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Abstract 
The sex ratio of crocodiles is strongly biased towards females, often as high as 
10 females to 1 male. In crocodilians, the temperature of egg incubation is the 
environmental factor determining sex. If the temperature is low, around 
30˚C, the hatchlings are all females. Higher temperature, around 34˚C, hatch 
all males. This study was made to consider the asymptotic stability of a posi-
tive equilibrium point in a nonlinear discrete model of the basic nesting pop-
ulation model, which is described in three-region depending on the tempera-
ture of egg incubation. This model is based on key life-historical data and 
Murray’s research. To study above, we have applied the classical linearization 
method and P. Cull’s method and moreover, we employ non-standard discre-
tization methods for later our Equations (6)-(8) and (15).  
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1. Introduction and Motivation 

Recently, Murray [1] has studied crocodilians population model with time-de- 
pendent. However, he and other investigators only treat differential equations 
model. It is well known that differential equations are advantageous for ecologi-
cal models when the number of individuals is large, but the difference equations 
are more realistic for biological populations where the population is not so large 
(in the case of crocodiles, its population is about 10 million less than human 
population). So, in this paper, we consider the difference equation models.  

By the way, in the following all sentence, we modified the introduction to [2]. 
Some species are extinct and some are not, making it a fascinating theme, and 
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for example, we know the three families of crocodilian (crocodiles, alligators and 
gavials) not become extinct during the past 100 million or so years. They have 
survived essentially unchanged for around over 63 million years after the dino-
saurs became extinct and clearly have great survival powers [3]. 

In 1988, Carroll [4] suggested that the decline of the genera was probably due 
to climatic deterioration from around the beginning of the Caenozoic (over 63 
million years ago) era. A crucial difference between the crocodilian and most 
other species is that their hard sex is determined by the incubation temperature 
of the egg during gestation, basically females at low temperatures and males at 
high temperatures. It is interesting to speculate whether this could be a possible 
explanation, or at least a significant contributory factor, for their incredible sur-
vivorship, and if so, how. 

In this paper, we discuss mathematical models to investigate this hypothesis. 
In genetic sex determination (GSD) such as for mammals and birds, sex is fixed 
at conception. Environmental sex determination (ESD), is when sex is deter-
mined by environmental factors and occurs in other vertebrates and some in-
vertebrates (see, for example, Charnov and Bull [5] and Deeming and Ferguson 
[6] [7] [8]). Temperature-dependent sex determination (TSD) is often observed 
in reptiles. Other than crocodiles, alligators and the rest of the crocodilian, sev-
eral reptiles, such as some lizards and certain turtles, the temperature of egg in-
cubation is the major factor determining sex. The temperatures that produce all 
male or all female hatchlings vary little between the different species of crocodi-
lian. Females are produced at one or both extremes of the range of viable incu-
bation temperatures, and the intermediate temperatures produce males. For ex-
ample, in Alligator Mississippians is artificial incubation of eggs at low temper-
atures, 30˚C and below, produces females; 33˚C produces all males; while high 
temperatures, 35˚C, give 90 percent female hatchlings. Ferguson and Joanen [9] 
incubated 500 alligator eggs and found that all the young are male if the eggs are 
incubated in the range 32.5˚C - 33˚C. Temperatures in between, that is, 32˚C 
and from 33.5˚C - 34.5˚C produce both sexes. 

Reproductive fitness of males and females are strongly influenced in different 
ways by environment. Sex starts to be determined quite early in gestation, by 
about the twelfth day into gestation, but is not irrevocably fixed until as late as 
32 to 35 days. For Alligator Mississippians, the gestation is around 65 days for 
males and up to 75 days for females. Exact data can be found in the review by 
Ferguson [10].  

A very important question is that TDS has evolved to crocodilian. To answer 
this, we see that observation of TDS in the natural habitat of Mississippians in 
Louisiana, USA, indicate there are basically three different types of nest site: wet 
marsh, dry marsh and levee (elevated firm ground). Broadly, levee nests are hot 
(34˚C) and hatch approximately 100 percent males while in the wet marsh, nests 
are cool (30˚C) and hatch approximately 100 percent females. There are also 
temperature variations within the nest but we do not include this aspect in our 
models, although they could be incorporated in a more sophisticated version. 
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Dry marsh nests have an intermediate temperature profile, the hot (34˚C) top 
center hatching males, and the cold (30˚C) peripheries and base, hatching fe-
males (Ferguson and Joanen [9] [11]). Since so few viable reproductive female 
alligators are hatched at temperatures higher than 34˚C we do not include this 
cohort in our modelling.  

The female alligator (and crocodile) does not choose the sex of her offspring 
perse. In particular, a limited number of marsh nest sites will prevent a totally 
female population from occurring although female alligators and crocodiles tend 
to seek a temperature environment that is as close as possible to that of their 
own incubation (see Pooley [12]) and so the preferred habitat of females is 
marsh. Joanen [13] gives some field data for the relative size of these different 
nest site areas; we give these at the appropriate place in the modelling below 
when we estimate parameter values. In the models, we develop here we focus on 
the principal feature of TSD, namely, the effect of temperature on sex determi-
nation.  

However, one of the selective advantages of TSD is the association of maxi-
mum potential for adult growth with sex. Male alligators and crocodiles control 
harems of females; large males control bigger harems, mate more often and for a 
longer season (see Deeming and Ferguson [8]). Selective advantages for TSD in 
alligators and crocodiles is possibly explained in terms of survival of the species 
rather than the fitness of the individual which is a fundamentally different ap-
proach to that of the selfish gene.  

Here we mainly focus on the link between temperature-dependent sex deter-
mination, sex ratio and survivorship in crocodile populations. We first describe 
a simple density-dependent model involving only time to highlight the ideas and 
motivate the more complex density-dependent model for the population dy-
namics of crocodilians based on the fact that sex is determined by temperature 
of egg incubation. 

We follow the model of Woodward and Murray [1], and our modelling re-
flects the stability of crocodilian populations in the wild, and this stability sug-
gests selective advantages for environmental sex determination over genetic sex 
determination that cannot be explained in terms of traditional sex ratio theory. 

Some reptiles, such as the crocodilian, are not genetic sex determination (GSD) 
as in mammals but temperature-dependent sex determination (TSD). In croco-
diles, females are produced at one or both extremes of the range of viable incu-
bation temperatures, and the intermediate temperatures produce males. Female 
crocodiles account for a significant proportion of the population which is the 
heavily biased sex ratio, as high as 10:1 in favor of females in crocodilians. This is 
difficult to explain in terms of traditional sex ratio theory. 

Therefore, Murray’s paper [1] has shown the asymptotic stability of a positive 
equilibrium point in a nonlinear differential equation of crocodilians population 
model which is based on life history date from studies of crocodile and alligator 
populations in the wild. Furthermore, in order for crocodiles to preserve their 
species by themselves, he proved that temperature-dependent sex determination 
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(TSD) is superior to genetic sex determination (GSD). 
Murray [1] [2] has shown only the simplified two-region model of crocodilian 

population, but he does not prove clearly the stability analysis of the model tak-
ing into account three nesting region. Moreover, the number of crocodilian pop-
ulations is decreasing to such an extent they are endangered (e.g., the wild pop-
ulation of Alligator Mississippians is about 1 million). 

The purpose of this paper is to demonstrate that the asymptotic stability of a 
positive equilibrium points in the difference equation of crocodilians population 
model by using non-standard discretization method for some biological models 
by H. Alkahby, F. Dannan and S. Elaydi [14]. Especially, we are not only consi-
dering two-region but also prove the stability property in three-region model of 
crocodile population, because Murray does not detailed proof that. And also, 
Hamaya and Saito [15] consider the asymptotic behavior of crocodilians model 
with diffusion for the region II and III of their inhabits. However, we should take 
notice that our mathematical model is ultimately mathematical analysis to re-
search the population of crocodilian in the future. 

2. The Crocodilian Population Model 

We describe a basic three-region model for the populations of males and females 
which depends only on time. We incorporate some crucial spatial elements in 
the model based on the observations of Ferguson and Joanen [9] [11]. We as-
sume that there are 3 distinct nesting regions:  

I. Wet marsh, producing all female hatchlings because of low incubation tem-
peratures in these sites,  

II. Dry marsh, producing 50 percent male and 50 percent female hatchlings,  
III. Dry levees, producing all male hatchlings because of higher incubation 

temperatures.  
Table 1 schematically illustrates what we have in mind for these three regions. 
We comply with the Murray’s model and assume that there are 3 distinct 

nesting regions as following Table 1 which is indicated from the source of [2] 
[16]. Male and female populations depend on density. We assume that there is a 
limited number of nest sites near the water which prevents a totally female popu-
lation. According to Joanen (1969 [13], cf. [1] [2]), typical figures for percentages 
of the total nest sites in each of these regions are region I: 79.7%, region II: 13.6%, 
region III: 6.7%. Also, total number females are ( ) 1 2f n f f= +  and total num-
ber of males are ( ) 2 3m n m m= + . 
 
Table 1. Environment of three distinct nesting regions. 

 Region I Region II Region III 

Nesting area wet marsh dry marsh dry levees 

Temperature 30˚C 32˚C 34˚C 

Population ( )1f n  ( ) ( )2 2,f n m n  ( )3m n  

Incubated sex only females males and females (50/50) only males 

https://doi.org/10.4236/apm.2023.135015


K. Saito, Y. Hamaya 
 

 

DOI: 10.4236/apm.2023.135015 215 Advances in Pure Mathematics 
 

Now, for each subscript i, ik  denotes the carrying capacity of each region, 

if  denotes the number of females of region, im  denotes the number of males. 
Furthermore, all females can nest in region I when 1f  is smaller, but if 1f  is 
larger, most females have to go away region I for making a nest. Here, let F be 
the population of female that can make a nest in region I;  

1

1 1

.
kF

k f
=

+
                           (1) 

Equation (1) satisfies the following,  

( ) ( )1 1
1 1

1 1 1 1

0 and 1 0 .
k kF f F f

k f k f
= → →∞ = → →

+ +
        (2) 

In Murray’s differential population model, the equation of the population 
model in region I as follows;  

1 1
0 1 1

1 1

d
.

d
f kb f df
t k f

 
= − + 

                     (3) 

For Equation (3), b denotes the birth rate. Let C be the number of eggs per 
time, S be the survival rate, we can denote the effective birth rate by 0CSb b= . d 
denotes proportional parameter, the death rate are proportional to the popula-
tion with d a parameter. Still, all parameter are the positive constants. 

In region II, the total number of females is the sum of population who moved 
from region I and want to make nest in region II, but can nest population in re-
gion 2 is limited. Furthermore, because of male and female is fifty-fifty ratio in 
region II, equation of the population model in region II are  

2
02 1 2

2 2
1 1 2 1 2

2
02 1 2

2 2
1 1 2 1 2

d
,

d 2

d
.

d 2

bf f kf df
t k f k f f

bm f kf dm
t k f k f f

  
= + −  + + +  

  
= + −  + + +  

              (4) 

For Equation (4), ( )( )2
1 1 1 2f k f f+ +  denotes the total number of females 

who want to nest in region II, ( )( )2 2 1 2k k f f+ +  denotes the total number of 
females nesting region II. 

The female who could not nest in region II, move to region III to make nest. 
Since only male is born in region III, equation of the population model in region 
III is  

2
3 3 1 1 2

0 2 3
3 1 2 1 1 2 1 2

d
.

d
m k f f fb f dm
t k f f k f k f f

    +
= + −    + + + + +   

         (5) 

For Equation (5), ( )( ) ( ) ( )( )2
1 1 1 2 1 2 2 1 2f k f f f f k f f+ + + + +  denotes the to-

tal number of females of who want to nest in region III and ( )( )3 3 1 2k k f f+ +  
denotes the total number of females nesting region III.  

3. Difference Equations Model 

Now, we rewrite Equations (3), (4), (5) with the following difference equations 
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in order to verify the Murray’s model. After this we consider these equations. 
From Equation (3) of region I, we have  

( ) ( ) ( ) ( ) ( ) ( ) ( )1
1 1 1 0 1 1 1

1 1

1 1 ,
kf n f n h b f n h df n

k f n
ϕ ϕ

 
+ − = + −  + 

 

where ( )1
1 e dh

h
d

ϕ
−−

= , ( ) ( )1 h h o hϕ = +  and ( )o ⋅  is Landau’s small order, 

and then, we have  

( )
( )( ) ( )( )
( )( ) ( )

( )1 1 1
1 1

1 0 1 1

1
1 .

1
h d k f n

f n f n
h b k f n

ϕ

ϕ

− +
+ =

− +
             (6) 

Similarly, from Equation (4) of region II we obtain  

( ) ( ) ( )
( ) ( ) ( ) ( )

( )( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

( )( ) ( )

2
2 0 1 2

2 2
1 1 2 1 2

2 2

2
2 0 1 2

2 2
1 1 2 1 2

2 2

1 1
2

1 ,

1
2

1 .

h b f n kf n f n
k f n k f n f n

h d f n

h b f n km n f n
k f n k f n f n

h d m n

ϕ

ϕ

ϕ

ϕ

  
+ = + +    + + +  

+ −

  
+ = +    + + +  

+ −

    (7) 

From Equation (5) of region III  

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( )( ) ( )

2
1 3

3 3 0 2
1 1 3 1 2

1 2
3 3

2 1 2

1

1 .

f n k
m n h b f n

k f n k f n f n

f n f n
h d m n

k f n f n

ϕ

ϕ

  
+ = +    + + +  

 +
× + −  + + 

      (8) 

4. Stability of the Population: Considering Two-Region 

First, we assume 2 0f =  and consider the simplified model which making region 
I and region III because the number of nesting females in region II is significantly 
lower than in region I. Incidentally, this assumption is biologically realistic. 

As we do not consider region II, we set 2 2 0f k= = . From Equations (6) and 
(8)  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )
( ) ( ) ( )

1
1 1 1 0 1 1 1

1 1

2
13

3 3 3 0 3 3
3 1 1 1

1 1 ,

1 , 0.

kf n f n h b f n h df n
k f n

f nk
m n m n h b h dm n n

k f n k f n

ϕ ϕ

ϕ ϕ

 
+ − = + −  + 

  
+ − = − ≥    + +  

(9) 

We set initial condition of (9) is given by  

( ) ( )1 0 3 00 0, 0 0.f f m m= > = >                   (10) 

Existence of unique positive solution ( )1 3,f m  of (9) is guaranteed when the 
initial conditions (10) hold. In (9), let ( )1 3,E f m+ ∗ ∗=  be a positive equilibrium 
point (steady state). 
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If 1 0f ∗ ≠ ,  

1
0

1 1

0 ,
kb d

k f ∗= −
+

 

then  

0
1 1 1 .

b
f k

d
∗  = − 

 
                       (11) 

Similarly, we have  
2

0 3 1
3

3 1 1 1

.
b k fm
d k f k f

∗
∗

∗ ∗

  
=   

+ +  
                 (12) 

Theorem 1. If ( )0b CSb d= > , then the positive equilibrium point:  
( )1 3,E f m+ ∗ ∗=  of (9) with two-nesting regions is locally asymptotically stable, 

and more over ( )1 3,E f m+ ∗ ∗=  of (9) is globally asymptotically stable.  
Proof. We put 1f x= , 3m y= . From (9), we define  

( )
( )( )( )
( )( )

( ) ( ) ( )( )

1

0 1

2
3

0
3 1

1
, ,

1

, 1 ,

h d k x
f x y x

h b k x

k xm x y h b d h y
k x k x

ϕ

ϕ

ψ ψ

− +
=

− +

 
= ⋅ + − + + 

        (13) 

where ( ) ( ) ( ) ( )1 3,h h h hϕ ϕ ψ ϕ= = . Then we have  

( ) ( )( ) ( )( )( )
( )( )( )

2 2
1 0 0 1

2

0 1

e 2 1 1,
,

1

dh

x

x k h b x h b kf x y
f

x h b k x

ϕ ϕ

ϕ

− + − + −∂
= =

∂ − +
 

( ),
0,y

f x y
f

y
∂

= =
∂

 

( ) ( )
( )

( )
( )

22
13 3

0 2 2
1 3 13

, 2
,x

m x y x k x xk kxm h b
x k x k x k xK x

ψ
 ∂ + −− = = ⋅ + ⋅
 ∂ + + ++ 

 

( ) ( )
,

1 .y

m x y
m d h

y
ψ

∂
= = −

∂
 

In the case of a positive equilibrium point ( )* *
1 3,E f m+ =  of (9), Jacobian 

matrix is given by  

( )

( ) ( )( )
( )( )

( )
( )
( ) ( )

2 2
1 1

2
1

2 2 2
1 3 3 1 3

0 2 2
3 1

e 2
0

,
2

e

dh

dh

C k h C h k

h k C
J E

k k k C k k C
h b

k C k C
ψ

−

+

−

 + Φ +Φ
 
 Φ +
 =
  + +  
  + +  

        (14) 

where, ( ) ( ) 01h h bϕΦ = −  and 0
1 1

b
C k

d
 = − 
 

. The eigenvalue of (14) is its di-

agonal elements and less than 1 (cf. [17]);  
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( ) ( )( )
( )( )

2 2
1 1

1 22
1

e 2
1 and e 1 for 0, 0.

dh
dh

C k h C h k
d h

h k C
λ λ

−
−

+ Φ +Φ
= < = < > >

Φ +
 

Because, it is clear from ( )0d b CSb< =  that ( ) ( ) 01 1h h bϕΦ = − < , and 
moreover, we set  

( ) ( )
( )( )

2
1

2
1

e
0.

dh C k
f h

h k C

− +
= >

Φ +
  

Since, ( ) ( )0 1, 0f f h′= <   and ( )lim 0h f h→∞ = , we obtain that ( ) 1f h < . 
Thus, we have  

( )
( )( )

( )
( )( )

( )
2 22 2

1 1 1
1 2 2

1 1

e 2 1 1 e
1.

dh dhC k C k C k
f h

h k C h k C
λ

− −+ ⋅ ⋅ + ⋅ +
< = = <

Φ + Φ +
  

That is, 0d b<  is necessary condition with a positive equilibrium point 1f
∗ . 

Moreover, from (13) we obtain  

( ) ( )( )
( )( )

( )
2 2

1 1

2
1

e 2
1 1 0, 0 .

dh

x

x k h x h k
f x

h k x

− + Φ +Φ
+ = + ≠ ≥

Φ +
 

Equation ( )1n nx f x+ =  for 0x ≥  has no two-cycle since 1 0xf + ≠ . There-
fore, 1f

∗  is globally asymptotically stable of ( )1n nx f x+ =  (cf. Theorem 2.6 and 
Theorem 2.7 in [18]). 

Similarly,  

( ) ( )1 2 0, 0 .ym d h yψ+ = − ≠ ≥  

Equation ( )1n ny m y+ =  for 0y ≥  has no two-cycle since 1 0ym + ≠ . There-
fore, 3m∗  is globally asymptotically stable of ( )1n ny m y+ = . 

5. Stability of the Population: Considering Three-Region 

Next, we consider the stability of the population in three-region model which 
included region II. From (6), (7), (8), we have  

( )
( )( ) ( )( )
( )( ) ( )

( )

( )
( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( ){ } ( )( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )
( ) ( )

1 1 1
1 1

1 0 1 1

2
2 0 2 1 1 1 2 1 2 2 2

2
2 1 2 2 0 2 1 1

2
2 0 1 2

2 2 2 2
1 1 2 1 2

2
1

3 3 0 2
1 1

1
1 ,

1

2 1
1 ,

2

1 1 ,
2

1

h d k f n
f n f n

h b k f n

h b k f n k f n k f n f n h d f n
f n

k f n f n h b k k f n

h b f n km n f n h d m n
k f n k f n f n

f n
m n h b f n

k f n

ϕ

ϕ

ϕ ϕ

ϕ

ϕ
ϕ

ϕ

− +
+ =

− +

+ + + + −
+ =

+ + − +

  
+ = + + −    + + +  

 
+ = + + ( ) ( )

( ) ( )
( ) ( ) ( )( ) ( )

3

3 1 2

1 2
3 3

2 1 2

1 , 0,

k
k f n f n

f n f n
h d m n n

k f n f n
ϕ

 
   + + 

 +
× + − ≥  + + 

 (15) 

whenever ( ) ( ) ( )2 1 2 2 0 2k f n f n h b kϕ+ + >  for an equation of ( )2 1f n +  in (15). 
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However, this condition: ( ) ( ) ( )2 1 2 2 0 2k f n f n h b kϕ+ + >  automatically yields. 
We set the initial condition of (15) is given by  

( ) ( ) ( )( ) ( )1 0 2 2 3 00 0, 0 0 0, 0 0.f f f m m m= > = > = >       (16) 

We also hold for unique positive solution of (15) with the initial condition 
(16). Moreover, as in the case of three-region, we can get the following equili-
brium points which are given by setting the left-hand sides of each equation of 
(15) equal to ( )* *, 1, 2,3; 2,3i jf m i j= = ,  

( )

( )
( )

2
0

1 1 2 2

3 2 1 2
3

2 3 1 2

2
0 2 1

1 2
1

1 , ,
2

2
,

2
where 1 , .

2

b
f k f m

d

k f f f
m

k k f f

b k ff k
d k

α α β

α β

∗ ∗ ∗

∗ ∗ ∗
∗

∗ ∗

∗
∗

− + + = − = = 
 

+
=

+ +

 = − − = 
 

          (17) 

Theorem 2. If 0 2d b d< < , then a positive equilibrium ( )( )1 2 2 3, ,f f m m∗ ∗ ∗ ∗=  
of (15) with three-nesting regions is locally asymptotically stable.  

Proof. We put ( ) ( ) ( )1 2 2, ,f n x f n y m n z= = =  and ( )3m n w= . From (15), 
we have  

( )
( )( )( )
( )( )

( )
( ) ( )( ) ( )( )

( ) ( ){ }( )

( ) ( ) ( )( )

( ) ( )

1 1
1

1 0 1

2
2 0 2 1 2 2

2
2 2 0 2 1

2
2 0 2

2 2
1 2

2
3

3 3 0
3 1 2

1
, , ,

1

2 1
, , , ,

2

, , , 1 ,
2

, , , 1

h d k x
f x y z w x

h b k x

h b k x k x k x y h d y
f x y z w

k x y h b k k x

h b kxm x y z w y h d z
k x k x y

k x x ym x y z w h b y
k x y k x k x y

ϕ

ϕ

ϕ ϕ

ϕ

ϕ
ϕ

ϕ ϕ

− +
=

− +

+ + + + −
=

+ + − +

  
= + + −  + + +  

  +
= ⋅ + + −  + + + + +  

( )( )3 .h d w

(18) 

In the case of a positive equilibrium point ( )* * * *
1 2 2 3, , ,E f f m m+ =  of (15), Ja-

cobian matrix is given by  

( ) ( )
( )

1

2 2

2 2 2

3 3 3

0 0 0
0 0

,
1 0

0 1

x

x y

x y

x y

f
f f

J J E
m m h d
m m h d

ϕ
ϕ

∗

∗ ∗
+

∗ ∗

∗ ∗

 
 
 = =  − 
 − 

         (19) 

and then  

( )( )
( )( )

1

2 2

2 2 2

3 3 3

0 0 0
0 0

0,1 0

0 1

x

x y

x y

x y

f
f f

J E m m h d

m m h d

µ
µ

µ
ϕ µ

ϕ µ

∗

∗ ∗

∗ ∗

∗ ∗

−
−

− = =
− −

− −

  (20) 

where  
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( )

( )
( )

( )
( )

* * * *
1 2 2 3

* * * *
1 2 2 3

*

, , ,

*

, , ,

, , ,
,

, , ,
2,3 .

i
ix

x f y f z m w m

i
iy

x f y f z m w m

m x y z w
m

x

m x y z w
m i

y

= = = =

= = = =

∂
=

∂

∂
= =

∂

 

Thus, ( )1 2 2, ,1x yf f h dµ ϕ∗ ∗= −  and ( )31 h dϕ− . Here, the eigenvalue µ  of (20) 
is its diagonal elements and 1 1xf ∗ < , ( ) ( )1 1 2,3i h d iϕ− < =  are clear. We next 
can see 2 1yf ∗ < . From (18), we have  

( )
( ) ( ) ( )( )

( )( )( ) ( ) ( )( ) ( )( )( )
( ) ( )( )

2
2 0 2

2 2
1 2 2 0 2

2
2 2 2 2 0 2 2 2

2
2 2 0 2

2

2

2 1 2 2 4 1

2

y

h b k x
f

k x k x y h b k

h d k x y k x y h b k h d k y xy y

k x y h b k

ϕ

ϕ

ϕ ϕ ϕ

ϕ

−
=

+ + + −

− + + + + − − − + +
+

+ + −

 

and  

( )

( )
( )

( ) ( ) ( )( )
( )( ) ( ) ( ) ( )( ) ( ){ }

( ) ( )( )
( )

( ) ( ) ( )( )

* * * *
1 2 2 3

2
2

, , ,

*2
2 0 2 1

2* * *
1 1 2 1 2 2 0 2

* * * * * * * *2
2 2 1 2 2 1 2 2 0 2 2 2 1 2 2

2* *
2 1 2 2 0 2

*2
2 0 2 1

2* * *
1 1 2 1 2 2 0 2

, , ,

2

2

2 1 2 2 2

2

2

2

2 1

y
x f y f z m w m

f x y z w
f

y

h b k f

k f k f f h b k

h d k f f k f f h b k k f f f f

k f f h b k

h b k f

k f k f f h b k

ϕ

ϕ

ϕ ϕ

ϕ

ϕ

ϕ

∗

= = = =

∂
=

∂

−
=

+ + + −

− + + + + − − + +
+

+ + −

−
=

+ + + −

+
( )( )( )

( ) ( )
( )( ) ( )

( ) ( )( )
* * * * *

2 2 1 2 2 2 2 1 2

2* * * *
2 1 2 2 0 2 2 1 2 2 0 2

2 4 1
.

2 2

h d k f f h d f k f f

k f f h b k k f f h b k

ϕ ϕ

ϕ ϕ

− + + − + +
−

+ + − + + −

 (21) 

Now, from (17), we obtain  

( )
2

2 0 1
2 2 1 2 2

1 1

,
2

k b ff k f f f
d k f

∗
∗ ∗ ∗ ∗

∗

 
+ + = + 

+ 
               (22) 

and here, we note that  

( ) ( )* *0
1 2 2 1 2 2 0 21 0, and 2 ,

2
b

f k k f f h b k
d

α ϕ∗  = − − > + + > 
 

 

by (15), (17) and the assumption 0 2b d< . Then, by inserting (22) into the third 
term of (21), we have  

( ) ( ) ( ){ } ( )( )

( )( )( )

* * *2 * *
2 0 2 2 1 1 0 2 1 1 1 2 2

2 2

* *
2 2 1 2

2 2 1

2 1 2

y

h b k f k f b k f k f f h d d
f

L
h d k f f

L

ϕ ϕ

ϕ

∗
− + − + + −

=

− + +
+
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( ) ( )( )( )

( )( )( )

( ) ( )( ) ( )( )

( )( )( )

* * *
2 0 2 1 0 2 1 1 2

2

* *
2 2 1 2

* *2
2 0 2 2 *0 2 1

2 0 2 2 2* *
1 1 1 1

2

* *
2 2 1 2

2 2 1

2 1 2

2 2 1 2 1

2 1 2
,

h b k f d b k d h k f f

L
h d k f f

L
h b k f b k f d h b k f d h

k f k f
L

h d k f f

L

ϕ ϕ

ϕ

ϕ
ϕ ϕ

ϕ

− − − +
=

− + +
+

− − − − −
+ +

=

− + +
+

    (23) 

where ( ) ( )* *
2 1 2 2 0 22L k f f h b kϕ= + + − . It is sufficient from (23) to prove *

2 1yf <  
that  

( ) ( )

( ) ( )

*2
* * *1

2 0 2 2 2 1 2*
1 1

**2
2 * * *0 2 0 2 21

2 2 2 1 2* *
1 1 1 1

2 2 2

2 2
2 2 ,

fh b k f k f f L
k f

b k b k ffL f h d k f f L
d k f k f

ϕ

ϕ

 
+ + + + 

+ 
 

< + + + + + + 
+ + 

 

that is, we show that  

( ) ( )( )

( ) ( )

*2
* * 2 *0 2 1

2 1 2 2 2*
1 1

*
* * 0 2 2

2 2 1 2 *
1 1

4
2 2 1

2

2
2 2 .

b k fk f f L L f h d
d k f

b k f
h d k f f L

k f

ϕ

ϕ

 
+ + < + + − 

+ 

+ + + +
+

 

We now have  

( )( )( ) ( )

( ) ( )( )

( )( )( ) ( )

( ) ( ) ( )( )

* *
2 2 1 2

*
* * * 0 2 2

2 2 1 2 2 *
1 1

* * * * *
2 2 1 2 2 2 1 2

*
* * * 0 2 2

2 0 2 2 1 2 2 2 *
1 1

2 1 2

2
4 1

2 1 2

2
4 1

h d k f f L L L

b k f
f k f f h d

k f

h d k f f f L k f f L

b k f
h b k L k f f f h d

k f

ϕ

ϕ

ϕ

ϕ ϕ

− + + + ×

+ + + − +
+

= − + + + + + +

− + + + − +
+

 

( ) ( ) ( ) ( )
( ) ( )

( ) ( )( )

( ) ( ) ( ) ( )

( ) ( )( )

* * * * *
2 2 2 1 2 2 2 1 2

* * *
2 2 1 2 2 0 2

*
* * * 0 2 2

2 2 1 2 2 *
1 1

* * * *
2 2 0 2 1 2 2 2

*
* * * 0 2 2

2 2 1 2 2 *
1 1

2 2 2

2 2

2
4 1

2 2 2

2
4 1

h dk L h d f f f L k f f L

f L k f f L h b k L

b k f
f k f f h d

k f

h k L d b h d f f f L f L

b k f
f k f f h d

k f

ϕ ϕ

ϕ

ϕ

ϕ ϕ

ϕ

= + + + − + +

− + + + −

+ + + − +
+

= − + + + −

+ + + − +
+  

( ) ( ) ( ) ( ) ( )(
( ) ) ( ) ( )( )
( ) ( ) ( )

* * * * *
2 2 0 2 1 2 2 2 1 2

* * *
2 0 2 2 2 1 2 2 0 2

*
* * * * * * 0 2 2

2 2 1 2 2 2 1 2 2 *
1 1

2 2 2

2 2

2
4 4

h k L d b h d f f f k f f

h b k f k f f h b k

b k f
f k f f h d k f f f

k f

ϕ ϕ

ϕ ϕ

ϕ

= − + + + + +

− − + + −

+ + + − + + +
+
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( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( )

* * * *
2 2 0 2 2 1 2 1 2

*
2 2* * * * 0 2 2

2 0 2 1 2 2 0 2 2 2 0 2 2 *
1 1

* * * *
2 2 0 2 1 2 2 1 2 0 2 2

*
* 0 2 2

2 0 2 2 2 *
1 1

2 4

2
2 2 2

2 2 2

2
2

0,

h k L d b h d k f f f f

b k f
h db k f f h db k f h b k f

k f

h k L d b h f f d k f f db k h

b k f
h b k f h d

k f

ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ

= − + + + +

− + − + +
+

= − + + + + −

+ − +
+

>

 

because, ( )*
2 2 0f h dϕ− >  and  

( ) ( ) ( ) ( )* * * *
2 1 2 0 2 2 1 2 2 2 02 2 2 0d k f f db k h d f f k d k dbϕ+ + − = + + − >  by 0 2b d< , 

0 1b <  and ( )2 1d hϕ < . Therefore, we have *
2 1yf < .  

6. Advantage of Sex Determination with Temperature  
Dependent 

In the sex determination of Crocodilian, we show whether temperature-depen- 
dent sex determination (TSD) or genetic sex determination (GSD) is superior. 
From (11) and (12), as with Murray [2], we verify with a simple model consi-
dering two-region and the sex ration, male to female offspring, is given by  

( )
( )

33

3 11

.
k CSb dm

k d k CSb df

∗

∗

−
=

+ −
 

where, b is the birth rate and d is the death rate, which are constant parameters. 
C is the clutch size and S is the hatchling and egg survival rate. On the other 
hand, we suppose that the crocodile sex is genetically determined. Now, 1 3k k+  
is the available carrying capacity. We assume that the corresponding equations 
for females ( )1f n  and males ( )3m n  have same sex ratio. 

Then, we consider the following equation. 

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

1 3
1 1 1 1

1 3 1

1 3
3 3 3 3

1 3 3

1 1 ,
2

1 1 .
2

h CSb k k
f n f n f n h df n

k k f n

h CSb k k
m n m n m n h dm n

k k m n

ϕ
ϕ

ψ
ψ

 +
+ − = + −  + + 

 +
+ − = + −  + + 

 (24) 

We set initial condition ( )1 00 0f f= > , ( )3 00 0m m= > . There is symmetry 
between males and females in this case, with half the births being female and the 
other half male. From (24), the steady state population are given by  

( )1 3 1 3 1 ,
2

CSbf m k k
d

∗ ∗  = = + − 
 

                (25) 

which are nonnegative only if 0 2b d> . The sex ratio of males to females is al-
ways 1:1.  

Even with the equilibrium points of (24) and (25) we can see the advantages of 
TSD over GSD for the crocodilian. From (24), that is, with TSD, a positive equi-
librium points exists if 0b d>  whereas for GSD it requires 0 2b d> . 

Now, we yield the following theorem which omits the proof. 
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Theorem 3. If ( )( )0 1b CSb d= > , then a positive equilibrium point: ( )1 3,f m∗ ∗  
of (24) with TSD exists, while for GSD of (25) it requires ( )( )0 2b CSb d= > .  

7. Conclusions 

The analysis of our stability results shows that there are no periodic solutions 
and the positive equilibrium point is always stable. We also investigate the effect 
of some catastrophe which greatly reduced the populations and obtain estimates 
for the recovery time to their equilibrium points. This has to be done numeri-
cally except for small perturbations about the equilibrium points by applying li-
near theory. If the equations are to be studied in depth numerically then more 
appropriate fractional functions could be used but the general results would not 
be qualitatively different. 

The critical value where GSD has equilibrium point is twice of the value of 
TSD. In short, we can see the advantage of TSD over GSD for crocodilian.  

In Murray [1] [2], he did not deal with three-region model. In Section 4, we 
consider this model and also, in Theorem 2 we have shown the sufficient new- 
condition for asymptotic stability of a positive equilibrium point. This new eco-
logical condition: 0 2d b d< <  is natural one. Because, it is necessary for the 
survival strategy of crocodilians that the effective birth rate 0b  is larger than the 
death rate d, and also 0b  is not too large that means 0 2b d< . If 0 2b d> , by 
Theorem 3, then GSD yields. However, this is contradiction. Furthermore, the 
crocodilian population discrete model with three-nesting region, we have a con-
jecture that a positive equilibrium point: ( )1 2 2 3, , ,E f f m m+ ∗ ∗ ∗ ∗=  of (15) is glo-
bally asymptotically stable. 

It is intuitively clear how the crocodilian, because of TSD, can recover from a 
catastrophic reduction in their population. Following a major reduction, all the 
female crocodiles will be able to build their nests in region I and hence produce 
only females and this then allows the remaining males to have larger harems. 
The skewed sex ratio in the crocodilian thus maintains a large breeding popula-
tion which provides the mechanism for rapid repopulation after a disaster. What 
is certainly not in doubt is that TSD has been a very effective reproductive me-
chanism in view of the remarkable survivorship of the crocodilian. Catastrophes, 
natural or otherwise, raise the question of extinction. If we consider extinction 
this would certainly happen if we have, from (9), b d< . With ( )0b b m c m= +  
this implies that ( ) ( )0 01m cd b d O b< − =  for c small and 0b  large, which 
implies that essentially all the males have to be eliminated. The natural habitat of 
males is in the water where it is virtually impossible to kill them all which, in 
turn, implies the almost impossibility of extinction except through the elimina-
tion of all the nest sites, that is, by completely destroying their habitat. With the 
increasing encroachment of their habitat by human population pressures it is 
certainly possible that alligators could disappear at least from the southern USA 
and others. 

In addition to the advantage of producing more females than males, the cro-
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codilian have evolved life-history tactics, and temperature-dependent sex deter-
mination may also be important in enabling populations to survive environ-
mental changes, and more, not only is a rapid expansion of the population asso-
ciated with the production of large numbers of females, but also different incu-
bation temperatures produce a population adapted to a range of environments 
after they hatch, independent of sex (see Deeming and Ferguson [8]). 

In this area, as the research is still being promoted, there are many new ar-
ticles on population dynamics of crocodilians, for example see [19] [20] [21] [22], 
especially, [21] is interesting, and has treated delay-differential mode of popula-
tion of crocodilians. 
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