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Abstract 
Recently, the inverse connected p-median problem on block graphs ( ), ,G V E w  
under various cost functions, say rectilinear norm, Chebyshev norm, and bot-
tleneck Hamming distance. Their contributions include finding a necessary 
and sufficient condition for the connected p-median problem on block 
graphs, developing algorithms and showing that these problems can be solved 
in ( )logO n n  time, where n is the number of vertices in the underlying 
block graph. Using similar technique, we show that some results are incorrect 
by a counter-example. Then we redefine some notations, reprove Theorem 1 
and redescribe Theorem 2, Theorem 3 and Theorem 4. 
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1. Introduction and Problem Formulation 

In recent years, there has been an increasing interest in connected p-center and 
p-median problems where the subgraph induced by the selected set is connected. 
Yen [1] studied the connected p-center problem on block graphs. Bai et al. [2] 
considered the connected p-median problem on cactus graphs and showed that 
the problem can be solved in polynomial time. In this paper we consider the in-
verse connected p-median problem on block graphs. We shall follow the nota-
tions and terminologies given in Kang et al. [3], Nguyen and Hung [4]. Let 

( ), , ,G V E w l=  be a finite, connected, undirected graph with vertex set V of 
order n V=  and edge set E of size m E= , where each vertex v V∈  is asso-
ciated with a nonnegative weight ( )w v  and each edge ( ),i jv v E∈  is asso-
ciated with a certain cost or length ( ),i jl v v . For convenience, we denote 
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( ), ,G V E w=  as the graph that ( ) 1l e =  for all edge e E∈ . 
For any two vertices of ,u v G∈ , a path from u to v is vertex-edge alternative 

sequence: 1 1 2 2 1, , , , , , ,s s su x e x e x e x v+= =  such that the ix  are all distinct and 

1i i ie x x +=  for 1,2, ,i s=  . The number of edges of a path is its length. Let 
( ) ( )1, s

iid u v l e
=

= ∑  be the length of a shortest path in G between u and v, called 
the distance of two vertices u and v. Furthermore, each edge ( ),e u v=  can be 
considered as a continuous interval, where a point ρ  in e is identified by a pa-
rameter [ ]0,1λ ∈  such that ( ) ( ),d u l eρ λ=  and ( ) ( ) ( ), 1d v l eρ ρ= − . We 
can also define the distance between two points similarly to the distance between 
two vertices. The classical p-median location model is to find the set of p points 
on G, say { }1 2, , , pS ρ ρ ρ=  , so as to minimize the median function 

( ) ( ) ( ), ,
v V

F S w v d v S
∈

= ∑
 

where ( ) ( )1, min ,p
j jd v S d v ρ== . By the dominating property of vertex set, we 

know that there exists an optimal solution to the p-median problem that is ex-
actly the subset of V. Hence, we focus on the set { }1 2, , , pS v v v V= ⊂  hereaf-
ter. For the sake of modern location model, the new facilities are required to be 
connected to a network for communication/security reasons. This fact motivates 
the so-called connected p-median problem on G, where the set S is the con-
nected set on the underlying graph. For two vertices set { }1 2, , , pS v v v=   and 

{ }1 2, , , qS u u u′ =  , we define ( ) ( ){ }, min , | ,i j i jd S S d v u v S u S′ ′= ∈ ∈ . 
Given a graph G, a vertex u is called a cut vertex of G if { }( ) ( )G u Gκ κ− > , 

where ( )Gκ  denotes the number of components of G. A connected subgraph 
H of G is called a block of G if H is maximal and it contains no cut vertices. A 
graph G is a block graph if all blocks of G are cliques and any two distinct blocks 

1B  and 2B  have at most one common vertex, where a clique in a graph is a 
complete subgraph maximal under inclusion. 

Given a block graph G and a set pS  of p connected vertices, we denote by 

( )pS  the set of connected subgraphs induced by deleting all vertices in pS  
and all edges in blocks containing at least one vertex of pS . A vertex v is said to 
be in the border of pS  if there does not exist any pair v′  and v′′  in pS  such 
that v is an intermediate vertex of the shortest path connecting them. Resultant-
ly, we denote ( )pS  the set of all vertices in the border of pS . Furthermore, let 

( )pS  be the set of vertices, which are adjacent to some vertices in ( )pS  and 
are not in pS . Meanwhile, we define ( )( )pS v , for v in ( )pS , as the set of 
all vertices in ( )pS  that is adjacent to v. If a connected subgraph in ( )pS  
contains a vertex ( )pv S∈ , then this graph is defined as ( )( )pS v . For a 
vertex ( )pv S∈ , let ( )( )pS v  be the subgraph induced by  
{ } ( )( ) ( )( )

p pv S v
v S v′∈

′∪
 

 . 
Modifying vertex weights of a graph at minimum total cost so that a prede-

termined set of p connected vertices becomes a connected p-median on the per-
turbed graph. This problem is the so-called inverse connected p-median prob-
lem on graphs. Nguyen and Hung [4] consider the problem of a block graph 
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with uniform edge lengths under various cost functions. To solve the problem, 
they first find an optimality criterion for a set that is a connected p-median. 
Based on this criterion, they can formulate the problem as a convex or quasi-
convex univariate optimization problem. Finally, they develop combinatorial 
algorithms that solve the problems under the three cost functions in ( )logO n n  
time, where n is the number of vertices in the underlying block graph. In the 
scope of their paper, the following cost functions are considered. 

1) Rectilinear norm: 

( ) ( ), .v v v v v v
v V

C p q c p c q
∈

= +∑
 

2) Chebyshev norm: 

( ) { }, max , .v v v v v vv V
C p q c p c q

∈
=

 
3) Bottleneck Hamming distance: 

( ) ( ) ( ){ }, max , ,v v v v v vv V
C p q c H p c H q

∈
=

 
where the Hamming distance ( )H ⋅  is identified by ( ) 0H x =  if 0x =  and 

( ) 1H x =  otherwise. The following results are established in Nguyen and Hung 
[4]. 

Lemma 1. [4] If there exists a vertex ( )pv S∈  and vertex ( )pu S∈  such 
that ( )( )( ) ( )( )( )p pW S u W S v>  , then pS  is not a connected p-median of 
G. 

Theorem 1. [4] (Optimality Criterion) The set pS  is a connected p-median 

of the block graph G if and only if ( )( )( ) ( )( )( )p pW S u W S v≤   for all  

( )pv S∈  and ( )pu S∈ . 

Theorem 2. [4] The inverse connected p-median problem on a block graph 
can be solved in ( )logO n n  time. 

Theorem 3. [4] The inverse connected p-median problem on block graphs 
under Chebyshev norm can be solved in ( )logO n n  time. 

Theorem 4. [4] The inverse connected p-median problem under bottleneck 
Hamming distance can be solved in ( )logO n n  time. 

2. Counterexample 

As we observe, Lemma 1 and Theorem 1 in Nguyen and Hung [4] are incorrect. 
In this note, we point out these incorrect results by a counterexample. 

Counterexample 1. Let us consider the block graph G in Figure 1, where the 
prespecified set of connected vertices is { }4 1 2 3 4, , ,S v v v v=  and the weights are 
labeled on the corresponding vertices. 

According to the symbols and definitions in Nguyen and Hung [4], one can de-
duce the following results. ( ) { }4 1 2 4, ,S v v v= , ( ) { }4 5 6 9 10 11 13, , , , ,S v v v v v v= . 
Moreover, the subgraph ( )( )4 13S v  is induced by { }11 12 13 14, , ,v v v v  and the 
subgraph ( )( )4 4S v  is induced by { }4 11 12 13 14, , , ,v v v v v . Based on the weights 
of vertices, one obtains the weights of subgraphs are calculated as in Table 1. 
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Figure 1. The block graph G. 

 
From Table 1, one can see that ( )( )( ) ( )( )( )p j p iW S v W S v≤   for all 

( )i pv S∈  and ( )j pv S∈ . If Lemma 1 and Theorem 1 are correct, then the 
set 4S  is a connected p-median of the block graph. Let { }4 7 2 3 4, , ,S v v v v′ = . 
Since ( ) ( )4 420 23F S F S′ = < = , the set 4S  is not a connected p-median of the 
block graph, this instance is indeed a counterexample for Lemma 1 and Theo-
rem 1. 

In addition, the proofs in Lemma 1 and Theorem 1 in Nguyen and Hung [4] 
are also incorrect. Let { }4 11 2 3 4, , ,S v v v v′′ = . According to the symbols and defini-
tions in Nguyen and Hung [4], one can deduce that the subgraph ( )( )4 11S v  
is induced by { }11 12 13 14, , ,v v v v  and the subgraph ( )( )4 1S v  is induced by 
{ }4 5,v v . Then 

( )( )( ) ( )( )( )4 11 4 14  and  4.W S v W S v= = 
 

Since 

( ) ( ) ( )( )( ) ( )( )( )4 4 4 1 4 1125 23,F S F S W S v W S v′′ = ≠ + − = 
 

the deduction in Lemma 1 and Theorem 1 are clearly incorrect. 

3. Erratum 

The Lemma 1 and Theorem 1 in Nguyen and Hung [4] are incorrect mainly be-
cause of the following notation definitions: ( )pS , ( )pS , ( )pS , 

( )( )pS v , ( )( )pS v  and ( )( )pS v . In this article, we will preserve the 
symbol definition of ( )pS  and ( )pS , redefine symbols: ( )( )pS v  and 
( )( )pS v , and do not use ( )pS  and ( )( )pS v  anymore to avoid confu-

sion with ( )pF S . 
For a vertex ( )pv S∈ , let ( )( )pS v  be the subgraph induced by vertices 

that can only be served by v. In other words, for vertices ( )( )i pv S v∈ , only 
vertex ( )pv S∈  satisfies ( ) ( ), ,i i pd v v d v S= . Let ( )pS  be the set of ver-
tices of pG S− , which are adjacent to some vertices in pS . If the shortest path 
from ( )i pv S∈  to pS  passes through ( )pu S∈ , then iv  is said to be 
served by pS  through u. For a vertex ( )pu S∈ , let ( )( )pS u  be the sub-
graph induced by the vertices which are served by pS  through u. 
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Table 1. Weights of subgraphs in G. 

v v1 v2 v4 v v5 v6 v9 v10 v11 v13 

( )( )( )pW B S v
 

4 4 5 ( )( )( )pW B S v
 

1 1 2 2 4 4 

 
Example 1. Let us consider the block graph G in Figure 1, where the prespecified 

set of connected vertices is { }4 1 2 3 4, , ,S v v v v=  and the weights are labeled on 
the corresponding vertices. 

According to the new symbols and definitions above, one can deduce the fol-
lowing results. ( ) { }4 1 2 4, ,S v v v= , ( ) { }4 5 6 7 9 10 11 13, , , , , ,S v v v v v v v= . Moreo-
ver, the subgraph ( )( )4 3S v  is induced by { }3 7 8, ,v v v  and the subgraph 
( )( )4 13S v  is induced by { }13 14,v v . 
Using the same method in the proof of Lemma 1 in Nguyen and Hung [4], the 

following lemma can be proved. 
Lemma 2. If there exists a vertex ( )pv S∈  and vertex ( )pu S∈  such 

that ( )( )( ) ( )( )( )p pW S u W S v>  , then pS  is not a connected p-median of 
( ), ,G V E w . 
There is no problem in the method and thought of proving Theorem 1 in 

Nguyen and Hung [4], but the description is not clear and concise enough. We 
will give a new proof of Theorem 1 in the following. 

Theorem 5. (Optimality Criterion) The set pS  is a connected p-median of 
the block graph ( ), ,G V E w  if and only if ( )( )( ) ( )( )( )p pW S u W S v≤   for 
all ( )pv S∈  and ( )pu S∈ . 

Proof. If pS  is a connected p-median of the block graph G, then 

( )( )( ) ( )( )( )p pW S u W S v≤   for all ( )pv S∈  and ( )pu S∈ . This is 
the converse-negative proposition of Lemma 2, which is clearly true. 

Conversely, we prove that if ( )( )( ) ( )( )( )p pW S u W S v≤   for all  

( )pv S∈  and ( )pu S∈ , then the set pS  is a connected p-median of the 
block graph G. Let *

pS  be a connected p-median such that *
p pS S≠  and 

( )*,p pd S S  is as small as possible. Furthermore, if ( )*, 0p pd S S = , let’s assume 
that *

p pS S∩  contains as many vertices as possible. We take a vertex  

( )*
pv S′∈  such that pv S′∉ . As ( ) ( )( ) \

p p pu S
S u V S

∈
=

 
 , we know that  

there exists a vertex ( )pu S′′∈  such that ( )( )pv S u′ ′′∈ . Hence  

( )( )( ) ( )( )( )*
p pW S v W S u′ ′′≤  . Similarly, we choose a vertex ( )pv S′′∈  

such that *
pv S′′∉ . There exists a vertex ( )*

pu S′∈  such that  

( )( )*
pv S u′′ ′∈ . Hence ( )( )( ) ( )( )( )*

p pW S v W S u′′ ′≤  . By assumption of  

pS , ( )( )( ) ( )( )( )p pW S u W S v′′ ′′≤  . Hence,  

( )( )( ) ( )( )( )* *
p pW S v W S u′ ′≤  . On the other hand, since *

pS  is a connected 
p-median, ( )( )( ) ( )( )( )* *

p pW S v W S u′ ′≥  . Hence,  

( )( )( ) ( )( )( )* *
p pW S v W S u′ ′=  . We set { }( ) { }* \p pS S v u′ ′ ′= ∪ . Obviously pS ′  

is connected. Using the same method in the proof of Lemma 1 in Nguyen and 
Hung [4], we have ( ) ( )*

p pF S F S′ = . Then pS ′  is also a connected p-median. If 

( )*, 0p pd S S > , then ( ) ( )*, ,p p p pd S S d S S′ < . If ( )*, 0p pd S S = , then p pS S ′∩  
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contains more vertices than *
p pS S∩ . This contradicts the choice of *

pS . 
Therefore, *

p pS S=  and pS  is a connected p-median of the block graph G. 
In the solution approach of the inverse connected p-median problem on block 

graphs in [4], we only need to change ( )pS , ( )( )pS v  and ( )( )pS v  
into the new definition of ( )pS , ( )( )pS v  and ( )( )pS v , respectively. 
The inverse connected p-median problem on block graphs ( ), ,G V E w  under 
various cost functions, say rectilinear norm, Chebyshev norm, and bottleneck 
Hamming distance, can be solved by using the approach in [4]. However, the 
description of Theorem 2, Theorem 3 and Theorem 4 in Nguyen and Hung [4] 
is not complete and rigorous enough. Let’s redescribe the three theorems in the 
following. 

Theorem 6. The inverse connected p-median problem on block graphs 
( ), ,G V E w  under Rectilinear norm can be solved in ( )logO n n  time, where n 

is the number of vertices in the block graph. 
Theorem 7. The inverse connected p-median problem on block graphs 
( ), ,G V E w  under Chebyshev norm can be solved in ( )logO n n  time, where n 

is the number of vertices in the block graph. 
Theorem 8. The inverse connected p-median problem on block graphs 
( ), ,G V E w  under Bottleneck Hamming distance can be solved in ( )logO n n  

time, where n is the number of vertices in the block graph. 
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