of this system). And the second crisis in ma-
thematics came, “the crisis caused by Godel’s theorems”.

It is interesting to note that even without Godel’s theorems, a weak point can
be discerned in Hilbert’s program. Let us assume that we have proven the con-
sistency of the system by means formalized in the system itself. What does this
give us? Only faith in consistency based on faith in intuition. Because if a system
is contradictory, then by its means it is possible to prove any statement that can
be formalized in it, including its consistency. But, of course, Godel’s evidence
brought the highest and final clarity to this issue.

In the field of view of metamathematics first of all, there are now two axi-
omatic systems: classical Peano arithmetic and ZFC set theory (or any other
theory equivalent in strength). At the same time, the general opinion is that
Peano arithmetic is certainly consistent, and set theory is almost certainly, but
the reason for the inconsistency can only be connected with the incompleteness
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of the rules associated with the ban on constructing new sets (and it is silently
suggested that in this situation the rules could be corrected and the inconsisten-
cy would disappear). It is this point of view that, according to the author’s opi-
nion, was expressed by Kolmogorov and Dragalin in their book [5]: “At present,
the consistency of the theories Ar and Ar2 [the ordinary arithmetic theory and
the second-order arithmetic theory] can be considered reliably established. The
consistency of a theory like ZF is much more problematic.”

Mathematics has a great fear of contradiction. After all, according to the laws
of logic, everything follows from contradiction. And not only in classical, but
also in intuitionistic mathematics (where every proof of the existence of an ob-
ject must determine the method of its construction).

The axioms of ZFC are transparent and completely consistent with our intui-
tion, but the difference between ZFC and arithmetic is that in ZFC results were
obtained that are very counterintuitive. And the “strange tree paradox”, de-
scribed later in the article, is just one of them. The “doubling ball paradox” is
well known. It is shown that a ball in three-dimensional space can be divided
into a finite number of sets and, using the movement of parts in space, like rigid
bodies, another ball of two larger diameter can be assembled. This is not the case
in arithmetic.

Thus, the way out of the second crisis was in the refusal of mathematicians to
prove its consistency while maintaining confidence that consistency takes place.
In a humorous form, Andre Weil expressed this statement this way: “God exists
because mathematics is consistent, and the devil exists because we will never
prove it”. At the same time, we have to admit that in mathematics there is igno-
ramus et ignorabimus.

The confidence of mathematicians in the absence of contradictions in Peano
arithmetic, based on faith in intuition, is universal, but not one hundred percent.
In this regard, I would like to draw the reader’s attention to article [6]. The ar-
ticle is devoted to a new crisis in mathematics, “the crisis of complexity”, which
occurred after 1970. Proofs are becoming longer and more complex, and check-
ing their correctness is becoming more and more difficult. I will call it the third
crisis. The third crisis, in relation to the problem of consistency, gives the situa-
tion new features associated with the rejection of unconditional faith in the con-
sistency of arithmetic.

Let there be a provable arithmetic statement, written in the language of arith-
metic, the shortest proof of which requires hundreds of millions of text pages (so
its proof will be of unimaginable length). But the statement itself has a fairly
short notation. The author considers a good candidate for the role of such a
statement to be a statement about the inconsistency of arithmetic (written in the
language of arithmetic itself) and provides some group-theoretic considerations
for this statement. (Although he stipulates that he is simply expressing an as-
sumption.) We find ourselves in a situation where theoretically there is proof,
but in fact we will never have it. And in any case, whether or not there is proof of

the inconsistency of arithmetic, we are at the mercy of ignoramus et ignorabi-
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mus, in different guises.

Thus, Davis’s article (implicitly) offers such a solution of the problem of con-
sistency-inconsistency of arithmetic. Inconsistency is possible, but its proof (if it
exists) will be astronomically long. Therefore, we can safely ignore the question
of the inconsistency of arithmetic.

Davis’s article says nothing about set theory.

Three crises in mathematics were described above. It is easy to see that these
crises are closely related to each other in their content. Therefore, it is perhaps
more correct to speak of three stages of one crisis, which has its roots in the phi-
losophical problem of truth. The initial view of mathematicians, that a priori
there is a clear division in mathematics into true and false, that everything true is
provable, and everything provable is true, turned out to be untenable and ma-
thematicians are painfully trying to find a replacement for it.

This article introduces strange trees, proves their existence if there are un-
countable cardinals, and discusses the paradoxical nature of the situation that
has arisen, which we call the situation of strange tree paradox. Theorems 1 - 3
and two intuitive considerations highlight the paradoxical nature of the exis-
tence of strange trees and raise the question of the possible inconsistency of set
theory described by existing axiomatic theories. In the continuation of this work,
an approach to proving the inconsistency of set theory will be formulated and
with its help new strong results will be obtained.

The questions that this article is devoted to were formulated in preliminary
form in works [7] [8]. Note also that in [9] [10] issues related to possible seman-

tic incompleteness and inconsistency of Peano arithmetic were considered.

2. Definitions

Let T be a partially ordered set with order relation “<” which can be
represented as a free with levels numbered by ordinals from 0 to oc inclusive.
Note that we consider an ordinal as the set of all smaller ordinals (as it is custo-
mary in axiomatic set theories). Each vertex of a tree is at some level, and all le-
vels are non-empty with possible exception of the upper level . For the sake of
brevity, we will identify the levels with their numbers. The notation * will
usually mean that a vertex v* is at the level k. The following conditions are met:
1° there exists only one element vy €T for which v, <v forall veT, v; is
at the level 0, and there are no other vertices at the level 0; 2° for each v for all
k<m there is a unique ¥ for which V¥ <v™; 3° if there is a sequence
(v k<), 1 being a limit ordinal, such that v <v! for i<j (such se-
quences will be called continuing sequences), then there is a unique limit V'
such that v <V' forall k<I.

The vertex v, will be called the root of a tree, and the ordered pairs of ver-
tices (u,v), when vimmediately follows u, are called edges (or transitions from
the vertex u to a child vertex v). For generality of considerations, the empty set

will also be considered a tree (empty tree).
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The ordinal o will be called the Aeight of a tree T'and denoted by oc = height(T).
The level « of the tree T will be called the upper level This level will be empty
in the case (and only in this case) when o is a limit ordinal and there are no con-
tinuing sequences (V*,k <oc) in a tree. But vertices exist always at all lesser le-
vels.

A tree will be called finiteif o« <@ and the set of transitions from any vertex
to its child ones is finite. If oc > @, then we will talk about a transfinite tree.

Bya pathinatree T we mean the continuing sequence of vertices
(Vk ,VM,-‘-) . A path is a well-ordered set of vertices, and a path from a vertex u
to vertex V exists if and only if u<v (and if it exists, it is unique). Each path
has the starting vertex, but may not have the last one. There is a path from the
root vertex to any vertex of a tree 7. If the vertex vis at level 4, then the path
from the root to v (inclusive) is the set of vertices isomorphic to the ordinal & +
1. A path can also be characterized by the sequence of tree edges.

Let a vertex not be at the upper level. If a given vertex is not followed by any
vertex, then we will call it final, otherwise—non-final. All vertices of the upper
level will be considered non-final, unless otherwise is stated. In the latter case the
division of vertices at the upper level into final and non-final is determined by
additional agreements. For example, if a tree T of height o is the lower part
of atree T/ of height B, then it often makes sense to introduce the division of
vertices into final and non-final ones for the upper level o« of the tree T™ in-
duced by the tree T” . If the height of a tree is expressed by a limit ordinal, then
there may be a case when there are no vertices at the upper level (but at all lower
levels they are).

Let us introduce one more (optional, but often convenient) condition 4°: final
vertices cannot appear at levels with non-limit numbers. It is easy to see that the
use of this rule does not impose any restrictions on the generality of the results
obtained. Later we will usually assume that condition 4° is satisfied.

For greater clarity, we will imagine a tree in the form of a graphic picture on
the plane of trees where the root vertex is at the very bottom and diverging paths
go up from it. Since paths in a tree can break off at levels lower than the upper
one, the tree can be represented as a bush where the root of the bush is the root
of the tree. In Figure 1 the enlarged view of a tree of the height 3w with selected
levels 0, @, 2w, 3w and several paths is shown. The final vertices at levels less
than the upper one are marked in black.

Any non-final vertex u of a tree defines (generates) some subtree (it will be the
set of vertices v such that u<V) for which this vertex is the root. Such subtrees
will be called trees generated by the vertices of a given tree.

If a path starts at the root vertex of a tree 7"and goes through all levels with a
possible exception of the upper level oc (when oc is a limit ordinal), then such a
path will be called a through path. A finite tree always has a through path. A
non-final vertex on a non-upper level will be called a through vertex if there is a

through path passing through it. A path will be called strongly through if it ends
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Figure 1. A tree of height 3w.

(actually or potentially) at a non-final upper-level vertex. Accordingly, in this
case we will speak of strongly through vertices.

A tree, all vertices of which at non-upper levels are through (strongly through),
will be called through (strongly through).

Let us introduce (fundamental for this paper) the concept of the a/most
through vertex. This concept is introduced for the case when the height of a tree
is a limit ordinal. When oc is a limit ordinal, a non-final vertex, located at the
level i<oc, will be called almost through vertex if for any i< j<oc there exists
a path that starts at it and ends at some vertex of level j. Each through vertex is
obviously an almost through vertex. The root vertex is an almost through vertex.
If a tree contains a through path, then the root vertex is a through vertex.

A tree, all non-final vertices of which at non-upper levels are almost through
vertices, will be called a/most through tree. A vertex will be called actually almost
through vertex if it is an almost through vertex, but not a through one. A tree
with actually almost through non-final vertices will be called strange. To put it in
another way: a strange tree is an almost through tree with no vertices at the up-
per level. In a strange tree, oc is a limit ordinal. A vertex of a tree 7Twill be called
strange if the tree generated by it is strange.

The numbering of transitions (for brevity, just the numbering) can be entered
in a tree. Then transitions from each non-final vertex v to child ones (edges
connecting non-final vertices with child ones) receive numbers that are elements
of some set M (for each vertex v, the set of transitions can be its own, and hence
in the general case M =M (Vv)). Without loss of generality, we will assume fur-
ther that the set of ordinals less than some cardinal is taken: M (v)=m(v)
where m(V) is a cardinal. By virtue of the definition of a tree, each of its ver-
tices is uniquely determined by specifying the numbers of transitions in the way
that goes from the root vertex to it. So, by specifying transitions, the encoding of

the tree vertices can be performed. Such trees will be called trees with numbered
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transitions (for brevity, numbered trees).

The encoding of a tree vertices using the sequences of edge numbers leading
to them will be called the numerical encoding.

Being numerically encoded, each vertex of a tree is represented by a sequence
of ordinals characterizing transitions from non-final vertices preceding it to
child ones. The case, when mM(V) is the same for all vat the level %, is repre-
sentative and can be usually chosen in the proofs of lemmas. If the vertex of a
tree is at the level / then in the numerical encoding this vertex is represented by
the sequence (X,%,+-)=(%,k<I) where X, < m* (and it is assumed that all
such x, are used). Each x, is interpreted as the number of the edge from the
vertex (Xi < k) of the level & to the vertex (Xi Ji<k +1) of the level k+1. At
the level zero, there is the empty sequence.

The numerical encoding may be separated from a tree 7"and considered as a
new tree which is obviously isomorphic to 7 (the concept of tree isomorphism
will be introduced below). Such trees (when a vertex at a level & is the sequence
of ordinals (X;,i<k) that obeys the requirements formulated above) will be
called trees in numerical form (or in ni*-numerical form if we want to emphasize
that at the level & there are m" transitions from each non-final vertex to child
ones). In such trees, the vertex order relation is the relation of the continuation
of sequences of ordinals.

By tree isomorphism we mean a one-to-one correspondence that preserves the
order relation between vertices of different levels. If the nonfinality correspon-
dence is also satisfied for vertices of the upper level, then we will speak of a
strong isomorphism. An ordinary isomorphism with vertices of one sort on the
upper level will also be called strong.

Each tree is isomorphic to a tree in numerical form, and when it is convenient,
we will assume that a tree in question is given in numerical form.

It will be shown that for height(T)<e, strange trees do not exist, while for
height(T)=e, strange trees exist, and an example of a strange tree will be giv-
en.

In strange trees at the upper level o there are no vertices although there is a
path from each non-final vertex of the level k <oc to the vertex of any level
I:k <l <oc, and this looks like an intuitive paradox (see further Section 5) which
can generate a real contradiction.

We define cut(T,k) as a tree of the height & obtained by cutting the tree 7
by level & cut(T,k)z{v eT :Iev(v)s k} where IeV(V) is the level at which
the vertex V islocated. We will say that the operation of cutting the tree T by
level k is performed. This function is defined at k <height(T). We will assume
that by default in the tree T* =cut (T.k), where kis less than the height of 7;
those and only those vertices are non-final at the upper level k& that were
non-final in the tree 7.

For to isomorphisms, the use of the cut off function means that the part of an

isomorphism is taken. Thus cut(ism, k) , where ism is an isomorphism of a tree

DOI: 10.4236/apm.2023.1310048

701 Advances in Pure Mathematics


https://doi.org/10.4236/apm.2023.1310048

Y. M. Volin

T, to tree 7, means the isomorphism of the tree cut (Ta,k) to the tree
cut (Tb , k) taken as a part of the isomorphism ism.

A tree T'is said to be Aomogeneous if, for any two non-final vertices located at
the same level less than the upper one, the trees generated by them are isomor-
phic. A tree 7 of height oc, when oc is a limit ordinal, will be called a/most ho-
mogeneous if for all k<o the tree cut(T,k) is homogeneous. If o« is a
non-limit ordinal, then the concept of almost homogeneity is not introduced. If
we mean strong isomorphism, then we will speak of strong homogeneity.

We say that trees 7,, T, of the same height oc, where oc is a limit ordinal, are
almost isomorphic if for all K <oc, the trees cut (Ta, k) and cut (Tb, k) are
isomorphic. If o is a non-limit ordinal, then the concept of almost isomorphism
is not introduced. The concept of almost isomorphism will play an important
role in the paper.

Let us further agree to assume that usually in the notation of a tree the super-
script indicates the height of a tree. And as a rule, we will assume by default
Tk =cut (T, k) . For clarity, note that the operation cut(T,k) is unique.

Remark 1. It is easy to see that if the trees T,,T, of height oc are isomorphic,
then for k<o the trees TX, TS will always be strongly isomorphic. And in
this case, speaking of isomorphism, we will by default mean strong isomor-
phism. This fact should be kept in mind in the future, as it may not be specially
stipulated.

Let us introduce an ordering relation for trees. We will assume that

T, <T, meansthat T, =cut(T,,height(T,)). (1)

It is easy to see that if T':cut(Tm,I) and Tk:CUt(T',k),then
Tkzcut(Tm,k).Hence,

if T*<T' and T'<T™, then T*<T". (2)

By virtue of (2), the introduced relation (1) is a partial order relation for
which the item 2° of tree definition is fulfilled.

Note that further, when we talk about trees as vertices of a multilevel object, it
is always assumed that the order relations between them satisfy condition (1).

As it was said, the sequence of vertices (Vk,k =0,l,~-) in a tree 7 will be
called continuingif for all k,I (k<l) v¥<v'.We will talk about a continuing
sequence of trees (Tk,k :0,1,---) ifforall k,I (k<l) T*<T'.

We will call a sequence (ism (Tak T ), k <o) the continuing sequence of
isomorphisms if for all k <| the isomorphism ism (TaI T ) of trees T) T is
the continuation of the isomorphism ism(Tak ,Tbk ) of trees Tak ,Tbk .

Let a continuing sequence of trees (Tk,k < oc) be given. Let us introduce the
concept of path in it. A sequence of vertices (VO RV ) will be called a path in a
continuing sequence of trees if any of its proper initial segment is a path in some
tree T*. It is easy to see that in this case this segment will be a path for all T'
where |>Kk. A path will be called a through path if it passes through all levels of

a continuing sequence.
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Let there be a continuing sequence of trees (Tk k< oc) where o is a limit or-
dinal. A tree T'of height oc will be called the Zimit of this sequence if T* = cut (T.k)
for all K <oc. For non-limit o, the concept of the limit of a sequence of trees is
not introduced.

For clarity, we can represent the continuing sequence of trees as the process of
constructing the tree that is the limit of this sequence. The concept of continuing
sequence of trees will play the key role in many further considerations.

A construction in which at each level less than oc, where oc is a limit ordinal,
there are vertices (level o is excluded from consideration), and items 1° - 3° of
the beginning of the section are satisfied (without item 3° for level oc), will be
called almost a tree. From any tree, the corresponding almost a tree is obtained
by discarding vertices of level oc (if there were any). And a tree from almost a
tree is obtained by adding vertices that complete the through paths. The word
“almost” can be omitted if it is clear from the text that we say about almost trees.

Given a continuing sequence (T K k< oc) where T¥=cut (T , k) for almost a
tree T for all k<oc, 7 will also be considered as the limit of the sequence
(Tk k< oc) . Thus, the limit of the sequence of trees exists both as a tree and al-
most a tree.

In case of almost trees of height oc, we will use the notation 70, We will
assume that the writing of the form T*"° means that o is a limit ordinal. The
continuing sequence (Tk,k <OC) uniquely defines the almost tree T*° and
can be identified with it.

Extending the notion of the function cut, we will write T =0 = cut (T * e — 0) .

We will assume that all trees (and almost trees) considered below have a

height less than w, or equal to it.

3. Some Preliminary Results

Note that after formulating lemmas, we will give proofs (or indications for the
proofs) only where it is really necessary, without being obvious enough or rela-
tively easily obtained from what was proved earlier.

Lemma 1. The continuing sequence of trees (Tk k< oc) (oc is a limit ordinal)
has a limit. In the class of almost trees, the limit is unique: it is the union of ver-
tices included in (Tk k< oc) , preserving the order relations that they had in the
sequence. In the class of trees, the limit is not unambiguous, but all limits differ
only in vertices at the upper level which terminate through paths in the contin-
uing sequence (T K k< oc) . Thus, if an unambiguous way of choosing final ver-
tices of through paths is indicated, then the limit becomes unambiguous.

In what follows, our special interest will be associated with trees and almost
trees, whose vertices are themselves trees with the order relation (1) introduced
above.

Lemma 2. Let there be a continuing sequence of trees (Tk k< oc) , where the
vertices of the trees T* are trees themselves. Suppose that for each continuing

sequence of vertices (vit .k <oc) (Vit are trees) there is a way to choose uni-
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quely the limit in the class of trees. This determines the unique choice of the
limit in the class of trees for the sequence (Tk k< OC) .

Lemma 3. A tree T'is almost homogeneous if and only if for any two non-final
vertices on the same level, the trees generated by them are almost isomorphic.

Lemma 4.Let k<l<m and v <v", v' <v". Then v¥<V'.

Indeed, let V¥ <v'.Then V* <v"™.Then V"=V andso v*<V' (see2°).

Remark 2. It is often more convenient to use the notion of almost a tree. On
the one hand, the limit of a continuing sequence in the class of almost trees is
unique, and on the other one, each through path in a tree T® generates (by
dropping the terminating vertex) a through path in the corresponding almost a
tree T*"°. And all our interest revolves around the problem of the existence of
through paths in different trees. Note also that if we take trees in the numerical
form (each vertex is the sequence of ordinals), then the vertices of the upper lev-
el will be uniquely determined by the vertices of lower levels, and the limit of the
sequence of trees will be unambiguous.

Lemma 5. If a homogeneous (almost homogeneous) tree 7, is isomorphic
(almost isomorphic) to a tree 7}, then the tree 7}, is homogeneous (almost ho-
mogeneous).

Let the division of vertices into final and non-final take place for the upper
level o« as well (see Section 2). A tree T™ we call strongly through if for each
non-final vertex V¥ with k <oc there is a path from V* to some non-final
vertex V*. Note that if T* is the lower part of an almost through tree T/
and inherits its non-final vertices at the level oc from T/, then T is a strong-
ly through tree.

Lemma 6. If T'is a homogeneous (strongly homogeneous) tree and it has a
through path (through path ended at a non-final upper-level vertex), then T'is a
through (strongly through) tree. If 7 is almost homogeneous, then it has the
same cardinal number of child vertices for all non-final vertices of the same level
and is almost through.

Lemma 7 (the decomposition of isomorphism lemma). Let T,, T, be isomor-
phic trees of the height oc, ism be the isomorphism of 7, onto 7}, and k<oc.
Then ism is the union of the isomorphism of the tree cut (Ta, k) to tree
cut(T,,k) with isomorphisms of the subtrees generated by non-final vertices at
the level & in the tree 7, to the corresponding subtrees in the tree 7, The con-
verse is also true: the union of the isomorphism of cut(T,,k) to cut(T,,k)
with isomorphisms of subtrees generated by non-final vertices at the level & in
the tree 7, to the corresponding subtrees in the tree 7, gives an isomorphism 7,
to T, If 7,, T, are homogeneous trees, then the decomposition of the isomor-
phism 7, to 7, described above is possible for any isomorphism of cut (Ta, k)
to Cut(Tb,k) where k<oc.

The assertions of the lemma are the obvious consequence of the general prop-
erties of tree isomorphism and the definition of tree homogeneity.

Note that the assertion of lemma 7 carries over in an obvious way to the case

of strong isomorphism (and strong homogeneity) of trees 7, 7,
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Lemma 8. The limit level /is formed by the vertices that end all possible paths
along the vertices below the level /

See the item 3° of the definition of a tree.

As already been noted (see remark 1), it immediately follows from the defini-
tion of isomorphism and strong isomorphism that if trees 7, 7, of height oc are
isomorphic, then for k <oc the trees cut(T,,k) and cut(T,,k) are strongly
isomorphic. Speaking about the isomorphism of these trees, we will mean by de-
fault strong isomorphism.

Lemma 9. Let trees T,, T, of the same height oc be almost isomorphic and al-
most homogeneous. For i< thetrees cut(T,,i) and cut(T,,i) are strongly
isomorphic and strongly homogeneous. Let i<oc and ism' be an isomor-
phism of cut(T,,i) to cut(T,,i). The isomorphism ism' can be extended to
the isomorphism ism! of the tree cut (Ta, j) onto the tree cut (Tb, j) for all j
such that i< j<cc.

The statement is a consequence of lemma 7.

Lemma 10. Let T, T, be trees of the same height o, where o is a limit ordinal,

and (ism",k<oc) be a continuous sequence of isomorphisms T onto Tbk

a
(which are obviously strong isomorphisms). Then the trees 7, 7, are isomor-
phic, and the sequence (ismk,k < oc) introduces the isomorphism ism* of 7,
onto 7, (not necessarily strong isomorphism) such that for all k<o ism* is
the extension of ism".

The isomorphism ism” is introduced as the limit of the continuing sequence
of isomorphisms (ismk k< oc) .

Setting T =T, =T, , we obtain the corresponding analogs of lemmas 7, 9, 10
for automorphisms in the tree 7.

Lemma 11. Let o« <@, o be a limit ordinal and trees 7,, 7, of height oc be
almost isomorphic and almost homogeneous. Then the trees 7, T, are isomor-
phic.

We will construct the required isomorphism as follows. Let (ik :0<k <a))
be a strictly increasing sequence of ordinals and i, >« when k — @. The
tree T, =cut(T,,i,) is isomorphic to the tree T,,=cut(T,,ij). Take some
isomorphism T,, to T, . This isomorphism (by lemmas 7, 9) can be extended
to an isomorphism of T, =cut(T,,i) onto T, =cut(T,,i,). Subsequent steps
(of a similar type) allow us to construct isomorphisms of trees T,, onto T,,
T,; onto T, etc, every time the isomorphism of T, =cut(T,,i,) onto
Ty =Cut(T,,i,) being the continuation of the isomophism of T,,, onto
Ty1- (Of course, we are always talking about strong isomorphisms.) As a result
(see lemma 10), an isomorphism of 7, onto 7, will be constructed. The lemma is
proved.

Lemma 12. Let a tree T of the height o« <@, (oc is a limit ordinal) be almost
homogeneous. Then it is homogeneous.

Indeed, consider non-final vertices V.,V at the level k <oc in the tree 7.

The trees T,,T,,, generated by them, are almost isomorphic (lemma 3) and
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therefore, by lemma 11, are isomorphic. Therefore, the tree is homogeneous.

Let a tree T of the height oc be given. Let us agree to mean by cut (v“ \ k) the
vertex V¥ located at the level & on the path going from the root of the tree T
to the vertex Vv” located at the level oc.

Lemma 13. Let T, T,be strongly isomorphic and strongly homogeneous trees
of height oc <@, and « be a limit ordinal. Let Vv, ,v,” be vertices at the upper
level of these trees, which are non-final if there are vertices of two sorts at the
upper level. There is an isomorphism of 7, onto 7, for which the vertex v, is
mapped to V, . (Note that in a case when there are vertices of one sort at the
upper level, the word “strongly” can be omitted.)

It suffices to show that if the assertion of the lemma holds for all 7,, 7, of
height S <oc, then it also holds for 7}, 7} of height oc. Let (i, :0<k < a)) be a
strictly increasing sequence of ordinals and i, >« as k—>w. T, T, are con-
sidered as trees generated by root vertices V) and Vy. Let T, =cut(T,,i,),
T, =cut (Tb,il) and ism' be an isomorphism mooving T} to T, in such a
way that V. =cut (V,:,il) goes to Vi =cut (V;c,il). Let, under the isomorphism
ism', a non-final vertex ul (different from V.) go to a non-final vertex U
(different from V, ). We introduce a strong isomorphism of the trees generated
by these vertices (in the trees 7,, 7;) and perform this operation for all pairs
(ui,ué). At the next step, we turn to the trees generated by the vertices V. and
v; and perform similar operations to obtain isomorphisms generated by the
pairs (uj u? ) Etc. After taking w steps, we arrive at a strong isomorphism of
trees T, T,, under which the vertex v, goes to the vertex Vv, .

Let T* be a through homogeneous tree of height oc. Let M* denote mi-
nimal sets of vertices at the level oc. Each minimal set is characterized by a func-
tion go:(vik,k<oc)—>(vi“
tisfying the conditions: 1) if v* :q)(Vk), then V* <v*;2) if v* zgo(vk) and
V¥ <v' <v*, then V* =<p(v').

), where vik are non-final vertices at the level %, sa-

The functions ¢ are introduced using the following recursive assignment
process. Assign some vertex V” to the root vertex Vv;. With this, we have in-
troduced Vv* = (/)(VR ). Assign the same V* to each vertex V¢ lying on the
path from Vv, to V*. Let assignments be made for all non-final vertices on le-
vels less than & Then we make assignments for those non-final vertices of the
level kthat have not yet received assignments, keeping the rules 1) and 2). At the
end of the described process, we obtain function ¢.

Lemma 14. Let T be a strongly through tree and M” the set of non-final
vertices at the level oc. There exists M* c M~

To prove the lemma, we shall use the assignment process described above, re-
stricting the assignments to non-final v*.

Lemma 15 Let <@, T, ,T,” be isomorphic homogeneous through trees
and M,M/ be minimal sets. There is an isomorphism of trees T.,,T,” such
that M7 goesto M/ .

Let us describe the process of constructing the required isomorphism. Let
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¢,,¢, be functions associated with the sets M ,M; . Let (i,:0<k<w) bea
strictly increasing sequence of ordinals and i, >« as k — ®. We introduce
the future isomorphism correspondence between vertices located on the path
from Vg, to ¢,(Vz,) and on the path from vg to @, (Vg,). Let Vi and
Vi, be vertices at level i belonging to these paths (vertices VYV, are ob-
viously non-final). We introduce a strong isomorphism of trees T,', T under
which V% becomes V! (lemma 13). Let V! be an arbitrary non-final vertex
of the tree Tail , which is mapped by the introduced isomorphism to the
non-final vertex Vi of the tree T,'. Having performed operations similar to
those for vp, and Vg, for all such pairs of vertices, we arrive at a strong iso-
morphism of trees T,2,T,?, which continues the previously introduced isomor-
phism of trees T2, T, (lemma 7). And then we proceed similarly to obtain a
continuing sequence of isomorphisms of trees ((Taik T ),k <w). Upon com-
pletion of the described process, we arrive at a tree isomorphism T,°,T,”, under
which M7 goes M_ (lemma 10).

4. Existence of Strange Trees

Let us first consider the case when a tree T has the height <<, .

Lemma 16. Let o« <@, and be a limit ordinal. There is a non-decreasing
function ¢@:oc —>oc for which (a) (p(O) :O,(p(ﬂ) <f for all O0<f<oc, (b)
go(ﬂ)—)oc when f—ooc.

Indeed, at first let ocy; <oc be a limit ordinal or 0 and there be no limit ordin-
als between oc, and cc. Let us define the function go(,B) by the conditions:
@(B)=0 for B<oc,, ¢(B)=p-1 for S>oc,. Suppose now that there ex-
ists an increasing sequence of ordinals (oc;,i<®) such that oc;=0, o isa
limit ordinal for i>0 and o, > oc when i— ®. Then to determine (p(ﬂ ) ,
we use the following conditions: ¢(0)=0, ¢(B)=o; for o, <f<oq,. It is
easy to see that the function ¢(/), introduced in this way, satisfies the re-
quirements of the lemma.

Lemma 17 Let T be an almost through tree of height o <@ and o« be a
limit ordinal. Then T is a through tree, and therefore it cannot be strange.

Indeed, let 7 be an almost through tree. Let us show first that there is a
through path in it. Let ¢(k) be a function that satisfies the requirements of
lemma 16. We will be constructing a through path in such a way that after &
steps of construction, the constructed path ends with a vertex v* located at the
level k. Let & steps of the constructing be done and we have achieved a vertex
V€. If the level k is non-limit, then (supposing that the item 4° is fulfilled) we
will go to a vertex V"' which is one of the child vertices of V. Now let kbe a
limit ordinal. If V¥ is a non-final vertex, we obtain V*** in the same way (by
going to a child vertex). If V* is a final vertex, then first we shorten the con-
structed path to the path ending at the vertex u at the level t= ¢(k) . And then
we make the lengthening of the path to some vertex V¥ at thelevel k +1. The
possibility of this lengthening follows from the fact that 7'is an almost through
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tree. Since (p(k)—>oc when k —oc, the described construction leads to the
selection of a through path in the tree 7.

Let us now take a non-final vertex V at thelevel k <oc. The tree it generates
is obviously almost through. So, this tree has a through path. Thus, T is a
through tree.

As for the trees of the height oc = @, the situation is different.

Lemma 18. There is a strange homogeneous tree of height .

Let’s build a strange tree in which there are w transitions from each non-final
vertex to its child ones.

Let N= {0,1, 2, } be the set of natural numbers. We will consider well-ordered
sequences of natural numbers XX =(Xi,i < k), in which the numbers are not
repeated, and Kk <@, is the length of the sequence. With each sequence X*
we associate the set M (X k) consisting of numbers that are not in  X*. The
order relation between sequences X* is the sequence continuation relation. Let
us take the set of sequences X* for which M (X k) is infinite. This set forms
the set of non-final vertices of the tree under construction. We supplement this set
with vertices with finite M (Xk) that are path limits along non-final vertices.
We get some tree T . The root of T is the empty set X° for which
M(X°)=N.

Since the set of natural numbers can be well-ordered according to the type
determined by any transfinite ordinal less than w;, T is an almost through tree
of height w,. And it has no vertices at the level w,. Otherwise, there would be a
bijection of w on w,. So T'is a strange tree. Moreover, each tree, generated by a
non-final vertex of 7, is obviously isomorphic to 7. Therefore, 7"is a homoge-
neous tree.

We denote by T, the tree constructed above. In 7, there are w transitions to

str

child vertices from each non-final one.

5. First Intuitive Consideration

The existence of strange trees looks like a paradox to intuition.

Let T be an almost through tree of the height @, and W* (k < a)l) be the
set of paths in it that start at the root vertex and end at some non-final vertex of
level k. It is easy to see that if k <I, then each path of the set W* is an initial
segment for some path of the set W'. Thus, the paths are lengthening with
possible simultaneous reproduction. If there were, starting from some %, the
simple lengthening of the constructing paths (lengthening without reproduc-
tion), then obviously at the end of the process we would have some set of
through paths. It is natural to expect that lengthening with reproduction cannot
worsen the situation with regard the appearance of through paths. But it is not
the real case. When lengthening with reproduction takes place, such a “strange
case” may occur when at the very end a “catastrophe” occurs: after the comple-
tion of the process (when w, steps are made), all paths under construction dis-

appear somewhere, and there is not a single through path in the tree 7 It looks
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like a paradox of intuition that can induce a formal paradox.
Note that the strange tree paradox in its essence is associated with the intro-

ducing of uncountable infinity.

6. Strange Almost Isomorphism

Let us take the next step towards proving the existence of contradictions in set
theory.

Theorem 1. Let T, be an almost homogeneous tree of height w,. There is an
almost homogeneous tree 7, that is almost isomorphic to 7, and contains a
through path.

We will consider trees given in numeric form, and assume that from each
non-final vertex at the level & there are nr* transitions to child ones. For simplic-
ity, we will assume that item 4° of the tree definition has been fulfilled. In partic-
ular,itcanbe T, =T, .

The proof of the theorem is based on the following idea. Assuming that the
tree 7, is a tree of sequences of ordinals, each of which for level & is less than the
cardinal nr, we choose a sequence of ordinals V of length w, and “attach” to it
a tree T, almost isomorphic to 7, in which the sequence of ordinals V will
describe a through path.

Let V=(X.,i<®). We denote T =cut (T,.k). The tree T, is homogene-
ous for k <@,. We will construct a continuing sequence of homogeneous trees
in numeric form T such that T is isomorphic to T and T contains
the vertex V* :(Yi,i < k). Suppose that we have already obtained a sequence
(Tbi i< k) , where K < @,, with the required properties. If & is a non-limit ordin-
al and there is the ordinal k —2, then for each vertex of level k-1 in the tree
TS we introduce m* child vertices and obtain the tree T, which is ob-
viously isomorphic to the tree T* and contains the vertex V* = (Yi < k) .

If kis a non-limit ordinal and k-1 is a limit one, then (using if necessary,
lemma 13) we obtain the isomorphism T onto T, for which the vertex
vt =(%.,i<k—-1) of the tree T," is the image of some non-final vertex of
the tree T, and then we do the same as in the previous case, but only in rela-
tion to the upper level vertices of the tree Tbk_l, which are images of the
non-final vertices of the tree T)™".

If k<e, isalimit ordinal, then for T we take the tree that is the limit for
the continuing sequence (Tbi i< k) (see lemmas 10, 11).

In this way, a continuing sequence (Tbk,k <a)1) can be obtained in which
every T isisomorphicto TY.

Let 7, be the limit of this sequence. The tree 7}, is almost homogeneous, al-
most isomorphic to the tree 7, and contains the vertex V=(X,i<w,) at the
level w,.

Theorem 1 can be strengthened.

Theorem 2. Let T, be an almost homogeneous tree of height w,. There is an

almost homogeneous through tree 7}, almost isomorphic to 7.
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The proof of theorem 2 will be similar the proof of theorem 1, but unlike the
latter, future through paths will be entered for each non-final vertex of 7, under
construction, not only for the root one. As before, we consider trees given in
numeric form and assume that from each non-final vertex at the evel & there are
m" transitions to child ones. Also, we assume that item 4° of the tree definition is
fulfilled.

We construct the tree 7, using elements of the assignment process described
before the proof of lemma 14 (see Section 3). We choose V=(¥%,i<a) and
correlate V with the root vertex Vg, of the future tree 7;. A future through
path defined by the sequence V is thus assigned to the root vertex. Then we
pass to the level 1. We assign a path defined by the same sequence (Yi i< a)l) to
the vertex (70) of the level 1 and a path defined by the sequence (X;,%,%,, ")
to an arbitrary other vertex (X,). Similarly, we introduce path assignments at
each level & for vertices that have not previously received assignments. A path
defined by the sequence (X;,i <k,X,%;,---) isassigned to the vertex (x;,i<k).

Next, we build a continuing sequence of homogeneous trees in numeric form
TS such that T isisomorphicto TX and T} contains the initial segments
of all future through paths that have already been assigned to this moment.

If k is a non-limit ordinal and there exists an ordinal k-2, or if kis a limit
ordinal, then our actions related to obtaining the tree T, do not differ from
those that took place in the proof of theorem 1. The only difference is for the
case when 4 is a non-limit ordinal and k-1 is a limit one. We want all “as-
signed paths” to be real paths in T’ tree when its construction is finished. To
do this, we need that all vertices of the level k-1 in the constructed tree T,
that received path assignments at earlier steps can be considered as non-final. In
the proof of theorem 1, lemma 13 was used for this. Now, for the purposes we
need, we will use lemmas 14 and 15. Using lemma 14, we single out M c M,
where M is the set of non-final vertices of the tree TX. Let M be the
set of vertices of the level k—1 that received assignments of through paths at
earlier steps. It is easy to see that M is a minimal set (due to the similarity of
the process of assigning future through paths to the process of assigning Vv*
vertices introduced before the proof of lemma 14). Using lemma 15, we obtain
isomorphism of the trees TX" and T under which M goes over to
M/, Let MX? goesto M/™. Then M/ c M} is executed, and so the set
M{™ can be taken as the set of non-final vertices of the tree 7} at the level
k-1.

Upon completion of the construction process, we get a tree 7}, in which all as-
signed paths turn out to be through paths of the tree.

Remark 3. Let T, be a homogeneous tree. Using the obvious homogeneity of
the process of constructing the tree 7, we can show that 7} is a homogeneous
tree.

If it is proved that the almost isomorphism of trees that we consider implies

their isomorphism, then by virtue of what has been proved, a contradiction will
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follow since in theorems 1 and 2 the strange tree 7

str

can be taken as 7,

7. Second Intuitive Consideration

In our notion of tree, only its structure, which is determined by the order rela-
tion between vertices at different levels, is significant. Therefore, we can assume
that vertices Vik (Vik is the i-th vertex at the level k) themselves (as mathemati-
cal things) can be either different or the same, and the real difference is deter-
mined only by their places in the tree. Let us consider trees in which all vertices

V¥ at a given level k are the same as things if they are removed from the tree.

i
Let 7, and T, be almost isomorphic and have the height oc (cc is a limit number),
and at each level k <oc forall i V& =vj; =V*. Then the trees T) and T} for
k <oc (having identical structures and identical vertices) are identical: T =T\X.
But 7, and 7, are the limits of Tak and Tbk as k tends to oc. Therefore,
T, =T, , and we arrive at a contradiction with theorems 1 and 2.

Note that this consideration has a certain connection with the following pa-
radox of philosophical nature. Let A be any person who consists of a finite
number of atoms. Let’s start replacing his atoms with ones of the same type. All
atoms of one type, according to physical concepts, are completely identical to
each other. After a finite number of steps, we get the person B, who does not
have a single old atom. Consequently, Bis a person different from A. But at the
same time, after each step of replacement, we have the same person A who was
before the step (one atom was replaced by a completely identical one). There-

fore, when the process ends, A remains the same. Paradox.

8. Spitting Trees

This section will introduce splitting trees and it will be shown that there are no
strange trees in this class of trees. These considerations will reinforce the expec-
tation of a real paradox in set theory. Besides, they are of some interest in them-
selves.

Let a root set S and ordinal « be chosen. We will describe a recursive process
that generates splitting the set Sinto disjoint subsets. In the beginning we have
one (initial) set S° =S, which is the root of the tree under construction. We
split S° into m° non-empty pairwise disjoint subsets and, as a result, obtain
the sets S',i<m’ (the vertices of the splitting tree under construction at the
level 1). Further, we split each of the sets S’ into M non-empty pairwise dis-
joint subsets to obtain sets S’ (vertices of the level 2), etc. After w steps, we
have the set of decreasing (more precisely, non-increasing) sequences (Si'; k< a)) 5
in which S 2§/

Let us introduce (for such sequences) S/” =ﬂk<w Sit . Then either S is the

empty set: S” =0, or S” #J. In the first case, by definition, S” is a final

I
vertex of the splitting tree, in the second one it is non-final.
Then the process continues in a similar way for all k <oc. Every S =@ will

be splitted into M >1 non-empty disjoint sets. (It is assumed that for each ka
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numbering of sets of this level is introduced.) Thus, the result of the splitting
process is determined by specifying the set of splitting parameters m, k <oc,
i<J* where m‘,J* are cardinals, and ways of splitting sets S into subsets.

Lemma 19. S = Ui S/ for each & and non-empty sets S are pairwise dis-
joint. Similarly, S = UJ.S} for all Sf and 1>k, where the summation is
over S; for which S; c Sik .

Let us introduce the order relation for the sets: S < S} if and only if k <I
and S; c Sik .

A question arises: how are splitting trees representative as a subclass of the
through tree class? This statement is true: all splitting trees are through trees and
every through tree is isomorphic to some splitting tree (see theorem 3).

Theorem 3. The set of sets {Sik k< oc} , obtained as a result of the process of
splitting (starting from the set S), with the order relation introduced above, is a
through tree of height oc, and for all Sf for | >k wehave S/ = Uj S!, where
the summation is over all S; for which S; c Sik . For each non-final vertex,
there is a through path that goes through it and ends at the upper-level vertex,
which is a non-empty set. If all S;” are non-empty sets, then any through path
ends at a non-empty upper-level vertex. For every through tree T” there is a
splitting tree Ty =T;" which is isomorphicto T™.

Indeed, let a non-final vertex SilI and Xe SilI be selected. For each mz:
l<m<oc, there is S for which xeS;". Then (Si': 1<k <oc) is the upper
segment of a through path passing through the vertex SilI which has a termi-
nating vertex located at level oc and containing x. In view of the arbitrariness of
the choice of SilI , it follows that the constructed tree is through.

To prove the last statement, let us introduce a set S and pairwise disjoint
non-empty sets S

j
one-to-one correspondence between the sets S| and the vertices V; of the

in such a way that S'is the union of sets S; and there is a

tree (in particular, and it will be most natural, one can take various atomic sets
as S7). Further, for each non-final vertex Vv of the tree T” at the level
k <oc, we introduce the set S/ = Uj S| , where the union is taken over all those
S; for which there is a path in T” from the vertex Vik to the corresponding
vertex V| . Obviously, the constructed tree is isomorphic to T” and can be
obtained as a result of the splitting process described above, with the appropriate
choice of splitting parameters.

By virtue of theorem 3, a splitting tree cannot be strange. Thus, no splitting

process can lead to the appearance of a strange tree.

9. Conclusion

The existence of strange trees is proven and it is shown that, as a result of their
existence, a situation is created in set theory when its consistency is in serious
question (theorems 1 - 3, first and second intuitive considerations). In the
continuation of the work, an approach to proving the inconsistency of set
theory will be formulated and, with its help, new strong results will be ob-

tained.
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