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Abstract 
In this paper, we have considered the general ordinary quasi-differential oper-

ators generated by a general quasi-differential expression ,p qτ  in p
wL -spaces 

of order n with complex coefficients and its formal adjoint ,q pτ +
′ ′  in q

wL - 

spaces for arbitrary [ ), 1,p q∈ ∞ . We have proved in the case of one singular 

end-point that all well-posed extensions of the minimal operator ( )0 ,p qT τ  

generated by such expression ,p qτ  and their formal adjoint on the interval 

[ ),a b  with maximal deficiency indices have resolvents which are Hilbert- 
Schmidt integral operators and consequently have a wholly discrete spectrum. 
This implies that all the regularly solvable operators have all the standard es-
sential spectra to be empty. Also, a number of results concerning the location 
of the point spectra and regularity fields of the operators generated by such 
expressions can be obtained. Some of these results are extensions or generali-
zations of those in the symmetric case, while others are new. 
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1. Introduction 

In [1] Akhiezer and Glazman studied that the self-adjoint extension S of the mi-
nimal operator ( )0T τ  generated by a formally symmetric differential expression 
τ  with maximal deficiency indices have resolvents which are Hilbert-Schmidt 
integral operators and consequently have a wholly discrete spectrum. In [2]-[5], 
the relationship between the square-integrable solutions for real values of the 
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spectral parameter and the spectrum of self-adjoint ordinary differential opera-
tors of even order with real coefficients and arbitrary deficiency index are stu-
died. 

The main results of Evans, Sobhy El-Sayed and others in [6] [7] concerning 
the general ordinary quasi-differential operators are generalized to p

wL -spaces 
with an arbitrary interval ( ),a b  (see [8] [9]). Also, the results includes those in 
[10]-[16]. 

The operators which fulfill the role that the self-adjoint and maximal symmetric 
operators play in the case of a formally symmetric expression τ  are those which 
are regularly solvable with respect to the minimal operators ( )0T τ  and ( )0T τ +  
generated by a general ordinary quasi-differential expression τ  and its formal 
adjoint τ +  respectively, the minimal operators ( )0T τ  and ( )0T τ +  form an 
adjoint pair of closed, densely-defined operators in the underlying 2

wL -space,  

that is ( ) ( ) *

0 0T Tτ τ + 
 ⊂ . Such an operator S satisfies ( ) ( ) *

0 0T S Tτ τ +⊂  
 ⊂   

and for some λ∈ , ( )S Iλ−  is a Fredholm operator of zero index, this means 
that S has the desirable Fredholm property that the equation ( )S I u fλ− =  has 
a solution if and only if f is orthogonal to the solution space of ( ) 0S I uλ− =  
and furthermore the solution spaces of ( ) 0S I uλ− =  and ( )* 0S I vλ− =  have 
the same finite dimension. This notion was originally and due to Visik [17]-[24]. 

Our objective in this paper, is to generalize the results in [11]-[16] for sym-
metric case and results of Sobhy El-sayed in [18]-[23] for general qua-
si-differential operators to p

wL  spaces in an analogue of Hilbert Frentzen in [8] 
[9]. A rather general class of quasi-differential expressions ,p qτ  with ma-
trix-valued coefficients and the associated maximal operators ( ),p qT τ  and mi-
nimal operator ( )0 ,p qT τ  as maps of a subspace of p

wL  into q
wL  for arbitrary 

[ ), 1,p q∈ ∞ . Also, we have shown in the case of one singular end-point that all 
well-posed extensions of the minimal operator ( )0 ,p qT τ  generated by such ex-
pression ,p qτ  and their formal adjoint on the interval [ ),a b  with maximal 
deficiency indices have resolvents which are Hilbert-Schmidt integral operators 
and consequently have a wholly discrete spectrum. This implies that all the reg-
ularly solvable operators have all the standard essential spectra to be empty. The 
domains of these operators are described in terms of boundary conditions in-
volving the p-integrable solutions of the quasi-differential equation [ ],p q u uwτ λ=  
and the adjoint equation [ ] ( ),q p v vwτ λ λ+

′ ′ = ∈  (see [21]).  
For (formally) symmetric differential expressions τ  and 2

wL  space much 
work has been done on the problem of finding self-adjoint differential operator 
( )T τ  with the aid of boundary conditions as in A. N. Krall and A. Zettl [13], 

Naimark [14], D. Race [15] [16], Wang [25], Zettl [26] and Zhikhar [27] to men-
tion only a few. If τ  is not symmetric, one can ask for ( )T τ  which are Fred-
holm operators with index zero. For 2

wL  space and second order scalar diffe-
rential expressions this question was answered by Evans and Edmunds [4] [5], 
for scalar differential expressions of general order on half-open intervals by 
Evans and Sobhy [6] and on open intervals by Sobhy El-sayed in [17]-[23].  
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The results herein include those of D. Race [15] [16], but also gives a descrip-
tion of the domain of the maximal symmetric extensions of ( )0 ,p qT τ  in the case 
when ( )0 ,p qT τ  is a symmetric operator of unequal deficiency indices. Another 
noteworthy special case of our result is that of Zhikhar [27] concerning the 
J-self-adjoint extensions of J-symmetric differential operators ( )0 ,p qT τ , where J 
denotes complex conjugation.  

The results include those of Jiong Sun [2], R. Agarwal [3] and Zettl [26] con-
cerning self-adjoint realizations of symmetric operators when the minimal oper-
ator ( )0 ,p qT τ  has equal deficiency indices. Also, includes those of Evans [4] [5], 
D. Race [15] [16] and N. A. Zhikhar [27] for the special case that concerns the J- 
self-adjoint operators, where J denotes complex conjugation. If the deficiency 
indices are unequal the maximal differential operators ( ),p qT τ  are determined 
by the results herein.  

2. Notation and Preliminaries 

We begin with a brief survey of adjoint pairs of operators and their associated 
regularly solvable operators; their full treatment can be found in ([5], Chapter 
III), ([6]-[25]). The domain and range of a linear operator T acting in a Hilbert 
space H will be denoted by ( )D T  and ( )R T  respectively and ( )N T  will 
denote its null space. The nullity of T, written ( )nul T , is the dimension of 

( )N T  and the deficiency of T, written ( )def T , is the co-dimension of ( )R T  
in H; thus if T is densely defined and ( )R T  is closed, then ( ) ( )*def T nul T= . 
The Fredholm domain of T is (in the notation of [4]) the open subset ( )3 T∆  of 
  consisting of those values of λ∈  which are such that ( )T Iλ−  is a 
Fredholm operator, where I is the identity operator in H. Thus ( )3 Tλ∈∆  if 
and only if ( )T Iλ−  has closed range and finite nullity and deficiency. The in-
dex of ( )T Iλ−  is the number ( ) ( ) ( )ind T I nul T I def T Iλ λ λ− = − − − , this 
being defined for ( )3 Tλ∈∆ .  

Two closed densely defined operators A and B acting in a Hilbert space H are 
said to form an adjoint pair if *A B⊂  and, consequently *B A⊂ ; equivalently, 
( ) ( ), ,Ax y x By=  for all ( )x D A∈  and ( )y D B∈ , where ( ).,.  denotes the in-
ner-product on H. 

Definition 2.1: The field of regularity ( )Π A  of A is the set of all λ∈  for 
which there exists a positive constant ( )K λ  such that 

( ) ( )A I x K xλ λ− ≥  for all ( )x D A∈ ,               (2.1) 

or equivalently, on using the Closed Graph Theorem, ( ) 0nul A Iλ− =  and  
( )R A Iλ− is closed. 
The joint field of regularity ( ),A BΠ  of A and B is the set of λ∈  which 

are such that ( )Aλ∈Π , ( )Bλ ∈Π  and both ( )def A Iλ−  and ( )def B Iλ−  
are finite. An adjoint pair A and B is said to be compatible if ( ),A B φΠ ≠ . 

Definition 2.2: A closed operator S in Hilbert space H is said to be regularly 
solvable with respect to the compatible adjoint pair of A and B if *A S B⊂ ⊂  
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and ( ) ( )4,A B S φ∆Π ≠ , where ( ) ( ) ( ){ }4 3: , 0S S ind S Iλ λ λ∆ = ∈∆ − = . 
Definition 2.3: The resolvent set ( )Sρ  of a closed operator S in H consists 

of the complex numbers λ  for which ( ) 1S Iλ −−  exists, is defined on H and is 
bounded. The complement of ( )Sρ  in   is called the spectrum of S and writ-
ten ( )Sσ . The point spectrum ( )p Sσ , continuous spectrum ( )c Sσ  and re-
sidual spectrum ( )r Sσ  are the following subsets of ( )Sσ  (see [5] [11] [12] 
[18] [19] [20] [23] [24] [25]). 

( ) ( ) ( ){ }is not inje v: cti ep S S S Iσ λ σ λ= ∈ − , i.e., the set of eigenvalues of S; 

( ) ( ) ( ) ( ) ( ){ }is injective,:c S S S I R S I R S I Hσ λ σ λ λ λ= ∈ − − − = ; 

( ) ( ) ( ) ( ){ }is injec: tive,r S S S I R S I Hσ λ σ λ λ= ∈ − − ≠ . 

For a closed operator S we have, 

( ) ( ) ( ) ( ).p c rS S S Sσ σ σ σ=                     (2.2) 

An important subset of the spectrum of a closed densely defined operator S in 
H is the so-called essential spectrum. The various essential spectra of S are de-
fined as in [5, Chapter 9] to be the sets: 

( ) ( ) ( )\ , 1,2,3,4,5 ,ek kS S kσ = ∆ =                 (2.3) 

where ( )3 S∆  and ( )4 S∆  have been defined earlier. 
Definition 2.4: For two closed densely defined operators A and B acting in H, 

if *A S B⊂ ⊂  and the resolvent set ( )Sρ  of S is nonempty (see [5]), S is said 
to be well-posed with respect to A and B. 

Note that, if *A S B⊂ ⊂  and ( )Sλ ρ∈  then ( )Aλ∈Π  and  

( ) ( )*S Bλ ρ∈ ⊂Π  so that if ( )def A Iλ−  and ( )def B Iλ−  are finite, then 
A and B are compatible, in this case S is regularly solvable with respect to A and 
B. The terminology “regularly solvable” mentioned by Visik in [4] [5] [6] [23] 
and [24], while the notion of “well-posed” was introduced by Zhikhar in [27].  

Theorem 2.5: (cf. ([5], Theorem III.3.1)). Let T be a closed, densely-defined 
operator in H with ( )AΠ ≠∅ . Then for any closed extension S of T and  

( )Tλ∈Π  we have ( ) ( ) [ ]( )*D S D T N T I S Iλ λ = + − −  . If  
( ) ( )4T Sλ∈Π ∆  and ( )def T Iλ− < ∞ , then 

( ) ( ){ } ( ) ( )dim .D S D T ind S I def T Iλ λ= − + −  

If A is symmetric operator, then with B A= , the operators S which con-
form to Definition 2.1 are the self-adjoint or maximal symmetric extensions 
of A. In this case when A is J-symmetric relative to complex conjugation J, A 
and B JAJ=  form an adjoint pair with ( ) ( ),A B AΠ =Π ; any J-self-adjoint 
extension of A whose resolvent set is nonempty, is regularly solvable with re-
spect to A and JAJ. For the above results, see (([5], Chapter III), [18] [19] [20] 
[23] [24] [25] and [27]).  

Throughout this paper, let   denote either  , the field of real numbers, or 
 , the field of complex numbers. For a positive integers k and m let ,k m  de-
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note the vector space of k m×  matrices with  -valued entries and mGL  the 
subset of ,:m m m=   consisting of all non-singular matrices. For ,k mA∈ , 
let TA  denote the transpose and *A  the adjoint, i.e., the complex conjugate 
transpose of.  

If Z is a subset of ,k m  and I is an interval, ( ),B I Z  denotes the set of Le-
besgue measurable maps of I into Z and ( ),locAC I Z  the set of locally abso-
lutely continuous maps. Measurable maps are regarded as equal if they are equal 
almost everywhere on I. Further we define:  

( ) ( ){ }is Lebesgue-in, : tegrabl, e| ppL I Z y B I Z y= ∈ ,  

( )
1

, : p p
p I I

y y= ∫  for all ( ),py L I Z∈  and [ )1,p∈ ∞ , 

( ) ( ){ }, : , | is essental bounded ,L I Z y B I Z y∞ = ∈   

( ), : esssupx IIy y x∈∞
=  for all ( ),y L I Z∞∈ , 

and 
( ) ( ) ( ){ }for all,  : compact subinterva of, | , l| sp p

locL I Z y B I Z y K IL K Z K= ∈ ∈  
for all [ )1,p∈ ∞ . 

If [ )1,r∈ ∞ , then [ )1,r′∈ ∞  is always chosen such that 1 1 1
r r
+ =

′
. We always  

assume that [ ), 1,p q∈ ∞ . If ( ),:p p sL L I=   for some positive integer s, then 

( )*p pL L ′=  for [ )1,p∈ ∞  and 1L  is a subspace of ( )*L∞ , where ( )*.  denotes 
the complex conjugate transpose. We refer to [8] and [9] for more details. 

3. The Quasi-Differential Expressions 

Let I be an interval with endpoints ( ),a b a b−∞ ≤ < ≤ ∞ , let ,n s  be positive 
integrs and [ ), 1,p q∈ ∞ . The quasi-differential expressions are defined in terms 
of a Shin-Zettl matrix F on the interval I.  

Definition 3.1 [7] [8] [9]: The set ( ),
,

p q
n sZ I  of Shin-Zettl matrices on I con-

sists of matrices is defined to be the set of all lower triangular matrices 

{ },j kF f=  of the form 

0,1

,1 , 1

0

n n n

f
F

f f +

 
 

=  
 
 



  



, 

whose entries are complex-valued functions on I which satisfy the following 
conditions: 

( ) ( )
( ) { }

( )

0,1 , 1

,

, 1

and

for all and

for 

, , ,

, 1 1 min 1, ,

all and0 .

p q
loc s n n loc s

p
j k loc s

j j s

f L I f L I

f L I j n k j n

f x GL j n x I

′
+

+

∈ ∈
∈ ≤ ≤ ≤ ≤ + 


∈ ≤ ≤ ∈ 

 

     (3.1) 

For ( ),
,

p q
n sF Z I∈  we define F  as the ( )n n×  matrix obtained from F by 

removing the first row and the last column, i.e.,  
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1,1 1,2

1,1 1,2 1,

,1 ,2 ,

0
0

n n n n

n n n n

f f

F
f f f
f f f
− − −

 
 
 =  …
  … 



  

 , 

Definition 3.2 [8] [9]: For ( ),
,

p q
n sF Z I∈ , the quasi-derivatives associated with 

F  are defined by  
[ ]0 : ,FFy y=



 

[ ] ( ) [ ]( ) [ ] ( )1 1 1
, 1 ,1: , 1 1jj j k

j j j kF F Fky f y f y j n
− − −

+ =

 ′= − ≤ ≤ − 
 

∑  

      (3.2) 

[ ] [ ]( ) [ ]1 1
,1: ,nn n k

j kF F Fky y f y− −
=

 ′= − 
 

∑  

 

where the prime’ denotes differentiation. 
The quasi-differential expression Fτ   associated with F  is given by: 

[ ] [ ] ( ). : , 2 ,nn
F Fi y nτ = ≥
 

                    (3.3) 

this being defined on the set: 

( ) [ ] ( ){ }1: : , ,1j s
locF F FV y y AC I j nτ −= ∈ ≤ ≤

  

  

where ( ), s
locAC I  , denotes the set of functions which are locally absolutely 

continuous on every compact subinterval of I.  

For ( )Fy V τ∈


, we define 

[ ]

[ ]

0

1

:
F

F
n

F

y
Q y

y −

 
 

=  
  
 







 . 

Clearly the maps ( ) ( ): , s
F FV B Iτ τ →
 

  and ( ) ( ),: , n s
locF FQ V AC Iτ →

 

  
are linear. 

In analogy to the adjoint and the transpose of a matrix, there are two different 
“(formal) adjoint” of a quasi-differential expression, we refer to [8] [9] and [21] 
for more details. 

In the following we always assume that ,
,

p q
n sF Z∈  and ,: p qFτ τ=



.  
The formal adjoint ,p qτ +  of ,p qτ  is defined by the matrix F +

  which given 
by:  

1 *
n nF J F J+ −= −                           (3.4) 

where *F  is the conjugate transpose of F  and nJ  is the non-singular ( )n n×  
matrix  

( )( ), 1 1
1

1 j
n j n k j n

k n

J δ + − ≤ ≤
≤ ≤

= − ,                    (3.5) 

δ  being the Kronecker delta. If ,j kF f+ +=  then it follows that  

( ) 1
, 1, 11 j k

j k n k n jf f+ ++
− + − += − .                    (3.6) 

The quasi-derivatives associated with the matrix F +
  in ( ),

,
p q

n sZ I  are there-
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fore 
0 : ,y y+ =  

[ ] ( ) [ ]( ) ( ) [ ]1 11 1
, 1 1, 11: 1 ,j kj j k

n j
j

n j n k n jky f y f y
− + +− −

+ − − + + − + − + +=

 ′= − − 
 

∑     (3.7) 

[ ] [ ]( ) ( ) [ ]11 1
1,11: 1 ,n kn n k

n kk
ny y f y+ +− −

+ + − + +=

 ′= − − 
 

∑  

and 

[ ] [ ] ( ), . : 2nn
q p i y nτ +
′ ′ += ≥  for all ( ),q py V τ +

′ ′∈ ,            (3.8) 

( ) ( ){ }[ 1]
, : : , ,1 ,j s

q p locV y y AC I j nτ + −
′ ′ += ∈ ≤ ≤            (3.9) 

Note that: ( )F F
++ =   and so ( ), ,q p p qτ τ

++
′ ′ = . We refer to [5] [6] [7] [8] [9] 

and [21] for a full account of the above and subsequent results on qua-
si-differential expressions. 

For ( ),p qu V τ∈ , ( ),q pv V τ +
′ ′∈  and , Iα β ∈ , we have Green’s formula, 

[ ] [ ]{ } [ ]( ) [ ]( ), , d , , ,p q q pv u u x u v u vv
β

α
τ τ β α+

′ ′− = −∫          (3.10) 

where, 

[ ]( ) ( ) [ ] [ ]( )( )

( ) ( )( )

( ) [ ] [ ]( )
[ ]

( )

11 1
0

T

1 1

1

, 1

, , , ,

r nn r n rn
r

n
n nF F

n n
n n

n

u v x i u v x

i Q uJ Q v x

v
i u u u J x

v

+ +− − −
+=

×

−
×

−
+

= −

= −

 
 

= −  
 
 

∑

 

 

 

( )

0 1
;

1 0
n n

n

J ×

 − 
=  
  − 



  



                   (3.11) 

see [5] [6] [7] [8] [9] [17] [24] and [26]. Let :w I →  be a non-negative 
weight function with ( )1

locw L I∈  and 0w >  (for almost all x I∈ ). Then 

( ),r r s
wH L I=   denotes the Hilbert function space of equivalence classes of 

Lebesgue measurable functions such that 

( )
1

, : r r
r I I

y y w= ∫  for all ( ),ry L I Z∈  and [ )1,r∈ ∞ .             (3.12) 

The equation  

[ ] ( ), 0p q u wuτ λ λ− = ∈  on I,                                 (3.13) 

is said to be regular at the left end-point a∈ , if for all ( ),X a b∈ ,  

( )1
,, , , , , 1,2, , ,j ka w f L a X j k n∈ ∈ =    

otherwise (3.13) is said to be singular at a. If (3.13) is regular at both end-points, 
then it is said to be regular; in this case we have, 
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( )1
,, , , , , , 1,2, , .j ka b w f L a b j k n∈ ∈ =                (3.14) 

We shall be concerned with the case when a is a regular end-point of Equation 
(3.13), the end-point b being allowed to be either regular or singular. Note that, 
in view of (3.14), an end-point of I is regular for (3.13), if and only if it is regular 
for the equation 

[ ] ( ), 0p q v wvτ λ λ+ − = ∈  on I.                                 (3.15) 

Definition 3.3 [5]-[21] [26]:  
1) The maximal operators corresponding to , ,,p q q pτ τ +

′ ′  are defined as opera-
tors from a subspaces of p

wL  into q
wL , ,p q  are arbitrary. 

( ) [ ]1
,p qT w uτ τ−=  for all  

( ) ( ) [ ]{ }1
, , ,: |p q

p q p q w p q wu D T u V L w u Lτ τ τ− ∈ = ∈ ∈   , 

( ) [ ]1
,q pT w vτ τ+ − +
′ ′ =  for all  

( ) ( ) [ ]{ }1
, , ,: |p q

q p q p w q p wv D T v V L w v Lτ τ τ+ + − +
′ ′ ′ ′ ′ ′

 ∈ = ∈ ∈   . 

The subspaces ( ),p qD T τ    and ( ),q pD T τ +
′ ′

 
   of ( ),p s

wL I   are the do-
mains of the so-called maximal operators ( ),p qT τ  and ( ),p qT τ +  respectively. 

2) For the regular problem the minimal operators ( )0 ,p qT τ  and ( )0 ,q pT τ +
′ ′  

are the restrictions of [ ]1
,p qw uτ−  and [ ]1

,q pw vτ− +
′ ′  to the subspaces:  

( ) ( ) ( )( ) ( )( ){ }
( ) ( ) ( )( ) ( )( ){ }

0 , ,

0 , ,

: : , 0

: : , 0

p q p q F F

q p q p F F

D u u D Q u a Q u b

D v v D Q v a Q v b

τ τ

τ τ+ +
′ ′ ′ ′ + +

= ∈ = = 


= ∈ = = 

 

 

     (3.16) 

The subspaces ( )0 ,p qD τ  and ( )0 ,q pD τ +
′ ′  are dense in ( ),p s

wL I   and  
( )0 ,p qT τ  and ( )0 ,q pT τ +

′ ′  are closed operators (see [4] ([5] Section 3) and [6]-[21]). 
In the singular problem we first introduce the operators ( )0 ,p qT τ′  and  

( )0 ,q pT τ +
′ ′′ ; ( )0 ,p qT τ′  being the restriction of [ ]1

, .p qw τ−  to the subspace  

( ) ( ) ( ){ }0 , , is compact and contained: :  in the interior|  ofp q p qD u u D supp u Iτ τ′ = ∈ .  

and with ( )0 ,q pT τ +
′ ′′  defined similarly. These operators are densely-defined and 

closable in ( ),p s
wL I  ; and we define the minimal operators ( )0 ,p qT τ  and 

 ( )0 ,q pT τ +
′ ′  to be their respective closures (see [5]-[14] [21] and [26]). We denote 

the domains of ( )0 ,p qT τ  and ( )0 ,q pT τ +
′ ′  by ( )0 ,p qD τ  and ( )0 ,q pD τ +

′ ′  respec-
tively. It can be shown that: 

( ) ( )( )

( ) ( )( )
0 ,

0 ,

0
,

0

p q F

p q F

u D Q u a

v D Q v a

τ

τ +
+

∈ ⇒ = 


∈ ⇒ = 





                 (3.17) 

because we are assuming that a is a regular end-point. Clearly ( )0 ,p qT τ  and 
( ),p qT τ  are linear operators of p

wL  into q
wL  and ( ) ( )0 , ,p q p qT Tτ τ⊂ .  

Moreover, in both regular and singular problems, we have 

( ) ( )*
0 , ,p q q pT Tτ τ +

′ ′= , ( ) ( )*
, 0 ,p q q pT Tτ τ +

′ ′= ,            (3.18) 

see [6]-[16] and ([26], Section 5) in the case when , ,p q q pτ τ +
′ ′=  and compare 
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with treatment in ([5], Section III.10.3), [6] in general case. Also, we refer to 
[17]-[22] for more details. 

Corollary 3.4 (cf. ([8], Corollary 3.10) and [9]): 
a) If 2,2τ  is symmetric, then ( )0 2,2T τ  is symmetric in the Hilbert space 
( )2 ,wL a b . 

b) If 2,2τ  is J-symmetric, then ( )0 2,2T τ  is J-symmetric in the Hilbert space 
( )2 ,wL a b . 

4. p
wL -Solutions 

In this section, we shall concerned with p
wL -Solutions of general ordinary 

quasi-differential equations, and we denote for ,p qτ  by τ  and ,p qτ +  by 
τ + . 

Denote by ( )S τ  and ( )S τ +  the sets of all solutions of the equations 

[ ] ( )0 0– 0I uτ λ λ= ∈                      (4.1) 

and 

( )0 0– 0I vτ λ λ+  = ∈                       (4.2) 

respectively. Let ( ), , 1,2, ,j t j nϕ λ =   be the solutions of the homogeneous 
equation [ ] ( )– 0I uτ λ λ= ∈  satisfying: 

[ ] ( )0 , 1,r
j j rtϕ λ δ +=  for all [ )0 ,t a b∈  ( )1,2, , ; 0,1, , 1j n r n= = −   

for fixed 0t , 0a t b< < . Then ( ),j tϕ λ  is continuous in ( ),t λ  for 0 t b< < , 
λ < ∞ , and for fixed t it is entire in λ . Let ( ), , 1,2, ,k t k nϕ λ+ =   denote the 

solutions of the adjoint homogeneous equation ( )– 0I vτ λ λ+  = ∈    satis-
fying: 

( )[ ] ( ) ( )0 ,, 1
r k r

k k n rtϕ λ δ++
−= −  for all [ )0 ,t a b∈  ( )1,2, , ; 0,1, , 1k n r n= = −  .  

Suppose a c b< < , by [5] [21] [22] [23] [24] and [26], a solution of the qua-
si-differential equation 

[ ] ( ) ( )1– , ,wI wf f L a bτ λ ϕ λ= ∈ ∈                (4.3) 

satisfying [ ] ( ) 0, 0,1, , 1r c r nϕ = = −  is giving by:  

( ) ( ) ( ) ( ) ( )0
, 1, , , d ,jk

j kn j k a

tnt t s f s w s s
i

λ λ
ϕ λ ξ ϕ λ ϕ λ+

=

− =  
 

∑ ∫  

where ( ),k sϕ λ+  stands for the complex conjugate of ( ),k tϕ λ  and for each 
,j k , jkξ  is constant which is independent of ,t λ  (but does depend in general 

on t).  
The next lemma is a form of the variation of parameters formula for a general 

quasi-differential equation is giving by the following Lemma. 
Lemma 4.1: Suppose ( )1 0,wf L b∈  locally integrable function and ( ),tϕ λ  is 

the solution of Equation (4.3) satisfying: 
[ ] ( )0 1,r

rtϕ λ α +=  for 0,1, , 1r n= − , [ )0 ,t a b∈ . 

Then 
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( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )
0 0 01 , 1

0

, , ,

, d

n n

t

n jk
j j jj j k

ka

t t i t

s f s w s s

ϕ λ α λ ϕ λ λ λ ξ ϕ λ

ϕ λ

= =

+

= + −

×

∑ ∑

∫
     (4.4) 

for some constants ( ) ( ) ( )1 2, , , nα λ α λ α λ ∈  , where ( )0,j tϕ λ  and  
( )0, , , 1,2, ,k t j k nϕ λ+ =   are solutions of Equations (4.1) and (4.2) respectively, 

jkξ  is a constant which is independent of t. 
Theorem 4.2: (cf. [5] [6]). Let τ  be a regular quasi-differential expression of 

order n on the interval [a, b]. For ( )2 ,wf L a b∈ , the equation [ ] wfτ ϕ =  has a 
solution ( )Vϕ τ∈  satisfying  

[ ] ( ) [ ] ( ) 0, 0,1,2, , 1r ra b r nϕ ϕ= = = −  

If and only if f is orthogonal in ( )2 ,wL a b  to solution space of [ ] 0τ ψ+ = , 
i.e.,  

( ) ( )0 .R T I N T Iτ λ τ λ
⊥

+  − = −     

Corollary 4.3 (cf. [19] [20] [21]), As a result from Theorem 4.2, we have that 

( ) ( )0 .R T I N T Iτ λ τ λ
⊥ +  − = −     

Lemma 4.4 [22]: (Gronwall’s inequality). Let ( )u t  and ( )v t  be two real- 
functions defined, non-negative and u, ( )1

0 ,v L t t∈  for 0t t> , and if  

( ) ( ) ( )
0

d , 0,
t

t
u t c u s v s s c≤ + >∫  

for some positive constant c, then 

( ) ( )( )0
exp d

t
u t c v s s≤ ∫ .                    (4.5) 

Lemma 4.5: Suppose ( )1
locf L I∈ , and suppose that the Conditions (3.1) are 

satisfied. Then, given any complex numbers rc ∈ , 0,1,2, , 1r n= −  and  
( )0 ,x a b∈ , there exists a unique solutions of ( ) ( )– wfτ λ ϕ λ= ∈  which sa-

tisfies  
[ ] ( )0 , 0,1,2, , 1.r

jx c r nϕ = = −  

Proof: The proof is similar to that in (14], part II, Theorem 16.2.2) and there-
fore omitted. 

Lemma 4.6: Suppose that for some 0λ ∈  all solutions of Equations (4.1) 
and (4.2) are in ( )2 ,wL a b . then all solutions of Equations (4.1) and (4.2) are in 

( )2 ,wL a b  for every complex number λ∈ . 
Proof: The proof is similar to that in [21] [22] [23] [24], and therefore omit-

ted. 
Lemma 4.7: If all solutions of the equation [ ]0– 0w uτ λ =  are bounded on 

[ ),a b  and ( ) ( )1
0, ,k wt L a bϕ λ+ ∈  for some 0 , 1, ,k nλ ∈ =  . Then all solutions 

of the equation [ ]– 0w uτ λ =  are also bounded on [ ),a b  for every complex 
number λ∈ . 

Lemma 4.8: Suppose that for some complex number 0λ ∈  all solutions of 
Equation (4.1) are in ( ),p

wL a b  and all solutions of (4.2) are in ( ),q
wL a b . Sup-
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pose ( ),p
wf L a b∈ , then all solutions of Equation (4.3) are in ( ),p

wL a b  for all 
λ∈  

Proof: Let ( ) ( ){ }1 0 0, , , ,nt tϕ λ ϕ λ , ( ) ( ){ }1 0 0, , , ,ns sϕ λ ϕ λ+ +
  be two sets of 

linearly independent solutions of Equations (4.1) and (4.2) respectively. Then for 
any solutions ( ),tϕ λ  of the equation [ ] ( )– I wfτ λ ϕ λ= ∈  which may be 
written as follows  

[ ] ( )0 0 0,w w wfτ λ ϕ λ λ ϕ λ− = − + ∈  

and it follows from (4.4) that  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0 01 , 1

0 0

1, , ,

, , d ,

jk
j j jnj j k

n n

t
ka

t t t
i

t s f s w s s

ϕ λ α λ ϕ λ ξ ϕ λ

ϕ λ λ λ ϕ λ

= =

+

= +

 × − + 

∑ ∑

∫
       (4.6) 

for some constants ( ) ( ) ( )1 2, , , nα λ α λ α λ ∈  . Hence  

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

0 01 , 1

0 0

, , ,

, , d .

jk
j j jj j

n n

t

k

ka

t t t

t s f s w s s

ϕ λ α λ ϕ λ ξ ϕ λ

ϕ λ λ λ ϕ λ

= =

+

≤ +

 × − + 

∑

∫

∑
       (4.7) 

Since ( ),p
wf L a b∈  and ( ) ( )0., ,q

k wL a bϕ λ+ ∈  for some 0λ ∈ , then  
( ) ( )1

0., ,k wf L a bϕ λ+ ∈  for some 0λ ∈  and 1, ,k n=  . Setting:  

( ) ( ) ( ) ( )0, 1 , d , 1,2, , ,
tn jk

j kj k a
C s f s w s s j nλ ξ ϕ λ+

=
= =∫∑        (4.8) 

then 

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( )
0 01

0 0, 1

, ,

, , , d .

j j jj

jk
j kj k

n

n

a

t

t C t

t s s w s s

ϕ λ α λ λ ϕ λ λ λ

ξ ϕ λ ϕ λ ϕ λ

=

+
=

≤ + + −

×

∑

∫∑
     (4.9) 

On application of the Cauchy-Schwartz inequality to the integral in (4.9), we 
get 

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )( )
0 0 01 , 1

1 1

0

, , ,

, d , d .

jk
j j j jj j k

q q p

a

n

p
k

n

a

t t

t C t t

t w s s s w s s

ϕ λ α λ λ ϕ λ λ λ ξ ϕ λ

ϕ λ ϕ λ

= =

+

≤ + + −

 × 
 ∫ ∫

∑ ∑
 (4.10) 

From the inequality ( ) ( )12p p p pu v u v−+ ≤ + , it follows that  

( ) ( ) ( ) ( )( ) ( )
( ) ( )

( ) ( ) ( ) ( )( )

2 1
01

2 1
0 0, 1

0

, 2 ,

2 ,

, d , d .

p pp p
j j jj

n

n p ppp jk
jj k

p
q q p

ka

t t

a

t C t

t

t w s s s w s s

ϕ λ α λ λ ϕ λ

λ λ ξ ϕ λ

ϕ λ ϕ λ

−
=

−
=

+

≤ +

+ −

 × 
 ∫

∑

∫

∑       (4.11) 

By hypothesis there exist positive constant 0K  and 1K  such that 

( )
( )0 0,

, p
w

j L a b
t Kϕ λ ≤  and ( )

( )
0 1

,
,

q
w

k
L a b

s Kϕ λ+ ≤ , , 1,2, ,j k n=  .   (4.12) 

Hence  
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( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )( )

2 1
01

2 1
1 0 0, 1

, 2 ,

2 , , d .

p pp p
j j jj

p p ppp p jk
jj k a

n

tn

t C t

K t s w s s

ϕ λ α λ λ ϕ λ

λ λ ξ ϕ λ ϕ λ

−
=

−
=

≤ +

+ − ∑ ∫

∑
  

(4.13) 

Integrating the inequality in (4.13) between a and t, we obtain 

( ) ( ) ( )( )
( ) ( ) ( )( ) ( )

2 1
2 0 , 1

0

, d 2

, , d d ,

pp pp jk
j ka

p p
ja

t n

t s

a

s w s s K

s x w x x w s s

ϕ λ λ λ ξ

ϕ λ ϕ λ

−
=

≤ + −

×

∫

∫ ∫

∑
 (4.14) 

where 

 ( ) ( ) ( )( )2 1
2 0 12 .

pp p
j jj

nK K Cα λ λ−
=

= +∑             (4.15) 

Now, on using Gronwall’s inequality (Lemma 4.4), it follows that 

( ) ( )
( ) ( ) ( )( )2 1

2 1 0 0, 1

, d

exp 2 , d .

p

a

p ppp p jk
jj k a

t

tn

s w s s

K K s w s s

ϕ λ

λ λ ξ ϕ λ−
=

≤ − ∑

∫

∫
 (4.16) 

Since, ( ) ( )0, ,p
j wt L a bϕ λ ∈  for some 0λ ∈  and for 1, ,j n=  , then  

( ) ( ), 0,p
wt L bϕ λ ∈  for all λ∈ . 

Remark: Lemma 4.8 also holds if the function f is bounded on [ ),a b . 
Lemma 4.9: Let ( )0,p

wf L b∈ . Suppose for some 0λ ∈  that:  
(i) All solutions of ( )– 0Iτ λ ϕ+ + =  are in ( ),q

wL a b . 

(ii) ( )0, , 1, ,j t j nϕ λ =   are bounded on [ )0,b . 
Then all solutions ( ),tϕ λ  of Equation (4.3) are in ( ),p

wL a b  for all λ∈ . 
Lemma 4.10: Let ( ),p

wf L a b∈ . Suppose for some 0λ ∈  that:  
(i) All solutions of ( )– 0Iτ λ ϕ+ + =  are in ( ),w

qL a b . 

(ii) [ ] ( )0, , 1, ,r
j t j nϕ λ =   are bounded on [ ),a b  for some 0,1, , 1r n= − . 

Then [ ] ( ) ( ), ,r
w
pt L a bϕ λ ∈  for any solution ( ),tϕ λ  of the equation  

( )– I wfτ λ ϕ =  for all λ∈  

5. The Regularly Solvable Operators 

We see from (3.18) that ( ) ( ) ( ) *

0 , , 0 ,p q p q q pT T Tτ τ τ +
′ ′

 ⊂ =    and hence ( )0 ,p qT τ , 

( )0 ,q pT τ +
′ ′  form an adjoint pair of closed-densely operators in ( ),p s

wL I  . 

Lemma 5.1 [17] [18]: For ( ) ( )0 , 0 ,,p q q pT Tλ τ τ +
′ ′

 ∈Π   ,  

( ) ( )0 , 0 ,p q q pdef T I def T Iτ λ τ λ+
′ ′

  − + −     

is constant and  

( ) ( )0 , 0 ,0 2p q q pdef T I def T I nτ λ τ λ+
′ ′

  ≤ − + − ≤    . 

In the problem with one singular end-point, 

( ) ( )0 , 0 , 2p q q pn def T I def T I nτ λ τ λ+
′ ′

  ≤ − + − ≤    , for all  

( ) ( )0 , 0 ,,p q q pT Tλ τ τ +
′ ′

 ∈Π   . 
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In the regular problem, 

( ) ( )0 , 0 , 2p q q pdef T I def T I nτ λ τ λ+
′ ′

  − + − =    , for all  

( ) ( )0 , 0 ,,p q q pT Tλ τ τ +
′ ′

 ∈Π   . 

Proof: The proof is similar to that in ([4] [5] [6]) ([17] [18] [19] [20]) and 
([22] [23] [24]) and therefore omitted. 

For ( ) ( )0 , 0 ,,p q q pT Tλ τ τ +
′ ′

 ∈Π   , we define r, s and m as follows:  

( ) ( ) ( )
( ) ( ) ( )

0 , ,

0 , ,

: ,

: ,

.

p q q p

q p p q

r r def T I nul T I

s s def T I nul T I

m r s

λ τ λ τ λ

λ τ λ τ λ

+
′ ′

+
′ ′

  = = − = −    
   = = − = −   

= + 

,       (5.1) 

then, 0 ,r s n≤ ≤  and by Lemma 5.1, m is constant on ( ) ( )0 , 0 ,,p q q pT Tτ τ +
′ ′

 Π    
and  

2n m n≤ ≤ .                           (5.2) 

For ( ) ( )0 , 0 ,,p q q pT Tτ τ +
′ ′

 Π ≠ ∅   the operators which are regularly solvable 
with respect to the minimal operators ( )0 ,p qT τ  and ( )0 ,q pT τ +

′ ′  are characte-
rized by the following theorem which proved for a general quasi-differential op-
erator in ([5], Theorem 10.15). 

Theorem 5.2 ([6], Theorem 3.2): For ( ) ( )0 , 0 ,,p q q pT Tλ τ τ +
′ ′

 ∈Π   . Let r and m 
be defined by (5.1), and let ( ) ( ), ,1,2, , , 1, ,p q p q

j kj r k r mψ = Φ = +   be arbitrary 
functions satisfying: 

(i) ( ) ( ),
,1,2, ,p q

j p qj r D Tψ τ = ⊂    are linearly independent modulo  

( )0 ,p qD T τ    and  

( ) ( ),
,1, ,p q

k q pk r m D T τ +
′ ′

 Φ = + ⊂    are linearly independent modulo  

( )0 ,q pD T τ +
′ ′

 
  . 

(ii) ( ) ( ), , , ,, , 0p q p q p q p q
j k j kb aψ ψ   Φ − Φ =    , ( )1,2, , ; 1, ,j r k r m= = +  .  

Then the set  

( ) ( ) ( ){ }, ,
,: , , , 0, 1, , ,p q p q

p q k ku u D T u b u a k r mτ     ∈ Φ − Φ = = +         (5.3) 

is the domain of an operator S which is regularly solvable with respect to ( )0 ,p qT τ  
and ( )0 ,q pT τ +

′ ′  and the set 

( ) ( ) ( ){ }, ,
,: , , , 0, 1,2, ,p q p q

q p j jv v D T v b v a j rτ ψ ψ+
′ ′

     ∈ − = =           (5.4) 

is the domain of the operator *S ; moreover ( )4 Sλ∈∆ . 
Conversely, if S is regularly solvable with respect to ( )0 ,p qT τ  and ( )0 ,q pT τ +

′ ′  
and ( ) ( ) ( )0 , 0 , 4,p q q pT T Sλ τ τ +

′ ′
 ∈Π ∆  , then with r and s defined by (5.1) there 

exist functions ( ) ( ), ,1,2, , , 1, ,p q p q
j kj r k r mψ = Φ = +   which satisfy (i) and 

(ii) and are such that (5.3) and (5.4) are the domains of S and *S  respec-
tively. 

S is self-adjoint if, and only if, , ,p q q pτ τ +
′ ′= , r s=  and  
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( ), , 1, ,p q p q
k k r k r mψ −Φ = = +  ; S is J-self-adjoint if , ,p q p qJ Jτ τ=  (J is a complex 

conjugate), r s=  and ( ), , 1, ,p q p q
k k r k r mψ −Φ = = +  . 

Proof: The proof is entirely similar to that in [6]. We refer also to [17]-[24] 
for more details. 

6. The Spectra of General Differential Operators  

In this subsection we deal with the various components of the spectra of qua-
si-differential operators ( )0 ,p qT τ  and ( )0 ,q pT τ +

′ ′ . 
We see from (3.18) and Theorem 4.2 that ( ) ( ) ( ) *

0 , , 0 ,p q p q q pT T Tτ τ τ +
′ ′

 ⊂ =    
and hence ( )0 ,p qT τ  and ( )0 ,q pT τ +

′ ′  form an adjoint pair of closed, closed-densely 
operators in ( ),p s

wL I  .  
We shall now investigate in the case of one singular end-point that the resol-

vent of all well-posed extensions of the minimal operator ( )0 ,p qT τ  and we 
show that in the maximal case, i.e., when  

( ) ( )0 , 0 ,p q q pdef T I def T I nτ λ τ λ+
′ ′

  − = − =    , for all  

( ) ( )0 , 0 ,,p q q pT Tλ τ τ +
′ ′

 ∈Π    

that these resolvents are integral operators, in fact they are Hilbert-Schmidt 
integral operators by considering that the function f to be in ( ),p

wL a b , i.e., is 
p-integrable over the interval [ ),a b . 

Theorem 6.1: Suppose for an operator ( )0 ,p qT τ  with one singular end-point 
that, 

( ) ( )0 , 0 ,p q q pdef T I def T I nτ λ τ λ+
′ ′

  − = − =    , for all  

( ) ( )0 , 0 ,,p q q pT Tλ τ τ +
′ ′

 ∈Π   , 

and let S be an arbitrary closed operator which is a well-posed extension of the mi-
nimal operator ( )0 ,p qT τ  and ( )Sλ ρ∈ , then the resolvents ,p qRλ  and ( )* ,p qRλ  
of S and *S  respectively are Hilbert-Schmidt integral operators whose kernels 

( ), , ,p qK t s λ  and ( ), , ,q pK s t λ+
′ ′  are continuous functions on [ ) [ ), ,a b a b×  and 

satisfy: 

( ) ( ), ,, , , ,p q q pK t s K s tλ λ+
′ ′=  and ( ) ( ) ( ), , , d d

pb b
p qa a

K t s w s w t s tλ < ∞∫ ∫ .  (6.1) 

where, 

( ) ( ) ( ) ( ),
, , , dp q

p q
b

a
R f t K t s f s w s sλ λ= ∫ , for all [ ),t a b∈ , ( ),p

wf L a b∈ . 

( ) ( ) ( ) ( ) ( )* ,
, , , dp q

q p
b

a
R g t K s t g t w t tλ λ+

′ ′= ∫  for all [ ),s a b∈ , ( ),q
wg L a b∈ . 

Remark An example of a closed operator which is a well-posed with respect to 
a compatible adjoint pair is given by the Visik extension ([5], Theorem III.3.3) 
(see ([18], Theorem 1) [19] and [20]). Note that if S is well-posed, then ( )0 ,p qT τ  
and ( )0 ,q pT τ +

′ ′  are compatible adjoint pair and S is regularly solvable with re-
spect to ( )0 ,p qT τ  and ( )0 ,q pT τ +

′ ′ . 
Proof: Let ( ) ( )0 , 0 ,p q q pdef T I def T I nτ λ τ λ+

′ ′
  − = − =     for all  

( ) ( )0 , 0 ,,p q q pT Tλ τ τ +
′ ′

 ∈Π   , then we choose a fundamental system of solutions 

https://doi.org/10.4236/apm.2023.136023


S. E.-S. Ibrahim 
 

 

DOI: 10.4236/apm.2023.136023 361 Advances in Pure Mathematics 
 

( ) ( ) ( ){ }1 2, , , , , ,nt t tϕ λ ϕ λ ϕ λ , ( ) ( ) ( ){ }1 2, , , , , ,nt t tϕ λ ϕ λ ϕ λ+ + +
  of the equa-

tions, 

( )0 , 0p q jT Iτ λ ϕ − =  , ( )0 , 0q p kT Iτ λ ϕ+ +
′ ′

 − =   ( ), 1, ,j k n=   on [ ),a b , (6.2) 

so that ( ) ( ) ( ){ }1 2, , , , , ,nt t tϕ λ ϕ λ ϕ λ , ( ) ( ) ( ){ }1 2, , , , , ,nt t tϕ λ ϕ λ ϕ λ+ + +
  belong 

to ( ),p
wL a b  and ( ),q

wL a b  repectively, i.e., they are p and q-integrable on the 
interval [ ),a b . Let ( ) 1,p qR S Iλ λ −= −  be the resolvent of any well-posed extension 
of the minimal operator ( )0 ,p qT τ . For ( ),p

wf L a b∈  we put ( ) ( ),, p qt R f tλϕ λ =  
then ( ),p qT I wfτ λ ϕ − =   and consequently has a solution ( ),tϕ λ  in the 
form, 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0 0 01 , 1

0

1, , ,

, d

jk
j j jnj j k

ka

n n

t

t t t
i

s f s w s s

ϕ λ α λ ϕ λ λ λ ξ ϕ λ

ϕ λ

= =

+

= + −

×

∑ ∑

∫
     (6.3) 

for some constants ( ) ( ) ( )1 2, , , nα λ α λ α λ ∈   (see Lemma 4.5). Since  
( ),p

wf L a b∈  and  
( ) ( )0., ,q

k wL a bϕ λ+ ∈  for some 0λ ∈ , then ( ) ( )1
0., ,k wf L a bϕ λ+ ∈ , 1, ,k n=   

for some 0λ ∈  and hence the integral in the right-hand of (6.3) will be finite.  
To determine the constants ( ) , 1, ,j j nα λ =  , let ( ), , 1, ,k t k nϕ λ+ =   be a 

basis for ( ) ( ){ }*
,o q pD S D T τ +
′ ′

 
  , then because  

( ) ( ) ( ) ( )4,t D S S Sϕ λ ρ∈ ⊂ ⊂ ∆ , we have from Theorem 5.2 that, 

( ) ( ), , 0k kb aϕ ϕ ϕ ϕ+ +   − =    , ( )1,2, ,k n=   on [ ),a b         (6.4) 

and hence from (6.3), (6.4) and on using Lemma 4.1, we have: 

( )

( ) ( ) ( ) ( ) ( ) ( )0 01 , 1

,

1 , d , ,

k

jk
j k j knj j k a

tn n

b

s f s w s s b
i

ϕ ϕ

α λ λ λ ξ ϕ λ ϕ ϕ

+

+ +
= =

  
   = + −    

∑ ∫∑
 

( ) ( ) ( )1, , , 1,2, , .k j j kj
na a k nϕ ϕ α λ ϕ ϕ+ +
=

   = =   ∑             (6.5) 

By substituting these expressions into the Conditions (6.4), we get: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

0 01 , 1

1

1 , d ,

, .

tn n

n

jk
j k j knj j k a

j j kj

s f s w s s b
i

a

α λ λ λ ξ ϕ λ ϕ ϕ

α λ ϕ ϕ

+ +
= =

+
=

   + −   

=



  

∑ ∑ ∫

∑
 

This implies that the system 

( ) ( ) ( ) ( )( )0
01 , 1, , d ,

b jk
j j k kn

tn n
j j k aa

s f s w s s
i

λ λ
α λ ϕ ϕ ξ ϕ λ+ +

= =

−  = − ∑ ∑ ∫   (6.6) 

in the variable ( ) , 1,2, ,j j nα λ =  . The determinant of this system does not va-
nish (see [9] and [12]). If we solve the System (6.6) we obtain: 

( ) ( ) ( ) ( )( ),0
, 1 , d , 1,2, , ,jk p q

j jn j k a

bn h s f s w s s j n
i

λ λ
α λ ξ λ

=

−
= =∫∑ 

    (6.7) 

where ( ), ,p q
jh s λ  is a solution of the system:  
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( )( ) ( ) ( ),
01 , 1, , , , .

bp q jn n k
j j k k j kj j ka

h s s bλ ϕ ϕ ξ ϕ λ ϕ ϕ+ + +
= =

   = −   ∑ ∑       (6.8) 

Since, the determinant of the above System (6.8) does not vanish, and the 
functions ( )0, , 1,2, ,k s k nϕ λ+ =   are continuous in the interval [ ),a b , then the 
functions ( ), ,p q

jh s λ  are also continuous in the interval [ ),a b . By substituting 
in Formula (6.3) for the expressions ( ) , 1,2, ,j j nα λ =   we get,  

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

,

,0
0 0, 1

,
01

,

, , , d

, , d

p q

jk p q
j j k jn j k a

p q
j jj t

tn

bn

R f t t

t s h s f s w s s
i

t h s f s w s s

λ ϕ λ

λ λ
α λ ϕ λ ξ ϕ λ λ

ϕ λ λ

+
=

=

=

−   = +  

+ 


∫∑

∑ ∫

 (6.9) 

Now, we put 

( )
( ) ( )( )

( ) ( ) ( )( )( )

,0
01

,
,0

0 0, 1

, , for
, ,

, , , for

p q
j jn j

p q
jk p q

j k jn

n

n
j k

t h s t s
iK t s

t s h s t s
i

λ λ
ϕ λ λ

λ
λ λ

ξ ϕ λ ϕ λ λ

=

+
=

− <=  − + >


∑

∑
 (6.10) 

Formula (6.9) then takes the form 

( ) ( ) ( ) ( ),
, , , dp q

p q
b

a
R f t K t s f s w s sλ λ= ∫  for all [ ),t a b∈ ,       (6.11) 

i.e., ,p qRλ  is an integral operator with the kernel ( ), , ,p qK t s λ  operating on the 
functions ( ),p

wf L a b∈ . Similarly, the solutions ( ),tϕ λ+  of the equation  

( ),q pT I wgτ λ ϕ+ +
′ ′

 − =   has the form: 

( ) ( ) ( ) ( )

( ) ( ) ( )

0
0 01 , 1

0

, , ,

, d ,

jk
j j jnj j k

ka

n n

s

s s s
i

t g t w t t

λ λ
ϕ λ α λ ϕ λ ξ ϕ λ

ϕ λ

+ + +
= =

−
= +

×

∑ ∑

∫
    (6.12)  

where ( )0,k tϕ λ  and ( )0, , , 1,2, ,j s k j nϕ λ+ =   are solutions of the equations in 
(6.2). The argument as before leads to, 

( ) ( ) ( ) ( ) ( )* ,
, , , dp q

q p
b

a
R g t K s t g t w t tλ λ+

′ ′= ∫  for ( ),q
wg L a b∈ ,    (6.13) 

i.e., ( )* ,p qRλ  is an integral operator with the kernel ( ), , ,q pK s t λ+
′ ′  operating on 

the function ( ),q
wg L a b∈ , where 

( )
( ) ( ) ( )( )

( ) ( ) ( ) ( )( )( )

,0
01

,
,0

0 0, 1

, , for
, ,

, , , for

p q
j jn j

q p
p qjk

j k jn j k

n

n

s h t s t
iK s t

s t h t s t
i

λ λ
ϕ λ λ

λ
λ λ

ξ ϕ λ ϕ λ λ

++
=

+
′ ′

++
=

 −
<= 

− + >

∑

∑
  

(6.14) 

and ( ) ( ), ,p q
jh t λ+  is a solution of the system 

( ) ( )( ) ( ) ( ),
01 , 1, , , , .

bp q jk
j j k j j kj ja

n
k

nh s t bλ ϕ ϕ ξ ϕ λ ϕ ϕ+ + +
= =

   = −   ∑ ∑  (6.15) 

From definitions of ,p qRλ  and ( )* ,p qRλ , it follows that 
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( ) ( ) ( ) ( ){ } ( ) ( )

( ) ( ) ( ){ } ( ) ( )
( )( )

,
,0 0

,0 0

* ,

, , , d d

, , d d

, ,

b bp q
p q

b b
p q

p q

R f g K t s f s w s s g t w t t

K t s g t w t t f s w s s

f R g

λ

λ

λ

λ

=

=

=

∫ ∫

∫ ∫      (6.16) 

for any continuous functions ,f g H∈  and by construction (see (6.10) and (6.14)), 
( ), , ,p qK t s λ  and ( ), , ,q pK s t λ+

′ ′  are continuous functions on [ ) [ ), ,a b a b×  and 
(6.16) gives us 

( ) ( ), ,, , , ,p q q pK t s K s tλ λ+
′ ′=  for all [ ) [ ), , ,t s a b a b∈ × .      (6.17) 

Since ( ) ( ), ,p
j wt L a bϕ λ ∈ , ( ) ( ), ,q

k ws L a bϕ λ+ ∈  for , 1,2, ,j k n=   and for 
fixed s, ( ), , ,p qK t s λ  is a linear combination of ( ),j tϕ λ  while, for fixed t, 

( ), , ,q pK s t λ+
′ ′  is a linear combination of ( ),k sϕ λ+ . Then we have 

( ) ( ) ( ) ( ), ,, , d , , , d , , ,
qp

p q q p
b

a a

b
K t s w t t K s t w s s a s t bλ λ+

′ ′< ∞ < ∞ < <∫ ∫   

and (6.17) implies that, 

( ) ( ) ( ) ( ), ,, , d , , d ,
qp

p q qa

b
p

b

a
K t s w s s K s t w s sλ λ+

′ ′= < ∞∫ ∫  

( ) ( ) ( ) ( ), ,, , d , , d .
b q p

q p p qa a

b
K s t w t t K t s w t tλ λ+

′ ′ = < ∞∫ ∫  

Now, it is clear from (6.8) that the functions ( ) ( ), , , 1,2, ,p q
jh s j nλ =   belong 

to ( ),p
wL a b  since ( ), ,p q

jh s λ  is a linear combination of the functions ( ),j sϕ λ+  
which lie in ( ),q

wL a b  and hence ( ), ,p q
jh t λ  belong to ( ),p

wL a b . Similarly  
( ) ( ), ,p q

jh t λ+  belong to ( ),q
wL a b . By the upper half of the formula (6.10) and 

(6.14), we have: 

( ) ( )( ) ( ), , , d d ,
p

p qa a

b b
K t s w s s w t tλ < ∞∫ ∫  

for the inner integral exists and is a linear combination of the products  
( ) ( ) ( ), , , , 1,2, ,j kt s j k nϕ λ ϕ λ+ =   and these products are integrable because 

each of the factors belongs to ( )1 ,wL a b . Then by (6.17), and by the upper half of 
(6.14), 

( ) ( )( ) ( )

( ) ( )( ) ( )

,

,

, , d d

, , d d .

p
p qa a

q

q

b

pa

b

b b

a

K t s w s s w t t

K s t w s s w t t

λ

λ+
′ ′= < ∞

∫ ∫

∫ ∫
 

Hence, we also have:  

( ) ( ) ( ), , , d d
pb b

p qa a
K t s w t w s t sλ < ∞∫ ∫ ,  

and the theorem is completely proved for any well-posed extension. 
Remark: It follows immediately from Theorem 6.1 that, if for an operator 

( )0 ,p qT τ  with one singular end-point that  

( ) ( )0 , 0 ,p q q pdef T I def T I nτ λ τ λ+
′ ′

  − = − =    , for all ( ) ( )0 , 0 ,,p q q pT Tλ τ τ +
′ ′

 ∈Π    
and S is well-posed with respect to ( )0T τ  and ( )0 ,q pT τ +

′ ′  with ( )Sλ ρ∈  then 
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( ) 1,p qR S Iλ λ −= −  is a Hilbert-Schmidt integral operator. Thus it is a completely 
continuous operator, and consequently its spectrum is discrete and consists of 
isolated eigenvalues having finite algebraic (so geometric) multiplicity with zero 
as the only possible point of accumulation. Hence, the spectra of all well-posed 
operators S are discrete, i.e., 

( )ek Sσ =∅ , for 1,2,3,4,5k = .                (6.18) 

We refer to ([5], Theorem IX.3.1), [14] [15] [16] [18] [19] [20] and [23] for 
more details. 

An example of a closed operator which is a well-posed with respect to a com-
patible adjoint pair is given by the Visik extension ([5], Theorem III.3.3) (See 
([18], Theorem 1) [19] and [20]). Note that if S is well-posed, then ( )0 ,p qT τ  
and ( )0 ,q pT τ +

′ ′  are compatible adjoint pair and S is regularly solvable with re-
spect to ( )0 ,p qT τ  and ( )0 ,q pT τ +

′ ′ . 
Lemma 6.2: The point spectra ( )0 ,p p qTσ τ    and ( )0 ,p q pTσ τ +

′ ′
 
   of the op-

erators ( )0 ,p qT τ  and ( )0 ,q pT τ +
′ ′  are empty. 

Proof: Let ( )0 ,p p qTλ σ τ ∈   . Then there exists a nonzero element  

( )0 ,p qD Tϕ τ ∈   , such that  

( )0 , 0.p qT Iτ λ ϕ − =   

In particular, this gives 

( ) [ ] ( ) [ ] ( ), 0, 0, 0,1,2, , 1.r r
p q w a b r nτ λ ϕ ϕ ϕ− = = = = −  

From Lemma 4.2, it follows that 0ϕ ≡  and hence ( )0 ,p p qTσ τ  =∅  .  
Similarly ( )0 ,p q pTσ τ +

′ ′
  = ∅  . 

Theorem 6.3: (i) ( )0 ,p qTρ τ  =∅  , (ii) ( ) ( )0 , 0 ,p p q c p qT Tσ τ σ τ   = =∅    , 
(iii) ( ) ( )0 , 0 ,p q r p qT Tσ τ σ τ   = =     .  

Proof: (i) Since ( )0 ,p qR T Iτ λ −   is a proper closed subspace of ( ),p
wL a b , 

then the resolvent set ( )0 ,p qTρ τ    is empty. 
(ii) Since ( )0 ,p qR T Iτ λ −   is closed, then the continuous spectrum of ( )0 ,p qT τ  

is empty set, i.e., ( )0 ,c p qTσ τ  =∅  .  
(iii) From (i) and (ii) and Lemma 6.2, it follows that  

( ) ( )0 , 0 ,p q r p qT Tσ τ σ τ   = =     .  
Corollary 6.4: (i) ( ) ( ), ,c p q r p qT Tσ τ σ τ   = =∅    ,  

(ii) ( ) ( ), ,p q p p qT Tσ τ σ τ   = =      and ( ),p qTρ τ  =∅  . 

Proof: From Theorem 4.2 and since ( ) ( ) *

, 0 ,p q q pT Tτ τ +
′ ′=  

  , it follows that  

( ),p qR T Iτ λ −   is closed for every λ∈ , see [3, Theorem 1.3.7]. Also, we 
have 

( ) ( ), 0 , ,p q q pnull T I def T I nτ λ τ λ+
′ ′

  − = − =      

and 

( ) ( ), 0 ,p q q pdef T I null T I nτ λ τ λ+
′ ′

  − = − =    . 
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(i) Since ( ),p qR T Iτ λ −   is closed and ( ), 0p qdef T Iτ λ − =  , then  

( ),p qR T I Hτ λ − =    
and this yields that  

( ) ( ), ,c p q r p qT Tσ τ σ τ   = =∅    . 

(ii) Since ( ),p qnull T I nτ λ − =   for every λ∈ , then we have  

( ),p p qTσ τ  =   . Also, it follows that ( ),p qTσ τ  =    and hence  

( ),p qTρ τ  =∅  .  
Lemma 6.5: (cf. ([5], Lemma IX.9.1). If [ ],I a b= , with a b−∞ < < < ∞  then 

for any λ∈ , the operator ( )0 ,p qT τ  has closed range, zero nullity and defi-
ciency. Hence, 

( ) ( )
( )0 ,

1,2,3

4,5ek p q

k
T

k
σ τ

∅ =  =   =
.               (6.19) 

Proof: The proof is similar to that in [19] [20] and ([23], Lemma 4.9).  
Corollary 6.6: Let ( ) ( )0 , 0 ,,p q q pT Tλ τ τ +

′ ′
 ∈Π    with 

 ( ) ( )0 , 0 , .p q q pdef T I def T I nτ λ τ λ+
′ ′

  − = − =               (6.20) 

Then,  

( )ek Sσ =∅ , for 1,2,3k = ,                  (6.21) 

of all regularly solvable extensions S with respect to the compatible adjoint pair 
( )0 ,p qT τ  and ( )0 ,q pT τ +

′ ′ . 
Proof: Since  

( ) ( )0 , 0 ,p q q pdef T I def T I nτ λ τ λ+
′ ′

  − = − =    , for all  

( ) ( )0 , 0 ,,p q q pT Tλ τ τ +
′ ′

 ∈Π   . 

Then we have from ([5], Theorem III.3.5) that, 

( ) ( ){ } ( )0 , 0 , ,p q p qdim D S D def T I nτ τ λ   = − =     

( ) ( ){ } ( )*
0 , 0 , .q p q pdim D S D def T I nτ τ λ+ +

′ ′ ′ ′
   = − =     

Thus S is an n-dimensional extension of ( )0 ,p qT τ  and so by ([5], Corollary 
IX.4.2), 

( ) ( ) ( )0 , , 1,2,3 .ek ek p qS T kσ σ τ = =                (6.22) 

From Lemma 6.2 and Lemma 6.5, we get, 

( ) ( )0 , , 1,2,3 .ek p qT kσ τ  =∅ =                  (6.23) 

Hence, by (6.22) and (6.23) we have that,  

( ) ( ), 1,2,3 .ek S kσ =∅ =  

Remark: If S is well-posed (say the Visik’s extension, see [15]-[20]), we get 
from (6.19) and (6.22) that 

( ) ( )0 , , 1,2,3 .ek p qT kσ τ  =∅ =   
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On applying (6.22) again to any regularly solvable extensions S under consid-
eration, hence (6.21).  

Corollary 6.7: If for some 0λ ∈ , there are n linearly independent solutions 
of the equations 

( ) ( ) ( ) ( ), 0 , 0 0 0 0 ,0, 0, ,p q q p q pw u w v T Tτ λ τ λ λ τ τ+ +
′ ′ ′ ′

 − = − = ∈Π       (6.24) 

in ( ),p
wL a b , ( ),q

wL a b  and hence,  

( ) ( )0 0 ,, q pT Tτ τ +
′ ′

 Π =    and ( ) ( )0 0 ,,ek q pT Tσ τ τ +
′ ′

  = ∅  , 1,2,3k = , 

where ( ) ( )0 , 0 ,,ek p q q pT Tσ τ τ +
′ ′

 
   is the joint essential spectra of ( ) ( )0 , 0 ,,p q q pT Tτ τ +

′ ′  

defined as the joint field of regularity ( ) ( )0 0 ,, q pT Tτ τ +
′ ′

 Π   .  

Proof: Since all solutions of the equations in (6.24) are in ( ),p
wL a b  and 

( ),q
wL a b  respectively for some 0λ ∈ , then,  

( ) ( )0 , 0 0 , 0p q q pdef T I def T I nτ λ τ λ+
′ ′

  − = − =    , for some  

( ) ( )0 0 , 0 ,,p q q pT Tλ τ τ +
′ ′

 ∈Π   . 

From Lemma 4.2, we have that ( )0 ,p qT τ  has no eigenvalues and so  

( ) 1

0 , 0p qT Iτ λ
−

 −   exists and its domain ( )0 , 0p qR T Iτ λ −   is a closed subspace 
of ( ),w

qL a b . Hence, since ( )0 ,p qT τ  is a closed operator, then  

( ) 1

0 , 0p qT Iτ λ
−

 −   is bounded and hence ( )0 ,p qT τ Π =   . Similarly  

( )0 ,q pT τ +
′ ′

 Π =   . Therefore ( ) ( )0 , 0 ,,p q q pT Tτ τ +
′ ′

 Π =   , and hence, 

( ) ( )0 , 0 ,p q q pdef T I def T I nτ λ τ λ+
′ ′

  − = − =     for all ( ) ( )0 , 0 ,,p q q pT Tλ τ τ +
′ ′

 ∈Π   . 

From Corollary 6.6, we have for any regularly solvable extension S of ( )0 ,p qT τ  
that 

( )ek Sσ =∅ , 1,2,3k =  and by (6.22) we get ( )0 ,ek p qTσ τ  =∅  , 1,2,3k = .  

Similarly ( )0 ,ek q pTσ τ +
′ ′

  = ∅  , 1,2,3k = . Hence, 

( ) ( )0 , 0 ,, , 1,2,3.ek p q q pT T kσ τ τ +
′ ′

  = ∅ =   

Remark: If there are n linearly independent solutions of Equations (6.24) in 
( ),p

wL a b  and ( ),q
wL a b  for some 0λ ∈  then the complex plane can be di-

vided into two disjoint sets: 

( ) ( ) ( ) ( )0 , 0 , 0 , 0 ,, , , 1,2,3.p q q p ek p q q pT T T T kτ τ σ τ τ+ +
′ ′ ′ ′

   = Π =       

We refer to [5] [6] [12]-[20] and [23] for more details. 
Conclusion: It has been shown that all the well-posed extensions of the mi-

nimal operator ( )0 ,p qT τ  generated by a general ordinary quasi-differential ex-
pression ,p qτ  of order n with complex coefficients and their formal adjoints on 
the interval [ ),a b  with maximal deficiency indices have resolvents which are 
Hilbert-Schmidt integral operators and consequently have a wholly discrete 
spectrum. This implies that all the regularly solvable operators have all the stan-
dard essential spectra to be empty. Also, the location of the point spectra and 
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regularity fields of these operators are investigated in the case of one singular 
end-point and when all solutions of the equations ( ), 0p q w uτ λ− =  and its ad-
joint ( ), 0p q w vτ λ+ − =  are p-integrable. 
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