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Abstract 

Let ( )G S= Γ  be a semigroup graph, i.e., a zero-divisor graph of a semi-
group S with zero element 0. For any adjacent vertices ,x y  in G, denote 

( ) ( ) ( ) { }{ }, | ,C x y z V G N z x y= ∈ = . Assume that in G there exist two adja-

cent vertices ,x y , a vertex ( ),s C x y∈  and a vertex z such that ( ), 3d s z = . 

This paper studies algebraic properties of S with such graphs ( )G S= Γ , giv-
ing some sub-semigroups and ideals of S. It constructs some classes of such 
semigroup graphs and classifies all semigroup graphs with the property in 
two cases. 
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1. Introduction 

Throughout, G is a simple and connected graph. For a vertex x of G, the neigh-
borhood of x is denoted as ( )N x , which is the set of all vertices adjacent to x. 
Denote also ( ) ( ) { }N x N x x= ∪ . The cardinality of ( )N x  is denoted by deg(x). 
The vertex x is called an end vertex if ( ) 1deg x = , and an isolated vertex if 

( ) 0deg x =  ([1]). Throughout, S is a commutative semigroup with 0. Recall that 
for a commutative semigroup (or a commutative ring) S with 0, the zero-divisor 
graph ( )SΓ  is an undirected graph whose vertices are the zero-divisors of 

{ }\ 0S , and with two vertices ,a b  adjacent in case 0ab =  ([2]-[6]). If G ≅

( )SΓ  for some semigroup S with zero element 0, then G is called a semigroup 
graph. 

Some fundamental properties and possible algebraic structures of S and graph-
ic structures of ( )SΓ  were established in [3] [4] [5] among others. For exam-
ple, it was proved that ( )SΓ  is always connected, and the diameter of ( )SΓ  is 
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less than or equal to 3. If ( )SΓ  contains a cycle, then its core, i.e., the union of 
the cycles in ( )SΓ , is a union of squares and triangles, and any vertex not in the 
core is an end vertex which is connected to the core by a single edge. In [7]-[11], 
the authors continued the study on the sub-semigroup structure and ideal 
structure of semigroups. Therefore, studying the interplay between the algebrar-
ic structures of S and the graph theoretic structures of ( )G S= Γ  is still a fun 
problem. 

For any adjacent vertices ,a b  in ( )V G , denote  
( ) ( ) ( ) { }{ }, | ,C a b x V G N x a b= ∈ =  and let aT  denote the set of all end vertices 

adjacent to a. In [12], we discuss the properties of ( )SΓ  satisfies condition ( pK ), 
here we assume 3p =  and consider the following Δ assumed on ( )G S= Γ  

(Δ) There exist in G two adjacent vertices ,a b , a vertex ( ),s C a b∈  and a 
vertex z such that ( ), 3d s z = . 

In this paper, we study algebraic properties of semigroup S and the graphic 
structures of ( )SΓ  such that the condition (Δ) holds for ( )SΓ . (We can fur-
ther assume that triangles and rectangles coexist in the core ( )K S Γ  .) In par-
ticular, it is proved that ( )\ , a bS C a b T T ∪ ∪   is an ideal of S. Under some 
additional conditions, it is proved that ( )\ ,S C a b  may be an ideal or a 
sub-semigroup of S (Theorem 2.4). We also use Theorem 2.4 to construct some 
classes of semigroup graphs which satisfies the condition (Δ), and give a com-
plete classification of such semigroup graphs in two cases. 

We record a known result on finite semigroups to end this part (see e.g., [[13], 
Corollary 5.9 on page 25]). We also include a proof for the completeness. 

Lemma 1.1. Any finite nonempty semigroup S contains an idempotent ele-
ment. 

Proof. Take any element x from S and consider the sequence 2 3, , ,x x x  . 
Since S is a finite set, there exist m n<  such that m nx x= . Let r n m= − , and 
take k such that kr m≥ . Then 

( ) ( ) ( )2
.kr m kr m r m kr m r kr r r kr krx x x x x x x x x x x x− −= ⋅ = ⋅ = ⋅ = = =  

□ 

2. Properties of S 

Note that, for any x S∈ , ( ) { }| 0,Ann x y xy y S= = ∈ , thus for any vertex 
( )x S∈Γ , ( ) ( )N x Ann x⊆ , and ( ) ( ) { }0Ann x N x⊆ ∪ ,we have the following 

lemma. 
Lemma 2.1. Let S be a commutative semigroup with 0, ( )SΓ  its zero-divisor 

graph. For any vertex ( )x S∈Γ , if there exists a vertex ( )y S∈Γ  such that 
( ), 3d x y = , then 2 0x ≠  in S.  
Proof. As ( ), 3d x y = , there exist vertices ( ),a z S∈Γ  such that  

x a z y− − − , 0xz ≠  and 0ay ≠ . If 2 0x = , then 2 0x z =  and thus  
( )xz Ann x∈ . Clearly ( )xz Ann y∈ . Then ( ) ( ) { }0xz Ann x Ann y∈ ∩ = , a con-

tradiction.                                                        □ 
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Part (1) of the following result is contained in [[7], Proposition 2.8]. Part (2) is 
contained in lemma 1.1 from [8]. And we prove it in a different way. 

Proposition 2.2. Let ( )G S= Γ  be a zero-divisor graph of a semigroup S. For 
a vertex ( )b V G∈ , let ( ) ( ){ }| 0, , 1bT x V G xb x b deg x= ∈ = ≠ = . 

1) If 2 0b ≠ , then { }0bT ∪  is a sub-semigroup of S. 
2) If b is not an end vertex and bT ≠ ∅ , then { }0,b  is an ideal of S. 
Proof. (1) We only need consider as bT ≠ ∅ . If G contains no cycle, then G is 

either a two-star graph or a star graph by [[8], Theorem 1.3]. If G is a star graph, 
then { }\ ,0bT S b= . For all , bx y T∈ , we must have xy b≠ , since otherwise 

20 0xyb b= = ≠ , a contradiction. This shows that { }0bT ∪  is a sub-semigroup 
of S when G is a star graph. If G is a two-star graph or a graph with cycles, then 
B ≠ ∅  where ( ) ( ){ }| 2, 0B x V G deg x xb= ∈ ≥ = . For all bx T∈ , we have  

( ) { }2 0 bx Ann b T B∈ = ∪ ∪  

If 2x B∈ , denote 2x v= . Then there exists { }\z S b∈  such that 0zv = . 
Since 2 0x z vz= = , we have ( ) { }0, ,xz Ann x x b∈ = . Clearly, 0xz ≠ . If xz x= , 
then 2 2 0v x x z vz= = = = , a contradiction. If xz b= , then 20 0xzb b= = ≠ , 
another contradiction. So we must have { }2 0bx T∈ ∪ . If 2bT ≥ , then exists a 
vertex by T∈  such that x y≠ . If xy B∈ , denote xy v= . Then there exists 

{ }\z S b∈  such that 0zv = . As 0xyz = , we have ( ) { }0, ,xz Ann y y b∈ =  and 
( ) { }0, ,yz Ann x x b∈ = , and thus xz y=  and yz x= . Then 2 0x xyz vz= = = . 

On the other hand, 2 0xy x z= = , a contradiction. So { }0bxy T∈ ∪ , and hence 
{ }0bT S∪ ≤ . 

(2) Since bT ≠ ∅ , there exists bx T∈  such that ( ) { }0, ,by Ann x b x∈ =  for 
all y S∈ . By assumption, b is not an end vertex and thus there exists 

{ }\z S x∈  such that 0bz = . Then by x≠  since otherwise, by x=  and it im-
plies 0 0bzy zx= = ≠ , a contradiction. This completes the proof.           □ 

Remark 2.3. In Proposition 2.2(1), the conclusion can not hold if 2 0b = .  
For a vertex v of a graph G, if v is not an end vertex and there is no end vertex 

adjacent to v, then v is said to be an internal vertex. We now prove the main re-
sult of this section. 

Theorem 2.4. Let ( )G S= Γ  be a semigroup graph satisfying condition (Δ). 
Then { }0, ,a b  is an ideal of S, and ( )\ , a bS C a b T T ∪ ∪   is an ideal of S. 
Furthermore,  

1) If both a and b are internal vertices, then ( )\ ,S C a b  is an ideal of S. 
2) If a is an internal vertex, while b is not an internal vertex and 2 0b ≠ , then 

( )\ ,S C a b  is a sub-semigroup of S. 
Proof. Fix some ( ),s C a b∈  and let ( ) ( ){ }| , , , , 2B x x S x C a b d s x= ∈ ∉ = , 

 
( ){ }| , , 3L y y S d s y= ∈ = . By assumption L ≠ ∅ , ( ),C a b ≠ ∅ , and  

a bT T B∪ ⊂ . Notice that there is no end vertex in ( )\ a bB T T∪ . By [[3], Theo-
rem 2.3] or by [[5], Theorem 1(2)], { } ( )0, , ,S a b C a b B L= ∪ ∪ ∪  and it is a 
disjoint union of four nonempty subsets. By Lemma 2.1. we have 2 0c ≠ ,  

( ),c C a b∀ ∈ , and hence ( ) { }0, ,Ann c a b= . Clearly, ( )2a Ann c∈ , { }2 0, ,b a b∈  
and  
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{ }( ) ( ) { }0, , 0, , .a b B L Ann c a b∪ ⊆ =  

This shows that { }0, ,a b  is an ideal of S. 
For any y in L, there exists a vertex x B∈  such that 0xy = . Then  

( )yS Ann x⊆  while ( ) ( ),C a b Ann x∩ =∅ . Hence ( ),LS C a b∩ =∅ . Fur-
thermore, for any s S∈ , { }0, ,ys a b L B∈ ∪ ∪ . If { }0, ,ys a b B∈ ∪ , then it is 
clear that a bys T T∉ ∪  whether sy x=  or not. Thus ( )a bLS T T∩ ∪ =∅ , and 
hence  

( )( ), .a bC a b T T LS∪ ∪ ∩ =∅  

For any vertex 1x  in ( )\ a bB T T∪ , ( )1 ,x C a b∉  and it has degree greater 
than one. Hence for any ( )1 \ a bx B T T∈ ∪  and any 2x S∈ , there exists a vertex 
u B L∈ ∪  such that 1 0x u = . Then ( )1 2x x Ann u∈  and it implies  

( )1 2 ,x x C a b∉ . Thus ( )( ) ( )\ ,a bB T T S C a b ∪ ∩ =∅  . Finally, by [[5], Theo-
rem 4], the core of G together with 0 forms an ideal of S. Thus these arguments 
show that ( )\ , a bS C a b T T ∪ ∪   is an ideal of S. 

1) If both a and b are internal vertices, then  
( ) ( )\ , \ , a bS C a b S C a b T T = ∪ ∪  . In this case, ( )\ ,S C a b  is clearly an ideal 

of S. 
2) Now assume that b is not an internal vertex, and 2 0b ≠ . Again let bT  be 

the set of end vertices adjacent to b. By the above discussion, we already have 

{ } ( )( ) ( )0, , \ ,ba b L B T S C a b ∪ ∪ ∩ =∅  . Since 2 0b ≠ , we have { }2 0b bT T≤ ∪  
by Theorem 2.2(1). These facts show that ( )\ ,S C a b  is a sub-semigroup of S, 
and it completes the proof.                                           □ 

Remarks 2.5. In Theorem 2.4, if there is no ( )z V G∈  such that ( ),d s z =

3 , then the theorem may not hold. An example is contained in Example 3.1. 

3. Some Examples and Complete Classifications of the  
Graphs in Two Cases 

In this section, we use Theorem 2.4 to study the correspondence of zero-divi- 
sor semigroups and several classes of graphs satisfying the four necessary 
conditions of [[5], Theorem 1] as well as the general assumption of Theorem 
2.4. 

Example 3.1. Consider the graph G in Figure 1, where both U and V consist 
of end vertices. We claim that each graph in Figure 1 is a semigroup graph. 

In fact, first notice that ( ), 3id y V = , ( ) { }1, , , mC a b y y=  , and  
( ) { }1, , , nC a d x x=  . By Theorem 2.4, if G has a corresponding semigroup  

( ) { }0S V G= ∪ , then the subset { }( )1\ , , mS y y U∪  must be an ideal of S. If 
further 2 0a ≠ , then { }1\ , , mS y y  is a sub-semigroup of S. Also by [[7], Theo-
rem 2.1], { }( )1\ , , mS y y U V∪ ∪  is a sub-semigroup of { }( )1\ , , mS y y U∪ , 
and thus a sub-semigroup of S. 

For 2, 2m n= = , { }U u=  and { },V v v= , it is not very hard to construct a 
semigroup T such that ( ) { }1 2,T G y yΓ = −  following the way mentioned above.  
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Figure 1. A class of semigroup graph with both U and V consist of end vertices. 

 
Then after a rather complicated calculation, we succeed in adding two vertices 

1 2,y y  to this table such that ( )S GΓ = . The multiplication on S is listed in Ta-
ble 1 and the detailed verification for the associativity is omitted here: 

Notice that { }1 2\ ,S x x  is not a sub-semigroup of S since 1uv x= . Notice also 
that { }( )1 2\ , , , nS U x x x∪   is a sub-semigroup of S. 

We remark that the construction in Table 1 can be routinely extended for all 
1n ≥ , 1m ≥ , 0U ≥  and 0V ≥ , where each of , , ,m n U V  could be a finite 

or an infinite cardinal number. In other words, each graph in Figure 1 has a 
corresponding semigroup for any finite or infinite 1n ≥ , 1m ≥ , 0U ≥  and 

0V ≥ . 
Remark 3.2. Consider the graph G in Figure 1 and assume that 1n ≥ , 1m ≥ , 

0U ≥ , 1V ≥ . 
1) If we add an end vertex w which is adjacent to b, then the resulting graph 

G  has no corresponding zero-divisor semigroup, even if U =∅ . 
2) If we add a vertex w such that ( ) { },N w b d= , then the resulting graph H 

has no corresponding zero-divisor semigroup, even if U =∅ . 
Proof. (1) Assume v V∈ . We only need consider the case when U =∅ . 

Suppose that G  is the zero-divisor graph of a semigroup S with ( )V SΓ =  
( )V G . By Proposition 2.2(2), we have 1bx bv b= =  and 1dy dw d= = . Clearly, 

( ) ( ) { }1 1, ,0aw av Ann x Ann y a∈ ∩ = , and thus aw a=  and av a= . As awv =
av a= , we have ( ) ( ) ( )\wv Ann b Ann d Ann a ∈ ∩  . That means wv a=  and 

2 0a ≠ . We have 1 1 0y wv y a= =  and 1 1 0x wv x a= = . Thus 1 1y w x w d= =  and 

1 1y v x v b= =  by Lemma 2.1. Consider 1 1x y v . We have ( )1 1 1b x b x y v= = =

( )1 1 1 0y x v y b= = , a contradiction. The contradiction shows that G  has no 
corresponding semigroup. 

(2) Assume v V∈ . We only need consider the case U =∅ . Suppose that H is 
the zero-divisor graph of a semigroup S. We have  

( ) ( ) { }0,bS Ann y Ann w b⊆ ∩ ⊆ . Clearly,  
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Table 1. The associative multiplication table of S in Example 3.1. 

· a d b x1 x2 y1 y2 u v  v  

a a 0 0 0 0 0 0 0 a a 

d 0 d 0 0 0 d d d 0 0 

b 0 0 0 b b 0 0 b b b 

x1 0 0 b x1 x2 b b x1 x1 x1 

x2 0 0 b x2 x2 b b x2 x2 x2 

y1 0 d 0 b b d d y1 b b 

y2 0 d 0 b b d d y2 b b 

u 0 d b x1 x2 y1 y2 u x1 x1 

v  a 0 b x1 x2 b b x1 v v 

v  a 0 b x1 x2 b b x1 v v 

 

( ) ( ) ( ) { }\ ,wv Ann d Ann b Ann a a w ∈ ∩ ⊆   since wva wa a= = . If wv a= , 
then we have 1 1 0wvx ax= =  and 1 1 0wvy ay= = , which means  

( ) { }1 1, 0, ,wx wy Ann v v d∈ ⊆ . As ( ) { }1 1, \ 0wx wy Ann a∈ , we have  

1 1wx wy d= = . Then 1 1 1 10 dx wy x y d d= = = = , a contradiction. Now assume 
wv w=  and consider 1wx . ( ) ( ) ( ) { }1 0, , ,wx Ann a Ann d Ann b a b d∈ ∩ ∩ ⊆ . We 
claim 1wx d≠  since otherwise, 1 1 1 0d wx wv x wx v dv= = ⋅ = ⋅ = = , a contradic-
tion. In a similar way we prove { }1 ,wy a b∈ . Moreover, 1 1 1 1 0wy x y wx⋅ = ⋅ =  
whether 1wx a=  or 1wx b= . Thus 1wy a= . As 2 2

1 1 1 1 0x w y w x y w= = = , we have 
( ) ( ) { }2 2

1 1 1 1, , , ,0x y x y Ann a Ann w b d∈ ∩ ⊆ , but 1 1 0x y ≠ . Now consider 1 1x y . We 
conclude 1 1x y d=  since otherwise, 1 1x y b=  and it implies  

2
1 1 1 1 1 1b bx x y x x y b= = = ≠ , a contradiction. Finally, 1 1x y d=  implies  

{ }2
1 1 1 1 1 1 0,d dy y x y x y b= = = ∈ , a contradiction. This completes the proof.  

□ 
Now come back to the structure of semigroup graphs G satisfying the main 

assumption in Theorem 2.4. We use notations used in its proof. The vertex set of 
the graph was decomposed into four mutually disjoint nonempty parts, i.e., 
( ) { } ( ), ,V G a b C a b B L= ∪ ∪ ∪ , where after taking a c in ( ),C a b   

( ) ( ) ( ){ } ( ) ( ){ }| , , , 2 , | , 3 .B v V G v C a b d c v L v V G d c v= ∈ ∉ = = ∈ =  

(For example, for the graph G in Figure 1, ( ) { }, jC a b y= , B = { } { }iU d x∪ ∪ , 
L V= . In particular, L consists of end vertices.) By [[5], Theorem 1(4)], for each 
pair ,x y  of nonadjacent vertices of G, there is a vertex z with  

( ) ( ) ( )N x N y N z∪ ⊆ . Then we have the following observations: 
(1) No two vertices in L are adjacent in G. Thus a vertex of L is either an end 

vertex or is adjacent to at least two vertices in B. In particular, the subgraph in-
duced on L is a completely discrete graph. 

(2) A vertex in B is adjacent to either a or b. If a vertex k in B is adjacent to a 
vertex l in L, then k is adjacent to both a and b. Thus B consists of four parts: end 
vertices in Ta that are adjacent to a, end vertices in Tb that are adjacent to b, ver-
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tices in B2 that are adjacent to both a and b, and vertices in B1 that are adjacent 
to one of ,a b  and at the same time adjacent to another vertex in B. By Example 
3.1, the structure of the induced subgraph on 1 2B B∪  seems to be complicated. 
In the following, we will give a complete classification of the semigroup graphs G 
with 1 2 2B B∪ ≤ . 

First, consider the case 1 2 1B B∪ = . 
Theorem 3.3. Let G be a graph satisfying condition (Δ). Assume further that 
( )\ 1a bB T T∪ = . Then G is a semigroup graph if and only if the following con-

ditions hold: 
1) ( )1 ,C a b≤ ≤ ∞ , 1 W≤ ≤ ∞  and W consists of end vertices, where  

( ) ( ){ }1| , 3W s V G d c s= ∈ = . 
2) either aT =∅  or bT =∅ . (see Figure 2 with V =∅ .) 
Proof. As ( )\ 1a bB T T∪ = , ( ) 2\ a bB T T B∪ = . By the previous observations, 

we need only prove the following two facts. 
1) If 0aT ≥  and bT =∅ , then G is a subgraph of Figure 1 with 
( ),C a d =∅ . (see also Figure 2 with V =∅ .) We claim that G is a semigroup 

graph. In fact, if U =∅ , delete the three rows and the three columns involving 

1 2,x x  and u in Table 1 to obtain an associative multiplication on  
{ }( )1 1 2\ , , , nS S U x x x= ∪  . Clearly, ( )1S GΓ =  for ( ), 2C a b V= = ,  

( ), 0C a d U= =  in Figure 1. Also, the table can be extended for any finite or 
infinite ( ), 1C a b ≥  and 0V ≥  while 0U = . If 0U > , then we work out 
a corresponding associative multiplication table listed in Table 2, for 
( ) { }1 2, ,C a b y y= , { }1 2,U u u= , { }1 2,W v v=  in Figure 2. 
Clearly, the table can be extended for all finite or infinite ( ), 1C a b ≥ , 1U ≥  

and 1V ≥ . This completes the proof.                                 □ 
(2) If both 0aT >  and 0bT > , then we conclude that G is not a semigroup 

graph. 
In fact, in this case, G is a graph in Figure 2, where 1W ≥ , 1U ≥ , 1V ≥ . 

Assume u U∈ , v V∈ , w W∈  and ( ),c C a b∈ . We now proceed to prove that 
such a graph does not have a corresponding semigroup. 

Suppose that G is the zero-divisor graph of a semigroup S with  
( ) ( )V S V G Γ =  . By Proposition 2.2(2), we have 1du dv dc d= = = . Then  

1uc d ud d= = , which implies ( ) ( ) ( ) { }1 \ ,iuc Ann a Ann b Ann d c d ∈ ∩ ⊆  . 
 

 

Figure 2. A class of graph satisfying condition ( ∆ ) and ( ) 1B Ta Tb∪ = . 
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Table 2. The associative multiplication table of S for |U| > 0. 

· a b d y1 y2 u1 u2 v1 v2 

a 0 0 0 0 0 0 0 a a 

b 0 a 0 0 0 a a b b 

d 0 0 d d d d d 0 0 

y1 0 0 d d d d d a a 

y2 0 0 d d d d d a a 

u1 0 a d d d y1 y1 b b 

u2 0 a d d d y1 y1 b b 

v1 a b 0 a a b b v1 v1 

v2 a b 0 a a b b v1 v1 

 
Assume 1uc d= . Then 1 0uc w dw= = , and thus 1c w a=  by Lemma 2.1. As 

1c wv av a= = , we have ( ) ( ) ( ) { }1\wv Ann d Ann b Ann c d ∈ ∩ ⊆  , thus wv d= . 
Then 1 1a wvc dc d= = = , a contradiction. 

So 1 iuc c= , and therefore 1 0iwuc wc= ≠ . We have  

( ) ( ) ( ) { }1\ ,wu Ann a Ann d Ann c d ∈ ∩ ⊆   

and thus wu d= . Then 0b bw buw bd= = = = , a contradiction. This completes 
the proof.                                                         □ 

A natural question arising from Example 3.1 is if L only consists of end ver-
tices. The following example shows this is not the case. 

Example 3.4. Consider the graph G in Figure 3, where ( ) { }1 2, , , , mC a b c c c=  , 
{ }1 2, , , nL y y y=  , { }1 2,B x x V= ∪  ( 1m ≥ , 1n ≥ , 0V ≥  ) and V consists of 

end vertices adjacent to b. Notice that each of ,m n  and V  could be finite or 
infinite. We conclude that each graph in Figure 3 has a corresponding ze-
ro-divisor semigroup. 

Proof. We need only work out a corresponding associative multiplication ta-
ble for 2V m n= = = . We use Theorem 2.4 and list the associative multiplica-
tion in Table 3. Clearly, the table can be extended for all finite or infinite 

, 1m n ≥ , and 0V ≥ . 
This completes the proof. 

□ 
We have three remarks to Example 3.4. 
(1) Let 1, 1n m≥ ≥ . If we add to G in Figure 3 an end vertex u such that 

0au = , then the resulting graph G  has no corresponding zero-divisor semi-
group. 

Proof. (1) Suppose to the contrary that G  is the zero-divisor graph of a se-
migroup P with ( ) ( )V P V G Γ =  . By Proposition 2.2(2), we have { }2 0,a a∈  
and { }2 0,b b∈ . First, we have ( ) ( ) ( ) { }1 1 1 2 , ,0v y Ann b Ann x Ann x a b∈ ∩ ∩ =  
and similarly, { }1 1 1, ,uy c y a b∈ . Then 1 1v y a=  and 2a a=  since  

1 1 1av y ay a= = . On the other hand, 1 0auy =  and it implies 1uy b= . Similarly,  
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Figure 3. A class of semigroup graph with B2 = {x1, x2}. 

 
Table 3. The associative multiplication table of S in Example 3.4. 

· a b c1 c2 v1 v2 x1 x2 y1 y2 

a a 0 0 0 a a 0 0 a a 

b 0 0 0 0 0 0 0 0 b b 

c1 0 0 x1 x1 x1 x1 x1 x1 b b 

c2 0 0 x1 x1 x1 x1 x1 x1 b b 

v1 a 0 x1 x1 x1 v1 x1 x1 a a 

v2 a 0 x1 x1 x1 v1 x1 x1 a a 

x1 0 0 x1 x1 x1 x1 x1 x1 0 0 

x2 0 0 x1 x1 x1 x1 x1 x2 0 0 

y1 a b b b a a 0 0 y1 y1 

y2 a b b b a a 0 0 y1 y1 

 
we have 1 1c y b= . Consider 1 1c uy . We have ( ) ( )1 1 1 1 1 0b ub u c y c uy c b= = = = = , 
a contradiction. This completes the proof.                              □ 

(2) Let 1, 1n m≥ ≥ . If we add to G in Figure 3 an end vertex y such that 

1 0yx = , then the resulting graph G  has no corresponding zero-divisor semi-
group, whether or not bT =∅ .  

Proof. (2) Assume { }1,y y L⊆ , where y is an end vertex adjacent to 1x . 
Suppose to the contrary that G  is the zero-divisor graph of a semigroup P with 

( ) ( )V P V G Γ =  . First, ( ) ( ) ( ) { }2 1 1 1,0x y Ann a Ann x Ann y x∈ ∩ ∩ = . Thus  

2 1x y x= , and hence 2
1 0x = . By Proposition 2.2(2), we have 1 1 1c x x=  and there-

fore, 2
1 1 1c x x= . Thus { }2

1 2, |ic c x i∈ . We have 2
1 1 0c y =  since  

( ) ( ) ( ) { }1 1 1 2 , ,0c y Ann a Ann x Ann x a b∈ ∩ ∩ = . Since 2
1 2c x= , { }1 1, ,c y a b x∈  

and 2
1 2 1c y x y x= = , it follows that 1 1c y x= . Finally, 1 1 1 1 0c yy x y= =  and by 

Lemma 2.1, we have 1 1 1c y x= , contradicting { }1 1 ,c y a b∈ . This completes the 
proof. 

□ 
(3) Let 1, 1n m≥ ≥  and assume V =∅  in Figure 3. If further we add to G an 
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edge connecting 1x  and 2x , then the resulting graph G  has no correspond-
ing zero-divisor semigroup. 

Proof. Suppose to the contrary that G  is the zero-divisor graph of a semigroup 
P with ( ) ( )V P V G Γ =  . By Lemma 2.1, we have ( ) { }1 1 1 1 2, ,0c x Ann y x x∈ =  
and similarly, { }1 2 1 2,c x x x∈ . Then we have 2

1 1 0c x ≠  and 2
1 2 0c x ≠ , which means 

( ) ( ) ( ) ( ) { }2
1 1 2\ | 1,2, ,ic Ann a Ann b Ann x Ann x c i m   ∈ ∩ ∪ = =       

since 2
1 0c ≠  by Lemma 2.1. Similarly, we have { }2

1 | 1,2, ,iy y i n∈ =  . Clearly, 
we have ( ) ( ) { }1 1 1 1 2, , , ,0c y Ann a Ann x a b x x∈ ∩ ⊆ . Then as 2

1 1 1 0ic y c y= ≠  for 
some { }1,2, ,i m∈  , we have { }1 1 1 2,c y x x∈ . Finally,  

( ) 2
1 1 1 1 1 10 0ic y y c y c y= = = ≠  (for some { }1,2, ,i n∈  ), a contradiction. This 

completes the proof.                                                □ 
Combining the above results, we now classify all semigroup graphs satisfying 

the main assumption of Theorem 2.4 with 1 2 2B B∪ = : 
Theorem 3.5. Let G be a graph satisfying condition (Δ). Assume further  
( )\ 2a bB T T∪ = .  

(1) If ( )2 \ a bB B T T= ∪ , then G is a semigroup graph if and only if G is a 
graph in Figure 3, where 1 m≤ ≤ ∞ , 1 n≤ ≤ ∞  and 0 V≤ ≤ ∞ . 

(2) If 2 1B = , then G is a semigroup graph if and only G is a graph in Figure 
1, where 1n = , 1 m≤ ≤ ∞  0 V≤ ≤ ∞ , 0 U≤ ≤ ∞ . 

Proof. (1) By Example 3.4, each graph in Figure 3 is a semigroup graph. 
Clearly, ( )2 \ a bB B T T= ∪  and it consists of two vertices. Conversely, the result 
follows from [[7], Theorem 2.1] and the three remarks after Example 3.4. 

(2) If 2 1B = , then assume ( ) { }1 2\ ,a bB T T x x∪ = , where 2a x b− − . In this 
case, 1 2x x−  in G. If 1x a−  in G, then there is no end vertex adjacent to 1x . 
In this subcase, G is a semigroup graph if and only if bT =∅  by Example 3.1 
and Remark 3.2(1), the case of ( ), 1C a d = . The other subcase is 1x b−  in G, 
and it is the same with the above subcase. This completes the proof.  

□ 
It is natural to ask the following question: Can one give a complete classifica-

tion of semigroup graphs ( )G S= Γ  with 1 2B B n∪ =  for any 3n ≥ ? At 
present, it seems to be a rather difficult question. 

Add two end vertices to two vertices of the complete graph Kn to obtain a new 
graph, and denote the new graph as 2nK + . By [[14], Theorem 2.1], 2nK +  
has a unique zero-divisor semigroup S such that ( ) 2nS KΓ ≅ +  for each 4n ≥ . 
Having Theorem 2.4 in mind, it is natural to consider graphs obtained by adding 
some caps to 2nK + . 

Example 3.6. Consider the graph G in Figure 4. The subgraph G1 induced on 
the vertex subset { }*

1 2 1 2, , , , ,S a b x x y y=  is the graph 4 2K + , i.e., K4 together 
with two end vertices 1 2,y y . Then G1 has a unique corresponding zero-divisor 
semigroup { }* 0S S= ∪  by [[15], Theorem 2.1]. We can work out the corres-
ponding associative multiplication table, and list it in Table 4. 

(1) If we add to G1 a vertex c such that ( ) { },N c a b= , then the resulting 
graph H1 has no corresponding zero-divisor semigroup. 

(2) If we add to G1 a vertex d such that ( ) { }1,N d a x= , then the resulting  
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Figure 4. “caps” added to K4 + 2. 

 
Table 4. The associative multiplication table of K4 + 2. 

· a b x1 x2 y1 y2 

a a 0 0 0 a a 

b 0 0 0 0 x2 x1 

x1 0 0 0 0 0 x1 

x2 0 0 0 0 x2 0 

y1 a x2 0 x2 y1 a 

y2 a x1 x1 0 a y2 

 
graph H2 has no corresponding zero-divisor semigroup. 

(3) If we add to G1 vertices ic  ( i I∈ ) such that ( ) { }1 2,iN c x x= , then the 
resulting graph H has corresponding zero-divisor semigroups, where I could be 
any finite or infinite index set. 

In each of the above three cases, we say that a cap is added to the subgraph 

4 2K + . 
Proof. (1) Suppose that H1 is the zero-divisor graph of a semigroup S1 with 

( ) ( )1 1V S V H Γ =  . Then by Theorem 2.4, S is an ideal of { }1S S c= ∪ . Thus 
we only need check the associative multiplication of S1 based on the table of S 
already given in Table 4. First, we have 2 2cx x=  by Proposition 2.2(2). Consid-
er 1y bc . Clearly, ( ) ( )1 1 1 2 20 0y cb y c by cx x= = = = = , a contradiction. This com-
pletes the proof. 

(2) Suppose that H2 is the zero-divisor graph of a semigroup { }2S S d= ∪  with 
( ) ( )2 2V S V H Γ =  . If 2

1 0x ≠ , then by Theorem 2.4(2), S is a sub-semigroup of 
S2. Then ( ) 4 2S KΓ = + , and it implies 2

1 0x =  by Table 4, a contradiction.  
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Table 5. The associative multiplication table of K4 + 2 with some caps on x1, x2. 

· a b x1 x2 y1 y2 c1 c2 

a a 0 0 0 a a a a 

b 0 b 0 0 b b b b 

x1 0 0 x1 0 0 x1 0 0 

x2 0 0 0 x2 x2 0 0 0 

y1 a b 0 x2 y1 c1 c1 c1 

y2 a b x1 0 c1 y2 c1 c1 

c1 a b 0 0 c1 c1 c1 c1 

c2 a b 0 0 c1 c1 c1 c1 

 
In the following we assume 2

1 0x = . 
By Lemma 2.1, we have 2 0d ≠ , and thus ( ) { }1 2 1, , ,0ay ay Ann d a x∈ = . Clearly 

1 0ay ≠  and we can have 2ay a= . (Otherwise, 2 1ay x=  and we have  
( )1 1 2 1 1 20 0x y ay y ay y= = = ≠ , a contradiction.) Then 1 2 0ay y ≠ , and thus  

( ) ( ) ( )1 2 1 2 \y y Ann x Ann x Ann a ∈ ∩  . It means 1 2y y a=  and 2 0a ≠ . Clearly 

1 2 0by y = , and thus 1 2by x= , 2 1by x=  by Lemma 2.1. Similarly, 1 2 0cy y ca= =  
and thus 1 2cy x= , 2 1cy x= . Finally, consider 1bcy . We have  

( ) ( )2 1 1 2 20 bx b cy c by cx x= = = = = , a contradiction. This completes the proof. 
(3) Suppose that H is the subgraph of G in Figure 4 induced on the vertex set 

{ }* |iS c i I∪ ∈ . Assume that H is the zero-divisor graph of a semigroup P with 
( ) ( )V P V H Γ =  . Clearly, it dose not satisfy the condition of Theorem 2.4. For 
2I = , we work out an associative multiplication table and list it in Table 5: 

The table can be easily extended for any finite or infinite index set I.       □ 
We remark that in Example 3.6, replace K4 by Kn for any 5n ≥ , the results 

still hold. There exists no difficulty to generalize the proofs to the general cases. 
Thus we have proved the following general result. 

Theorem 3.7. Assume 4n ≥  and let 2nG K= +  be the complete graph Kn 
together with two end vertices. Add some (finite or infinite) caps to the sub-
graph Kn to obtain a new graph H such that G is a subgraph of H. Then H is a 
semigroup graph if and only if each of the gluing vertices is adjacent to an end 
vertex in G. 
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