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Abstract 
The existence of “strange trees” is proven and their paradoxical nature is dis-
cussed, due to which set theory is suspected of being contradictory. All proofs 
rely on informal set-theoretic reasoning, but without using elements that 
were prohibited in axiomatic set theories in order to overcome the difficulties 
encountered by Cantor’s naive set theory. Therefore, in fact, the article deals 
with the possible inconsistency of existing axiomatic set theories, in particu-
lar, the ZFC theory. Strange trees appear when uncountable cardinals appear. 
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1. Introduction 

Set theory was created by the outstanding German mathematician Georg Cantor 
in the last third of the 19th century. Cantor’s ideas were met at first with great 
caution, then by many (but not all) with admiration. One of the greatest mathe-
maticians of all time, David Hilbert, wrote: “I believe that it [Cantor’s set theory] 
represents the highest manifestation of human genius, as well as one of the 
highest achievements of human spiritual activity”. And even when the paradoxes 
of set theory began to shake mathematics and another outstanding mathemati-
cian, Henri Poincaré, subjected Cantor’s ideas and achievements to harsh criti-
cism, Hilbert insistently asserted: “No one will expel us from the paradise that 
Cantor created for us.” At present, set theory is the foundation on which the en-
tire edifice of modern mathematics is built. 

Paradoxes in set theory were discovered at the end of the 19th century, when 
it seemed that everything essential in a new building had already been built. In 
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1899, Cantor described the paradox of the set of all sets. According to this para-
dox, it cannot be argued that the set of subsets of the set of all sets is greater (in 
the language of set theory, has greater cardinality) than the set of all sets, which 
contradicted the theorem that Cantor proved in 1891. 

Along with the paradox of the set of all sets, several other paradoxes (mathe-
matical and semantic) were discovered and described, the most famous and of-
ten cited of which is Russell’s paradox about the set of all sets that are not ele-
ments of themselves. This set, as is easy to see, is and is not at the same time an 
element of itself, which means a contradiction. And, as the mathematician Ha-
damard put it, an earthquake in mathematics began, real battles in which the 
creator of set theory could no longer take part due to health reasons. We will call 
that situation the first crisis in mathematics, “the crisis of unexpected paradox-
es”. 

The solution, according to most mathematicians, was found by Zermelo, who 
created the first axiomatic set theory in 1908. After the improvement made by 
Frenkel, this theory came into general use as the Zermelo-Frenkel theory, abbre-
viated as the ZF theory [1] [2]. Zermelo set the goal of preserving the existing 
means of mathematics without leading to paradoxes as much as possible, and he 
achieved his goal. The ZF theory retains the possibility of using impredicative 
definitions (i.e., those when the definition of a set includes an object that is an 
element of this set), which, as it has been established, is impossible to do without 
in mathematics. Thus, Weil especially emphasized the impredicative nature of 
some definitions of calculus. The restrictions were introduced only on the means 
of constructing new sets to make it impossible to obtain too large sets like the set 
of all sets or the set of all sets that are not elements of itself, leading to paradoxes. 
These sets simply do not exist in ZF. Note that in all obtained paradoxes non- 
predicative definitions of sets are given. 

Then the axiom of arbitrary choice was added to the ZF axioms (the author of 
this axiom was also Zermelo). The ZF theory with the axiom of arbitrary choice 
is called the ZFC theory [2]. Subsequently, other axiomatic set theories appeared 
[3], but the ZF and ZFC theories (let us note for clarity that these theories, as it 
was established, have the same strength: if one is consistent, then the other is 
consistent) retained their leading position and are now considered as standard. 
This is probably due to the simplicity, clarity of construction and the possibilities 
of the theories. These theories are usually considered as two variants of the same 
theory—ZFC is a strengthened version of ZF. 

The ZFC theory is simple and elegant. The number of its axioms is small, and 
there are only two initial mathematical concepts: “set” and “belonging”. It con-
tains only one mathematical symbol, denoting the two-place predicate of mem-
bership. At the same time, it turns out that everything that has been and is being 
done in mathematics (with the exception of that part of it that deals with some 
specific problems of set theory itself) can be done in the ZFC theory. That is why 
it has received universal recognition. Of course, in ordinary research mathema-
ticians do not explicitly use the ZFC axiomatics, but for everyone who is well 
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acquainted with it, it is obvious that translating the obtained results into the ZFC 
language is only a matter of technique and time. 

Meanwhile, the emergence of axiomatic set theories was not at all a solution to 
the problem of paradoxes (i.e., the problem of consistency). The old, well-known 
paradoxes have disappeared. But new ones could appear. And set theory was not 
something exceptional in this regard. In principle, contradictions could arise in 
calculus and even in arithmetic (where there are no non-predicative definitions). 
But, of course, for set theory the question of consistency was especially acute. 
And then Hilbert set a grandiose task for mathematics (this task was called the 
Hilbert program)—to prove directly by finite means (constructive proofs forma-
lized in arithmetic), as such generally accepted mathematical means with which 
all mathematicians would agree, the consistency of all significant existing axi-
omatic theories. Previously, evidence of consistency was always relative. It was 
proven, for example, that if it is known that the geometry of Euclid is consistent, 
then the Lobachevsky-Bolyai geometry is also consistent. And it was supposed to 
start with Peano arithmetic, as the simplest significant axiomatic theory, from 
the inconsistency of which the inconsistency of all other theories would follow. 
At the heart of Hilbert’s program was his confidence in the scientific knowability 
of the world. Hilbert was confident that everything true in mathematics could be 
proven. “Wir müssen wissen—wir werden wissen.” 

Hilbert’s program meant the creation of a new branch of mathematics—“me- 
tamathematics”, which deals with the study of the logical foundations of ma-
thematics itself. It was a grandiose program in its conception. But its goal turned 
out to be unattainable. This became clear when Gödel’s famous first theorem 
was published in 1931, which established the existence of true arithmetic state-
ments that cannot be proven by arithmetic. Gödel’s second theorem followed 
from the first theorem (for a clear and complete presentation of Gödel’s theo-
rems and the first crisis in mathematics, see, for example, [4]). By virtue of 
Gödel’s second theorem, the consistency of a consistent axiomatic system cannot 
be proven by means formalized in the system itself (since such a proof imme-
diately implies the inconsistency of this system). And the second crisis in ma-
thematics came, “the crisis caused by Gödel’s theorems”. 

It is interesting to note that even without Gödel’s theorems, a weak point can 
be discerned in Hilbert’s program. Let us assume that we have proven the con-
sistency of the system by means formalized in the system itself. What does this 
give us? Only faith in consistency based on faith in intuition. Because if a system 
is contradictory, then by its means it is possible to prove any statement that can 
be formalized in it, including its consistency. But, of course, Gödel’s evidence 
brought the highest and final clarity to this issue. 

In the field of view of metamathematics first of all, there are now two axi-
omatic systems: classical Peano arithmetic and ZFC set theory (or any other 
theory equivalent in strength). At the same time, the general opinion is that 
Peano arithmetic is certainly consistent, and set theory is almost certainly, but 
the reason for the inconsistency can only be connected with the incompleteness 
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of the rules associated with the ban on constructing new sets (and it is silently 
suggested that in this situation the rules could be corrected and the inconsisten-
cy would disappear). It is this point of view that, according to the author’s opi-
nion, was expressed by Kolmogorov and Dragalin in their book [5]: “At present, 
the consistency of the theories Ar and Ar2 [the ordinary arithmetic theory and 
the second-order arithmetic theory] can be considered reliably established. The 
consistency of a theory like ZF is much more problematic.” 

Mathematics has a great fear of contradiction. After all, according to the laws 
of logic, everything follows from contradiction. And not only in classical, but 
also in intuitionistic mathematics (where every proof of the existence of an ob-
ject must determine the method of its construction). 

The axioms of ZFC are transparent and completely consistent with our intui-
tion, but the difference between ZFC and arithmetic is that in ZFC results were 
obtained that are very counterintuitive. And the “strange tree paradox”, de-
scribed later in the article, is just one of them. The “doubling ball paradox” is 
well known. It is shown that a ball in three-dimensional space can be divided 
into a finite number of sets and, using the movement of parts in space, like rigid 
bodies, another ball of two larger diameter can be assembled. This is not the case 
in arithmetic. 

Thus, the way out of the second crisis was in the refusal of mathematicians to 
prove its consistency while maintaining confidence that consistency takes place. 
In a humorous form, Andre Weil expressed this statement this way: “God exists 
because mathematics is consistent, and the devil exists because we will never 
prove it”. At the same time, we have to admit that in mathematics there is igno-
ramus et ignorabimus. 

The confidence of mathematicians in the absence of contradictions in Peano 
arithmetic, based on faith in intuition, is universal, but not one hundred percent. 
In this regard, I would like to draw the reader’s attention to article [6]. The ar-
ticle is devoted to a new crisis in mathematics, “the crisis of complexity”, which 
occurred after 1970. Proofs are becoming longer and more complex, and check-
ing their correctness is becoming more and more difficult. I will call it the third 
crisis. The third crisis, in relation to the problem of consistency, gives the situa-
tion new features associated with the rejection of unconditional faith in the con-
sistency of arithmetic. 

Let there be a provable arithmetic statement, written in the language of arith-
metic, the shortest proof of which requires hundreds of millions of text pages (so 
its proof will be of unimaginable length). But the statement itself has a fairly 
short notation. The author considers a good candidate for the role of such a 
statement to be a statement about the inconsistency of arithmetic (written in the 
language of arithmetic itself) and provides some group-theoretic considerations 
for this statement. (Although he stipulates that he is simply expressing an as-
sumption.) We find ourselves in a situation where theoretically there is proof, 
but in fact we will never have it. And in any case, whether or not there is proof of 
the inconsistency of arithmetic, we are at the mercy of ignoramus et ignorabi-
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mus, in different guises. 
Thus, Davis’s article (implicitly) offers such a solution of the problem of con-

sistency-inconsistency of arithmetic. Inconsistency is possible, but its proof (if it 
exists) will be astronomically long. Therefore, we can safely ignore the question 
of the inconsistency of arithmetic.  

Davis’s article says nothing about set theory. 
Three crises in mathematics were described above. It is easy to see that these 

crises are closely related to each other in their content. Therefore, it is perhaps 
more correct to speak of three stages of one crisis, which has its roots in the phi-
losophical problem of truth. The initial view of mathematicians, that a priori 
there is a clear division in mathematics into true and false, that everything true is 
provable, and everything provable is true, turned out to be untenable and ma-
thematicians are painfully trying to find a replacement for it. 

This article introduces strange trees, proves their existence if there are un-
countable cardinals, and discusses the paradoxical nature of the situation that 
has arisen, which we call the situation of strange tree paradox. Theorems 1 - 3 
and two intuitive considerations highlight the paradoxical nature of the exis-
tence of strange trees and raise the question of the possible inconsistency of set 
theory described by existing axiomatic theories. In the continuation of this work, 
an approach to proving the inconsistency of set theory will be formulated and 
with its help new strong results will be obtained. 

The questions that this article is devoted to were formulated in preliminary 
form in works [7] [8]. Note also that in [9] [10] issues related to possible seman-
tic incompleteness and inconsistency of Peano arithmetic were considered. 

2. Definitions 

Let T  be a partially ordered set with order relation “≤” which can be 
represented as a tree with levels numbered by ordinals from 0 to ∝ inclusive. 
Note that we consider an ordinal as the set of all smaller ordinals (as it is custo-
mary in axiomatic set theories). Each vertex of a tree is at some level, and all le-
vels are non-empty with possible exception of the upper level ∝. For the sake of 
brevity, we will identify the levels with their numbers. The notation vk will 
usually mean that a vertex vk is at the level k. The following conditions are met: 
1˚ there exists only one element Rv T∈  for which Rv v≤  for all v T∈ , Rv  is 
at the level 0, and there are no other vertices at the level 0; 2˚ for each vm for all 
k m<  there is a unique vk for which k mv v≤ ; 3˚ if there is a sequence 
( ,kv k l< ), l  being a limit ordinal, such that i jv v≤  for i j<  (such se-
quences will be called continuing sequences), then there is a unique limit lv  
such that k lv v≤  for all k l< . 

The vertex Rv  will be called the root of a tree, and the ordered pairs of ver-
tices ,u v , when v immediately follows u, are called edges (or transitions from 
the vertex u to a child vertex v). For generality of considerations, the empty set 
will also be considered a tree (empty tree). 
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The ordinal ∝ will be called the height of a tree T and denoted by ( )height T∝ = . 
The level ∝ of the tree T  will be called the upper level. This level will be empty 
in the case (and only in this case) when ∝ is a limit ordinal and there are no con-
tinuing sequences ( ,kv k < ∝ ) in a tree. But vertices exist always at all lesser le-
vels. 

A tree will be called finite if ω∝ <  and the set of transitions from any vertex 
to its child ones is finite. If ω∝ ≥ , then we will talk about a transfinite tree. 

By a path in a tree T  we mean the continuing sequence of vertices  

( )1, ,k kv v +
 . A path is a well-ordered set of vertices, and a path from a vertex u 

to vertex v  exists if and only if u v≤  (and if it exists, it is unique). Each path 
has the starting vertex, but may not have the last one. There is a path from the 
root vertex to any vertex of a tree T. If the vertex v is at level k, then the path 
from the root to v (inclusive) is the set of vertices isomorphic to the ordinal k + 
1. A path can also be characterized by the sequence of tree edges. 

Let a vertex not be at the upper level. If a given vertex is not followed by any 
vertex, then we will call it final, otherwise—non-final. All vertices of the upper 
level will be considered non-final, unless otherwise is stated. In the latter case the 
division of vertices at the upper level into final and non-final is determined by 
additional agreements. For example, if a tree T ∝  of height ∝ is the lower part 
of a tree T β  of height β, then it often makes sense to introduce the division of 
vertices into final and non-final ones for the upper level ∝ of the tree T ∝  in-
duced by the tree T β . If the height of a tree is expressed by a limit ordinal, then 
there may be a case when there are no vertices at the upper level (but at all lower 
levels they are). 

Let us introduce one more (optional, but often convenient) condition 4˚: final 
vertices cannot appear at levels with non-limit numbers. It is easy to see that the 
use of this rule does not impose any restrictions on the generality of the results 
obtained. Later we will usually assume that condition 4˚ is satisfied. 

For greater clarity, we will imagine a tree in the form of a graphic picture on 
the plane of trees where the root vertex is at the very bottom and diverging paths 
go up from it. Since paths in a tree can break off at levels lower than the upper 
one, the tree can be represented as a bush where the root of the bush is the root 
of the tree. In Figure 1 the enlarged view of a tree of the height 3ω with selected 
levels 0, ω, 2ω, 3ω and several paths is shown. The final vertices at levels less 
than the upper one are marked in black. 

Any non-final vertex u of a tree defines (generates) some subtree (it will be the 
set of vertices v such that u v≤ ) for which this vertex is the root. Such subtrees 
will be called trees generated by the vertices of a given tree. 

If a path starts at the root vertex of a tree T and goes through all levels with a 
possible exception of the upper level ∝ (when ∝ is a limit ordinal), then such a 
path will be called a through path. A finite tree always has a through path. A 
non-final vertex on a non-upper level will be called a through vertex if there is a 
through path passing through it. A path will be called strongly through if it ends  
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Figure 1. A tree of height 3ω. 

 
(actually or potentially) at a non-final upper-level vertex. Accordingly, in this 
case we will speak of strongly through vertices. 

A tree, all vertices of which at non-upper levels are through (strongly through), 
will be called through (strongly through). 

Let us introduce (fundamental for this paper) the concept of the almost 
through vertex. This concept is introduced for the case when the height of a tree 
is a limit ordinal. When ∝ is a limit ordinal, a non-final vertex, located at the 
level i < ∝ , will be called almost through vertex if for any i j< < ∝  there exists 
a path that starts at it and ends at some vertex of level j. Each through vertex is 
obviously an almost through vertex. The root vertex is an almost through vertex. 
If a tree contains a through path, then the root vertex is a through vertex. 

A tree, all non-final vertices of which at non-upper levels are almost through 
vertices, will be called almost through tree. A vertex will be called actually almost 
through vertex if it is an almost through vertex, but not a through one. A tree 
with actually almost through non-final vertices will be called strange. To put it in 
another way: a strange tree is an almost through tree with no vertices at the up-
per level. In a strange tree, ∝ is a limit ordinal. A vertex of a tree T will be called 
strange if the tree generated by it is strange. 

The numbering of transitions (for brevity, just the numbering) can be entered 
in a tree. Then transitions from each non-final vertex v to child ones (edges 
connecting non-final vertices with child ones) receive numbers that are elements 
of some set M (for each vertex v, the set of transitions can be its own, and hence 
in the general case ( )M M v= ). Without loss of generality, we will assume fur-
ther that the set of ordinals less than some cardinal is taken: ( ) ( )M v m v=  
where ( )m v  is a cardinal. By virtue of the definition of a tree, each of its ver-
tices is uniquely determined by specifying the numbers of transitions in the way 
that goes from the root vertex to it. So, by specifying transitions, the encoding of 
the tree vertices can be performed. Such trees will be called trees with numbered 
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transitions (for brevity, numbered trees). 
The encoding of a tree vertices using the sequences of edge numbers leading 

to them will be called the numerical encoding. 
Being numerically encoded, each vertex of a tree is represented by a sequence 

of ordinals characterizing transitions from non-final vertices preceding it to 
child ones. The case, when ( )m v  is the same for all v at the level k, is repre-
sentative and can be usually chosen in the proofs of lemmas. If the vertex of a 
tree is at the level l, then in the numerical encoding this vertex is represented by 
the sequence ( ) ( )0 1, , ,kx x x k l= <  where k

kx m<  (and it is assumed that all 
such kx  are used). Each kx  is interpreted as the number of the edge from the 
vertex ( ),ix i k<  of the level k to the vertex ( ), 1ix i k< +  of the level 1k + . At 
the level zero, there is the empty sequence. 

The numerical encoding may be separated from a tree T and considered as a 
new tree which is obviously isomorphic to T (the concept of tree isomorphism 
will be introduced below). Such trees (when a vertex at a level k is the sequence 
of ordinals ( ),ix i k<  that obeys the requirements formulated above) will be 
called trees in numerical form (or in mk-numerical form if we want to emphasize 
that at the level k there are mk transitions from each non-final vertex to child 
ones). In such trees, the vertex order relation is the relation of the continuation 
of sequences of ordinals. 

By tree isomorphism we mean a one-to-one correspondence that preserves the 
order relation between vertices of different levels. If the nonfinality correspon-
dence is also satisfied for vertices of the upper level, then we will speak of a 
strong isomorphism. An ordinary isomorphism with vertices of one sort on the 
upper level will also be called strong. 

Each tree is isomorphic to a tree in numerical form, and when it is convenient, 
we will assume that a tree in question is given in numerical form. 

It will be shown that for ( ) 1height T ω<  strange trees do not exist, while for 
( ) 1height T ω=  strange trees exist, and an example of a strange tree will be giv-

en. 
In strange trees at the upper level ∝ there are no vertices although there is a 

path from each non-final vertex of the level k < ∝  to the vertex of any level 
:l k l< < ∝ , and this looks like an intuitive paradox (see further Section 5) which 

can generate a real contradiction. 
We define ( ),cut T k  as a tree of the height k obtained by cutting the tree T 

by level k: ( ) ( ){ }, :cut T k v T lev v k= ∈ ≤  where ( )lev v  is the level at which 
the vertex v  is located. We will say that the operation of cutting the tree T  by 
level k is performed. This function is defined at ( )k height T≤ . We will assume 
that by default in the tree ( ),kT cut T k= , where k is less than the height of T, 
those and only those vertices are non-final at the upper level k that were 
non-final in the tree T. 

For to isomorphisms, the use of the cut off function means that the part of an 
isomorphism is taken. Thus ( ),cut ism k , where ism is an isomorphism of a tree 
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Ta to tree Tb, means the isomorphism of the tree ( ),acut T k  to the tree 
( ),bcut T k  taken as a part of the isomorphism ism. 

A tree T is said to be homogeneous if, for any two non-final vertices located at 
the same level less than the upper one, the trees generated by them are isomor-
phic. A tree T of height ∝, when ∝ is a limit ordinal, will be called almost ho-
mogeneous if for all k < ∝  the tree ( ),cut T k  is homogeneous. If ∝ is a 
non-limit ordinal, then the concept of almost homogeneity is not introduced. If 
we mean strong isomorphism, then we will speak of strong homogeneity. 

We say that trees Ta, Tb of the same height ∝, where ∝ is a limit ordinal, are 
almost isomorphic if for all k < ∝ , the trees ( ),acut T k  and ( ),bcut T k  are 
isomorphic. If ∝ is a non-limit ordinal, then the concept of almost isomorphism 
is not introduced. The concept of almost isomorphism will play an important 
role in the paper. 

Let us further agree to assume that usually in the notation of a tree the super-
script indicates the height of a tree. And as a rule, we will assume by default 

( ),kT cut T k= . For clarity, note that the operation ( ),cut T k  is unique. 
Remark 1. It is easy to see that if the trees ,a bT T  of height ∝ are isomorphic, 

then for k < ∝  the trees ,k k
a bT T  will always be strongly isomorphic. And in 

this case, speaking of isomorphism, we will by default mean strong isomor-
phism. This fact should be kept in mind in the future, as it may not be specially 
stipulated. 

Let us introduce an ordering relation for trees. We will assume that 

a bT T≤  means that ( )( ),a b aT cut T height T= .            (1) 

It is easy to see that if ( ),l mT cut T l=  and ( ),k lT cut T k= , then  

( ),k mT cut T k= . Hence, 

if k lT T≤  and l mT T≤ , then k mT T≤ .              (2) 

By virtue of (2), the introduced relation (1) is a partial order relation for 
which the item 2˚ of tree definition is fulfilled. 

Note that further, when we talk about trees as vertices of a multilevel object, it 
is always assumed that the order relations between them satisfy condition (1). 

As it was said, the sequence of vertices ( ), 0,1,kv k =   in a tree T will be 
called continuing if for all ,k l  ( k l< ) k lv v≤ . We will talk about a continuing 
sequence of trees ( ), 0,1,kT k =   if for all ,k l  ( k l< ) k lT T≤ . 

We will call a sequence ( )( ), ,k k
a bism T T k < ∝  the continuing sequence of 

isomorphisms if for all k l<  the isomorphism ( ),l l
a bism T T  of trees ,l l

a bT T  is 
the continuation of the isomorphism ( ),k k

a bism T T  of trees ,k k
a bT T . 

Let a continuing sequence of trees ( ),kT k < ∝  be given. Let us introduce the 
concept of path in it. A sequence of vertices ( )0 1, ,v v   will be called a path in a 
continuing sequence of trees if any of its proper initial segment is a path in some 
tree kT . It is easy to see that in this case this segment will be a path for all lT  
where l k> . A path will be called a through path if it passes through all levels of 
a continuing sequence. 
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Let there be a continuing sequence of trees ( ),kT k < ∝  where ∝ is a limit or-
dinal. A tree T of height ∝ will be called the limit of this sequence if ( ),kT cut T k=  
for all k < ∝ . For non-limit ∝, the concept of the limit of a sequence of trees is 
not introduced. 

For clarity, we can represent the continuing sequence of trees as the process of 
constructing the tree that is the limit of this sequence. The concept of continuing 
sequence of trees will play the key role in many further considerations. 

A construction in which at each level less than ∝, where ∝ is a limit ordinal, 
there are vertices (level ∝ is excluded from consideration), and items 1˚ - 3˚ of 
the beginning of the section are satisfied (without item 3˚ for level ∝), will be 
called almost a tree. From any tree, the corresponding almost a tree is obtained 
by discarding vertices of level ∝ (if there were any). And a tree from almost a 
tree is obtained by adding vertices that complete the through paths. The word 
“almost” can be omitted if it is clear from the text that we say about almost trees. 

Given a continuing sequence ( ),kT k < ∝  where ( ),kT cut T k=  for almost a 
tree T for all k < ∝ , T will also be considered as the limit of the sequence 

( ),kT k < ∝ . Thus, the limit of the sequence of trees exists both as a tree and al-
most a tree. 

In case of almost trees of height ∝, we will use the notation 0T ∝− . We will 
assume that the writing of the form 0T ∝−  means that ∝ is a limit ordinal. The 
continuing sequence ( ),kT k < ∝  uniquely defines the almost tree 0T ∝−  and 
can be identified with it. 

Extending the notion of the function cut, we will write ( )0 , 0T cut T∝− ∝= ∝ − . 
We will assume that all trees (and almost trees) considered below have a 

height less than ω1 or equal to it. 

3. Some Preliminary Results 

Note that after formulating lemmas, we will give proofs (or indications for the 
proofs) only where it is really necessary, without being obvious enough or rela-
tively easily obtained from what was proved earlier. 

Lemma 1. The continuing sequence of trees ( ),kT k < ∝  (∝ is a limit ordinal) 
has a limit. In the class of almost trees, the limit is unique: it is the union of ver-
tices included in ( ),kT k < ∝ , preserving the order relations that they had in the 
sequence. In the class of trees, the limit is not unambiguous, but all limits differ 
only in vertices at the upper level which terminate through paths in the contin-
uing sequence ( ),kT k < ∝ . Thus, if an unambiguous way of choosing final ver-
tices of through paths is indicated, then the limit becomes unambiguous. 

In what follows, our special interest will be associated with trees and almost 
trees, whose vertices are themselves trees with the order relation (1) introduced 
above. 

Lemma 2. Let there be a continuing sequence of trees ( ),kT k < ∝ , where the 
vertices of the trees kT  are trees themselves. Suppose that for each continuing 
sequence of vertices ( ),

k

k
iv k < ∝  (

k

k
iv  are trees) there is a way to choose uni-
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quely the limit in the class of trees. This determines the unique choice of the 
limit in the class of trees for the sequence ( ),kT k < ∝ . 

Lemma 3. A tree T is almost homogeneous if and only if for any two non-final 
vertices on the same level, the trees generated by them are almost isomorphic. 

Lemma 4. Let k l m< <  and k mv v≤ , l mv v≤ . Then k lv v≤ . 
Indeed, let k lv v≤ . Then k mv v≤ . Then k kv v=  and so k lv v≤  (see 2˚). 
Remark 2. It is often more convenient to use the notion of almost a tree. On 

the one hand, the limit of a continuing sequence in the class of almost trees is 
unique, and on the other one, each through path in a tree T ∝  generates (by 
dropping the terminating vertex) a through path in the corresponding almost a 
tree 0T ∝− . And all our interest revolves around the problem of the existence of 
through paths in different trees. Note also that if we take trees in the numerical 
form (each vertex is the sequence of ordinals), then the vertices of the upper lev-
el will be uniquely determined by the vertices of lower levels, and the limit of the 
sequence of trees will be unambiguous. 

Lemma 5. If a homogeneous (almost homogeneous) tree Ta is isomorphic 
(almost isomorphic) to a tree Tb, then the tree Tb is homogeneous (almost ho-
mogeneous). 

Let the division of vertices into final and non-final take place for the upper 
level ∝ as well (see Section 2). A tree T ∝  we call strongly through if for each 
non-final vertex kv  with k < ∝  there is a path from kv  to some non-final 
vertex v∝ . Note that if T ∝  is the lower part of an almost through tree T β  
and inherits its non-final vertices at the level ∝ from T β , then T ∝  is a strong-
ly through tree. 

Lemma 6. If T is a homogeneous (strongly homogeneous) tree and it has a 
through path (through path ended at a non-final upper-level vertex), then T is a 
through (strongly through) tree. If T is almost homogeneous, then it has the 
same cardinal number of child vertices for all non-final vertices of the same level 
and is almost through. 

Lemma 7 (the decomposition of isomorphism lemma). Let Ta, Tb be isomor-
phic trees of the height ∝, ism be the isomorphism of Ta onto Tb, and k < ∝ . 
Then ism is the union of the isomorphism of the tree ( ),acut T k  to tree 

( ),bcut T k  with isomorphisms of the subtrees generated by non-final vertices at 
the level k in the tree Ta to the corresponding subtrees in the tree Tb. The con-
verse is also true: the union of the isomorphism of ( ),acut T k  to ( ),bcut T k  
with isomorphisms of subtrees generated by non-final vertices at the level k in 
the tree Ta to the corresponding subtrees in the tree Tb gives an isomorphism Ta 
to Tb. If Ta, Tb are homogeneous trees, then the decomposition of the isomor-
phism Ta to Tb described above is possible for any isomorphism of ( ),acut T k  
to ( ),bcut T k  where k < ∝ . 

The assertions of the lemma are the obvious consequence of the general prop-
erties of tree isomorphism and the definition of tree homogeneity. 

Note that the assertion of lemma 7 carries over in an obvious way to the case 
of strong isomorphism (and strong homogeneity) of trees Ta, Tb. 
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Lemma 8. The limit level l is formed by the vertices that end all possible paths 
along the vertices below the level l. 

See the item 3˚ of the definition of a tree. 
As already been noted (see remark 1), it immediately follows from the defini-

tion of isomorphism and strong isomorphism that if trees Ta, Tb of height ∝ are 
isomorphic, then for k < ∝  the trees ( ),acut T k  and ( ),bcut T k  are strongly 
isomorphic. Speaking about the isomorphism of these trees, we will mean by de-
fault strong isomorphism. 

Lemma 9. Let trees Ta, Tb of the same height ∝ be almost isomorphic and al-
most homogeneous. For i < ∝  the trees ( ),acut T i  and ( ),bcut T i  are strongly 
isomorphic and strongly homogeneous. Let i < ∝  and iism  be an isomor-
phism of ( ),acut T i  to ( ),bcut T i . The isomorphism iism  can be extended to 
the isomorphism jism  of the tree ( ),acut T j  onto the tree ( ),bcut T j  for all j 
such that i j< < ∝ . 

The statement is a consequence of lemma 7. 
Lemma 10. Let Ta, Tb be trees of the same height ∝, where ∝ is a limit ordinal, 

and ( ),kism k < ∝  be a continuous sequence of isomorphisms k
aT  onto k

bT  
(which are obviously strong isomorphisms). Then the trees Ta, Tb are isomor-
phic, and the sequence ( ),kism k < ∝  introduces the isomorphism ism∝  of Ta 
onto Tb (not necessarily strong isomorphism) such that for all k < ∝  ism∝  is 
the extension of kism . 

The isomorphism ism∝  is introduced as the limit of the continuing sequence 
of isomorphisms ( ),kism k < ∝ . 

Setting a bT T T= = , we obtain the corresponding analogs of lemmas 7, 9, 10 
for automorphisms in the tree T. 

Lemma 11. Let 1ω∝ < , ∝ be a limit ordinal and trees Ta, Tb of height ∝ be 
almost isomorphic and almost homogeneous. Then the trees Ta, Tb are isomor-
phic. 

We will construct the required isomorphism as follows. Let ( ): 0ki k ω≤ <  
be a strictly increasing sequence of ordinals and ki →∝  when k ω→ . The 
tree ( )0 0,a aT cut T i=  is isomorphic to the tree ( )0 0,b bT cut T i= . Take some 
isomorphism 0aT  to 0bT . This isomorphism (by lemmas 7, 9) can be extended 
to an isomorphism of ( )1 1,a aT cut T i=  onto ( )1 1,b bT cut T i= . Subsequent steps 
(of a similar type) allow us to construct isomorphisms of trees 2aT  onto 2bT , 

3aT  onto 3bT , etc, every time the isomorphism of ( ),ak a kT cut T i=  onto  
( ),bk b kT cut T i=  being the continuation of the isomophism of , 1a kT −  onto 

, 1b kT − . (Of course, we are always talking about strong isomorphisms.) As a result 
(see lemma 10), an isomorphism of Ta onto Tb will be constructed. The lemma is 
proved. 

Lemma 12. Let a tree T of the height 1ω∝ <  (∝ is a limit ordinal) be almost 
homogeneous. Then it is homogeneous. 

Indeed, consider non-final vertices ,k k
a bv v  at the level k < ∝  in the tree T. 

The trees ,ak bkT T , generated by them, are almost isomorphic (lemma 3) and 
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therefore, by lemma 11, are isomorphic. Therefore, the tree is homogeneous. 
Let a tree T of the height ∝ be given. Let us agree to mean by ( ),cut v k∝  the 

vertex kv  located at the level k on the path going from the root of the tree T  
to the vertex v∝  located at the level ∝. 

Lemma 13. Let Ta, Tb be strongly isomorphic and strongly homogeneous trees 
of height 1ω∝ < , and ∝ be a limit ordinal. Let ,a bv v∝ ∝  be vertices at the upper 
level of these trees, which are non-final if there are vertices of two sorts at the 
upper level. There is an isomorphism of Ta onto Tb for which the vertex av∝  is 
mapped to bv∝ . (Note that in a case when there are vertices of one sort at the 
upper level, the word “strongly” can be omitted.) 

It suffices to show that if the assertion of the lemma holds for all Ta, Tb of 
height β < ∝ , then it also holds for Ta, Tb of height ∝. Let ( ): 0ki k ω≤ <  be a 
strictly increasing sequence of ordinals and ki →∝  as k ω→ . Ta, Tb are con-
sidered as trees generated by root vertices 0

av  and 0
bv . Let ( )1

1,a aT cut T i= , 
( )1

1,b bT cut T i=  and 1ism  be an isomorphism mooving 1
aT  to 1

bT  in such a 
way that ( )1

1,a av cut v i∝=  goes to ( )1
1,b bv cut v i∝= . Let, under the isomorphism 

1ism , a non-final vertex 1
au  (different from 1

av ) go to a non-final vertex 1
bu  

(different from 1
bv ). We introduce a strong isomorphism of the trees generated 

by these vertices (in the trees Ta, Tb) and perform this operation for all pairs 

( )1 1,a bu u . At the next step, we turn to the trees generated by the vertices 1
av  and 

1
bv  and perform similar operations to obtain isomorphisms generated by the 

pairs ( )2 2,a bu u . Etc. After taking ω steps, we arrive at a strong isomorphism of 
trees Ta, Tb, under which the vertex av∝  goes to the vertex bv∝ . 

Let T ∝  be a through homogeneous tree of height ∝. Let M ∝
  denote mi-

nimal sets of vertices at the level ∝. Each minimal set is characterized by a func-
tion ( ) ( ): ,k

i iv k vϕ ∝< ∝ → , where k
iv  are non-final vertices at the level k, sa-

tisfying the conditions: 1) if ( )kv vϕ∝ = , then kv v∝≤ ; 2) if ( )kv vϕ∝ =  and 
k lv v v∝≤ ≤ , then ( )lv vϕ∝ = . 
The functions φ are introduced using the following recursive assignment 

process. Assign some vertex v∝  to the root vertex Rv . With this, we have in-
troduced ( )Rv vϕ∝ = . Assign the same v∝  to each vertex kv  lying on the 
path from Rv  to v∝ . Let assignments be made for all non-final vertices on le-
vels less than k. Then we make assignments for those non-final vertices of the 
level k that have not yet received assignments, keeping the rules 1) and 2). At the 
end of the described process, we obtain function φ. 

Lemma 14. Let T ∝  be a strongly through tree and M ∝  the set of non-final 
vertices at the level ∝. There exists M M∝ ∝⊆ . 

To prove the lemma, we shall use the assignment process described above, re-
stricting the assignments to non-final v∝ . 

Lemma 15. Let 1ω∝ < , ,a bT T∝ ∝  be isomorphic homogeneous through trees 
and ,a bM M∝ ∝

   be minimal sets. There is an isomorphism of trees ,a bT T∝ ∝  such 
that aM ∝

  goes to bM ∝
 . 

Let us describe the process of constructing the required isomorphism. Let 
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,a bϕ ϕ  be functions associated with the sets ,a bM M∝ ∝
  . Let ( ): 0ki k ω≤ <  be a 

strictly increasing sequence of ordinals and ki →∝  as k ω→ . We introduce 
the future isomorphism correspondence between vertices located on the path 
from Rav  to ( )a Ravϕ  and on the path from Rbv  to ( )b Rbvϕ . Let 1

0
i
av  and 

1
0

i
bv  be vertices at level 1i  belonging to these paths (vertices 1 1

0 0,i i
a bv v  are ob-

viously non-final). We introduce a strong isomorphism of trees 1 1,i i
a bT T  under 

which 1
0

i
av  becomes 1i

bv  (lemma 13). Let 1i
av  be an arbitrary non-final vertex 

of the tree 1i
aT , which is mapped by the introduced isomorphism to the 

non-final vertex 1i
bv  of the tree 1i

bT . Having performed operations similar to 
those for Rav  and Rbv  for all such pairs of vertices, we arrive at a strong iso-
morphism of trees 2 2,i i

a bT T , which continues the previously introduced isomor-
phism of trees 1 1,i i

a bT T  (lemma 7). And then we proceed similarly to obtain a 
continuing sequence of isomorphisms of trees ( )( ), ,k ki i

a bT T k ω< . Upon com-
pletion of the described process, we arrive at a tree isomorphism ,a bT T∝ ∝ , under 
which aM ∝

  goes bM ∝
  (lemma 10). 

4. Existence of Strange Trees 

Let us first consider the case when a tree T  has the height 1ω∝ < . 
Lemma 16. Let 1ω∝ <  and be a limit ordinal. There is a non-decreasing 

function :ϕ ∝→∝  for which (a) ( ) ( )0 0,ϕ ϕ β β= <  for all 0 β< < ∝ , (b) 
( )ϕ β →∝  when β →∝ . 
Indeed, at first let 0∝ <∝  be a limit ordinal or 0 and there be no limit ordin-

als between 0∝  and ∝. Let us define the function ( )ϕ β  by the conditions: 
( ) 0ϕ β =  for 0β ≤ ∝ , ( ) 1ϕ β β= −  for 0β > ∝ . Suppose now that there ex-

ists an increasing sequence of ordinals ( ),i i ω∝ <  such that 0 0∝ = , i∝  is a 
limit ordinal for 0i >  and i∝ →∝  when i ω→ . Then to determine ( )ϕ β , 
we use the following conditions: ( )0 0ϕ = , ( ) iϕ β = ∝  for 1i iβ +∝ < ≤ ∝ . It is 
easy to see that the function ( )ϕ β , introduced in this way, satisfies the re-
quirements of the lemma. 

Lemma 17. Let T  be an almost through tree of height 1ω∝ <  and ∝ be a 
limit ordinal. Then T  is a through tree, and therefore it cannot be strange. 

Indeed, let T be an almost through tree. Let us show first that there is a 
through path in it. Let ( )kϕ  be a function that satisfies the requirements of 
lemma 16. We will be constructing a through path in such a way that after k 
steps of construction, the constructed path ends with a vertex kv  located at the 
level k. Let k steps of the constructing be done and we have achieved a vertex 

kv . If the level k is non-limit, then (supposing that the item 4˚ is fulfilled) we 
will go to a vertex 1kv +  which is one of the child vertices of kv . Now let k be a 
limit ordinal. If kv  is a non-final vertex, we obtain 1kv +  in the same way (by 
going to a child vertex). If kv  is a final vertex, then first we shorten the con-
structed path to the path ending at the vertex u at the level ( )t kϕ= . And then 
we make the lengthening of the path to some vertex 1kv +  at the level 1k + . The 
possibility of this lengthening follows from the fact that T is an almost through 
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tree. Since ( )kϕ →∝  when k →∝ , the described construction leads to the 
selection of a through path in the tree T. 

Let us now take a non-final vertex v  at the level k < ∝ . The tree it generates 
is obviously almost through. So, this tree has a through path. Thus, T  is a 
through tree. 

As for the trees of the height 1ω∝ = , the situation is different. 
Lemma 18. There is a strange homogeneous tree of height 1ω . 
Let’s build a strange tree in which there are ω transitions from each non-final 

vertex to its child ones. 
Let { }0,1,2,N =   be the set of natural numbers. We will consider well-ordered 

sequences of natural numbers ( ),k
iX x i k= < , in which the numbers are not 

repeated, and 1k ω<  is the length of the sequence. With each sequence kX  
we associate the set ( )kM X  consisting of numbers that are not in kX . The 
order relation between sequences kX  is the sequence continuation relation. Let 
us take the set of sequences kX  for which ( )kM X  is infinite. This set forms 
the set of non-final vertices of the tree under construction. We supplement this set 
with vertices with finite ( )kM X  that are path limits along non-final vertices. 
We get some tree T . The root of T  is the empty set 0X  for which 

( )0M X N= . 
Since the set of natural numbers can be well-ordered according to the type 

determined by any transfinite ordinal less than ω1, T  is an almost through tree 
of height ω1. And it has no vertices at the level ω1. Otherwise, there would be a 
bijection of ω on ω1. So T is a strange tree. Moreover, each tree, generated by a 
non-final vertex of T, is obviously isomorphic to T. Therefore, T is a homoge-
neous tree. 

We denote by Tstr the tree constructed above. In Tstr, there are ω transitions to 
child vertices from each non-final one. 

5. First Intuitive Consideration 

The existence of strange trees looks like a paradox to intuition. 
Let T  be an almost through tree of the height ω1 and ( )1

k k ω<W  be the 
set of paths in it that start at the root vertex and end at some non-final vertex of 
level k. It is easy to see that if k l< , then each path of the set kW  is an initial 
segment for some path of the set lW . Thus, the paths are lengthening with 
possible simultaneous reproduction. If there were, starting from some k, the 
simple lengthening of the constructing paths (lengthening without reproduc-
tion), then obviously at the end of the process we would have some set of 
through paths. It is natural to expect that lengthening with reproduction cannot 
worsen the situation with regard the appearance of through paths. But it is not 
the real case. When lengthening with reproduction takes place, such a “strange 
case” may occur when at the very end a “catastrophe” occurs: after the comple-
tion of the process (when ω1 steps are made), all paths under construction dis-
appear somewhere, and there is not a single through path in the tree T. It looks 
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like a paradox of intuition that can induce a formal paradox. 
Note that the strange tree paradox in its essence is associated with the intro-

ducing of uncountable infinity. 

6. Strange Almost Isomorphism 

Let us take the next step towards proving the existence of contradictions in set 
theory. 

Theorem 1. Let Ta be an almost homogeneous tree of height ω1. There is an 
almost homogeneous tree Tb that is almost isomorphic to Ta and contains a 
through path. 

We will consider trees given in numeric form, and assume that from each 
non-final vertex at the level k there are mk transitions to child ones. For simplic-
ity, we will assume that item 4˚ of the tree definition has been fulfilled. In partic-
ular, it can be a strT T= . 

The proof of the theorem is based on the following idea. Assuming that the 
tree Ta is a tree of sequences of ordinals, each of which for level k is less than the 
cardinal mk, we choose a sequence of ordinals v  of length ω1 and “attach” to it 
a tree Tb, almost isomorphic to Ta, in which the sequence of ordinals v  will 
describe a through path. 

Let ( )1,iv x i ω= < . We denote ( ),k
a aT cut T k= . The tree k

aT  is homogene-
ous for 1k ω< . We will construct a continuing sequence of homogeneous trees 
in numeric form k

bT  such that k
bT  is isomorphic to k

aT  and k
bT  contains 

the vertex ( ),k
ixv i k= < . Suppose that we have already obtained a sequence 

( ),i
bT i k< , where 1k ω< , with the required properties. If k is a non-limit ordin-

al and there is the ordinal 2k − , then for each vertex of level 1k −  in the tree 
1k

bT −  we introduce km  child vertices and obtain the tree k
bT , which is ob-

viously isomorphic to the tree k
aT  and contains the vertex ( ),k

iv x i k= < . 
If k is a non-limit ordinal and 1k −  is a limit one, then (using if necessary, 

lemma 13) we obtain the isomorphism 1k
aT −  onto 1k

bT − , for which the vertex 
( )1 , 1k

iv x i k− = < −  of the tree 1k
bT −  is the image of some non-final vertex of 

the tree 1k
aT − , and then we do the same as in the previous case, but only in rela-

tion to the upper level vertices of the tree 1k
bT − , which are images of the 

non-final vertices of the tree 1k
aT − . 

If 1k ω<  is a limit ordinal, then for k
bT  we take the tree that is the limit for 

the continuing sequence ( ),i
bT i k<  (see lemmas 10, 11). 

In this way, a continuing sequence ( )1,k
bT k ω<  can be obtained in which 

every k
bT  is isomorphic to k

aT . 
Let Tb be the limit of this sequence. The tree Tb is almost homogeneous, al-

most isomorphic to the tree Ta and contains the vertex ( )1,iv x i ω= <  at the 
level ω1. 

Theorem 1 can be strengthened. 
Theorem 2. Let Ta be an almost homogeneous tree of height ω1. There is an 

almost homogeneous through tree Tb, almost isomorphic to Ta. 
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The proof of theorem 2 will be similar the proof of theorem 1, but unlike the 
latter, future through paths will be entered for each non-final vertex of Ta under 
construction, not only for the root one. As before, we consider trees given in 
numeric form and assume that from each non-final vertex at the evel k there are 
mk transitions to child ones. Also, we assume that item 4˚ of the tree definition is 
fulfilled. 

We construct the tree Tb using elements of the assignment process described 
before the proof of lemma 14 (see Section 3). We choose ( )1,iv x i ω= <  and 
correlate v  with the root vertex Rbv  of the future tree Tb. A future through 
path defined by the sequence v  is thus assigned to the root vertex. Then we 
pass to the level 1. We assign a path defined by the same sequence ( )1,ix i ω<  to 
the vertex ( )0x  of the level 1 and a path defined by the sequence ( )0 1 2, , ,x x x   
to an arbitrary other vertex ( )0x . Similarly, we introduce path assignments at 
each level k for vertices that have not previously received assignments. A path 
defined by the sequence ( )1, , , ,i k kx k x xi +<   is assigned to the vertex ( ),ix i k< . 

Next, we build a continuing sequence of homogeneous trees in numeric form 
k

bT  such that k
bT  is isomorphic to k

aT  and k
bT  contains the initial segments 

of all future through paths that have already been assigned to this moment. 
If k is a non-limit ordinal and there exists an ordinal 2k − , or if k is a limit 

ordinal, then our actions related to obtaining the tree k
bT  do not differ from 

those that took place in the proof of theorem 1. The only difference is for the 
case when k is a non-limit ordinal and 1k −  is a limit one. We want all “as-
signed paths” to be real paths in bT  tree when its construction is finished. To 
do this, we need that all vertices of the level 1k −  in the constructed tree 1k

bT −  
that received path assignments at earlier steps can be considered as non-final. In 
the proof of theorem 1, lemma 13 was used for this. Now, for the purposes we 
need, we will use lemmas 14 and 15. Using lemma 14, we single out 1 1k k

a aM M− −⊆ , 
where 1k

aM −  is the set of non-final vertices of the tree 1k
aT − . Let 1k

bM −
  be the 

set of vertices of the level 1k −  that received assignments of through paths at 
earlier steps. It is easy to see that 1k

bM −
  is a minimal set (due to the similarity of 

the process of assigning future through paths to the process of assigning v∝  
vertices introduced before the proof of lemma 14). Using lemma 15, we obtain 
isomorphism of the trees 1k

aT −  and 1k
bT −  under which 1k

aM −
  goes over to 

1k
bM −
 . Let 1k

aM −  goes to 1k
bM − . Then 1 1k k

b bM M− −⊆  is executed, and so the set 
1k

bM −  can be taken as the set of non-final vertices of the tree Tb at the level 
1k − . 

Upon completion of the construction process, we get a tree Tb in which all as-
signed paths turn out to be through paths of the tree. 

Remark 3. Let Ta be a homogeneous tree. Using the obvious homogeneity of 
the process of constructing the tree Tb, we can show that Tb is a homogeneous 
tree. 

If it is proved that the almost isomorphism of trees that we consider implies 
their isomorphism, then by virtue of what has been proved, a contradiction will 
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follow since in theorems 1 and 2 the strange tree Tstr can be taken as Ta. 

7. Second Intuitive Consideration 

In our notion of tree, only its structure, which is determined by the order rela-
tion between vertices at different levels, is significant. Therefore, we can assume 
that vertices k

iv  ( k
iv  is the i-th vertex at the level k) themselves (as mathemati-

cal things) can be either different or the same, and the real difference is deter-
mined only by their places in the tree. Let us consider trees in which all vertices 

k
iv  at a given level k are the same as things if they are removed from the tree. 

Let Ta and Tb be almost isomorphic and have the height ∝ (∝ is a limit number), 
and at each level k < ∝  for all i k k k

ai biv v v= = . Then the trees k
aT  and k

bT  for 
k < ∝  (having identical structures and identical vertices) are identical: k k

a bT T= . 
But Ta and Tb are the limits of k

aT  and k
bT  as k tends to ∝ . Therefore, 

a bT T= , and we arrive at a contradiction with theorems 1 and 2. 
Note that this consideration has a certain connection with the following pa-

radox of philosophical nature. Let A be any person who consists of a finite 
number of atoms. Let’s start replacing his atoms with ones of the same type. All 
atoms of one type, according to physical concepts, are completely identical to 
each other. After a finite number of steps, we get the person B, who does not 
have a single old atom. Consequently, B is a person different from A. But at the 
same time, after each step of replacement, we have the same person A who was 
before the step (one atom was replaced by a completely identical one). There-
fore, when the process ends, A remains the same. Paradox. 

8. Spitting Trees 

This section will introduce splitting trees and it will be shown that there are no 
strange trees in this class of trees. These considerations will reinforce the expec-
tation of a real paradox in set theory. Besides, they are of some interest in them-
selves. 

Let a root set S and ordinal ∝ be chosen. We will describe a recursive process 
that generates splitting the set S into disjoint subsets. In the beginning we have 
one (initial) set 0S S= , which is the root of the tree under construction. We 
split 0S  into 0m  non-empty pairwise disjoint subsets and, as a result, obtain 
the sets 1 0,iS i m<  (the vertices of the splitting tree under construction at the 
level 1). Further, we split each of the sets 1

iS  into 1
im  non-empty pairwise dis-

joint subsets to obtain sets 2
iS  (vertices of the level 2), etc. After ω steps, we 

have the set of decreasing (more precisely, non-increasing) sequences ( ),
k

k
iS k ω< , 

in which 
1

1
k k

k k
i iS S

+

+⊇ . 
Let us introduce (for such sequences) 

k

k
i ik

S Sω
ω<

=


. Then either iSω  is the 
empty set: iSω =∅ , or iSω ≠ ∅ . In the first case, by definition, iSω  is a final 
vertex of the splitting tree, in the second one it is non-final. 

Then the process continues in a similar way for all k < ∝ . Every k
iS ≠ ∅  will 

be splitted into 1k
im ≥  non-empty disjoint sets. (It is assumed that for each k a 
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numbering of sets of this level is introduced.) Thus, the result of the splitting 
process is determined by specifying the set of splitting parameters k

im , k < ∝ ,
ki J< , where ,k k

im J  are cardinals, and ways of splitting sets k
iS  into subsets. 

Lemma 19. k
ii

S S=


 for each k, and non-empty sets k
iS  are pairwise dis-

joint. Similarly, k l
i jj

S S=


 for all k
iS  and l k> , where the summation is 

over l
jS  for which l k

j iS S⊆ . 
Let us introduce the order relation for the sets: k l

i jS S≤  if and only if k l≤  
and l k

j iS S⊆ . 
A question arises: how are splitting trees representative as a subclass of the 

through tree class? This statement is true: all splitting trees are through trees and 
every through tree is isomorphic to some splitting tree (see theorem 3). 

Theorem 3. The set of sets { },k
iS k ≤ ∝ , obtained as a result of the process of 

splitting (starting from the set S), with the order relation introduced above, is a 
through tree of height ∝, and for all k

iS  for l k>  we have k l
i jj

S S=


, where 
the summation is over all l

jS  for which l k
j iS S⊆ . For each non-final vertex, 

there is a through path that goes through it and ends at the upper-level vertex, 
which is a non-empty set. If all iS∝  are non-empty sets, then any through path 
ends at a non-empty upper-level vertex. For every through tree T ∝  there is a 
splitting tree S ST T ∝=  which is isomorphic to T ∝ . 

Indeed, let a non-final vertex 
l

l
iS  and 

l

l
ix S∈  be selected. For each m: 

l m< < ∝ , there is 
m

m
iS  for which 

m

m
ix S∈ . Then ( ),

k

k
iS l k≤ < ∝  is the upper 

segment of a through path passing through the vertex 
l

l
iS  which has a termi-

nating vertex located at level ∝ and containing x. In view of the arbitrariness of 
the choice of 

l

l
iS , it follows that the constructed tree is through. 

To prove the last statement, let us introduce a set S and pairwise disjoint 
non-empty sets jS∝  in such a way that S is the union of sets jS∝  and there is a 
one-to-one correspondence between the sets jS∝  and the vertices jv∝  of the 
tree (in particular, and it will be most natural, one can take various atomic sets 
as jS∝ ). Further, for each non-final vertex k

iv  of the tree T ∝  at the level 
k < ∝ , we introduce the set k

i jj
S S∝=


, where the union is taken over all those 

jS∝  for which there is a path in T ∝  from the vertex k
iv  to the corresponding 

vertex jv∝ . Obviously, the constructed tree is isomorphic to T ∝  and can be 
obtained as a result of the splitting process described above, with the appropriate 
choice of splitting parameters. 

By virtue of theorem 3, a splitting tree cannot be strange. Thus, no splitting 
process can lead to the appearance of a strange tree. 

9. Conclusion 

The existence of strange trees is proven and it is shown that, as a result of their 
existence, a situation is created in set theory when its consistency is in serious 
question (theorems 1 - 3, first and second intuitive considerations). In the 
continuation of the work, an approach to proving the inconsistency of set 
theory will be formulated and, with its help, new strong results will be ob-
tained.  
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