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1. Introduction 

Let f  a function which applies a set dC ⊂   in itself. We iterate f  indefi-
nitely. Sometimes, the process converges to some fixed point or to some cycle. 
But, in many cases, it is quite impossible to know, after a long time, the position 
of the iteration ( )nf . 

One of the best deterministic method to study the asymptotic behavior of the 
iteration is to linearize f . It consists to find a function ϕ  such as: fϕ λϕ=  
where λ  is linear. 

When this linearization is possible, ( )n nfϕ λ ϕ=  and we obtain asymptotic 
cases, which are the generalization of the unidimensional cases , , 1λ > = < . But, 
we meet some well-known difficulties: the function ϕ  is solution of a function-
al equation; the basins of attraction around each fixed point of f  may have 
fuzzy frontiers… If 1pλ = , we have other difficulties called resonance in d . It 
is often a good approach near each fixed point. But, in many cases, we don’t 
know to treat mathematically the problem. 

So, it seems very important to understand what happens when we iterate f  
indefinitely, especially if the set dC ⊂   is bounded when f  applies C in it-
self. In this case, a probabilistic approach with invariant measures gives other 
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information. It is the object of this paper which is the synthesis of a long work: 
some demonstrations, as the one of the proposition in Section 4.4, can be found 
in previous articles or book [1].  

2. The Perron-Frobenius’s Measure  

Let P a measure on a measurable set dC ⊂   and f  a measurable function. 
We note 1

fP P f −=   the transform of P by f . We define the f -invariant 
measure P of Perron-Frobenius as in [2]: 

P is invariant under f  if, for all borelian set B, P verifies the Perron-Frobenius’s 
equation (PF): 

( ) ( ) ( )1
fP B P f B P B−= =  

This measure P remains invariant when we iterate the measurable function 
f . Under very general conditions, the solution of this equation is unique.  

This measure presents the same difficulties as we have seen with linearization 
methods for f : we will see that it depends of the fixed points and we meet the 
resonance’s problems, but it gives us many information about the areas where 
the iteration belongs more frequently. This information is asymptotic when  
n →∞  but doesn’t give us any result about the transient steps of null measure. 

This invariant measure is generally difficult to study. For instance, in the very 
simple case where f  is invertible, its density p verifies the functional equation:  

 1 1
fp p f p f− −= =   

This is very complicated to solve. If f  is not invertible, it is more difficult. 

2.1. The Fourier-Laplace’s Transform 

Here, we seek an analytic approach of the f -invariant measure with the Fouri-
er-Laplace’s transform. We use the known property of this measure: for all posi-
tive P-measurable function g, we have the formula [2]:  

( ) ( ) ( ) ( )d dg f x P x g x P x=∫ ∫ . 

For ( ) yxg x e= , we write the Fourier-Laplace’s transform  
( ) ( ) ( )yX yXy e E eφ = =  with the series ( ) n

n ny b yφ = Σ  and  
( ) ( )( )yf X

f y eφ =  . If the measure is invariant: 

( ) ( )fy yφ φ=  

Here, dy∈  or d . If y it= , we have the characteristic function of the 
measure P. 

Hypothesis 
All along the paper, we suppose that the set dC ⊂   is bounded. f  applies 

C in C and f  is at least C∞ . 
Anymore, the series ( ) n

n ny b yφ = Σ  is convergent because it is bounded by 
an exponential series with the diameter of C.  

We translate the distribution with a small fixed vector da∈ , X X a+
.  
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So: ( ) ( )( ), y X ay a E eφ +=   
by f -transform: ( ) ( ) ( )( ), , yf X a

fy a y a E eφ φ += . 
If the measure is invariant: ( ) ( ), ,fy a y aφ φ= .  
Proposition: 
The resolving equation Ra of PF is: ( ) ( ) ( ), , , 0f fy a y a y aθ φ φ= − = . 
If f  is a C∞ -function, then, for a C∀ ∈  and y∀ :  

( ) ( )( ), 0yf an ya n
f n ny a b e e aθ = Σ ∂ − ∂ = .  

Let ( ) ( )( ), yf an n ya ne y a e e a= ∂ − ∂  be the gap of order n: 

( ) ( ), , 0n
f n ny a b e y aθ = Σ =  

At 0a = : ( ) ( ),0 0n
f n ny b e yθ = Σ ≡ . 

As ( ), 0f y aθ ≡  is an identity, ( ), 0p q p q
f y a y aθ∂ ∂ ∂ ∂ ≡  for all p and q. 

■ If the random variable dX C∈ ⊂   has a measure P with density ( )p x , 
the translated random variable X a+  has the same translated density. Using the 
convergent series: ( ) n

n ny b yφ = Σ , we have for all small translation da C∈ ⊂   
of the random vector X, the translated density: 

( ) ( )( ) ( )1 1ta n ta
n np x a e t b t eφ− −− = = Σ  . 

So, we can write ( )p x a−  as a distribution in the sense of Schwartz: 

( ) ( )n n
n np x a b x a aδ− = Σ ∂ − ∂ . 

As ( )( )y X a n ya n ya n
n n n nE e b y e b e a+ = Σ = Σ ∂ ∂ . 

And ( )( ) ( ) ( ) ( ) ( )d dyf X a yf x a yf xE e e P x e p x a x+ += = −∫ ∫  

 ( )( ) ( ) ( )( )dyf X a yf xn n
n nE e b e x a x aδ+ = Σ ∂ − ∂∫  

( )( ) ( )yf X a yf an n
n nE e b e a+ = Σ ∂ ∂ . 

By difference, we get: ( ) ( )( ) ( )( ), 0y X a yf X a
f y a E e E eθ + += − = . ■ 

Remarks 
- We observe that ( )( ) ( ) ( ),yf a yf an n

ne a H y a e=∂ ∂  where ( ),nH y a  is a Bell- 
polynomial in y with degree n. We can note the gap: 

( ) ( )( ) ( ) ( ), ,yf a yf an n ya n n ya
ne y a e e a y e H y a e= ∂ − ∂ = −  

And: ( ) ( ),0n n
ne y y yH= −  is a polynomial in y with degree n. 

- We obtain ( )f yφ  by putting ( )nH y  instead of ny  in the series of  
( ) n

n ny b yφ = Σ . 
- We study the problem near a fixed point 0 of f : ( )0 0f = , then:  

( ) ( )0 0 1fφ φ= = , and: 0 1b = . But, the other nb  are unknown. 

2.2. Consequences 

The general solution of the linear equation ( ) 0f yθ =  has the form ( )b yϕ  where 
b is an arbitrary constant real. So, we can write ( ) ( )1y b yφ ϕ= +  with the arbitrary 
constant b. It means that ( ) 1yφ = , for all ( ) 0yϕ = . We have a lattice distribu-
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tion of probability for ( ) 0yϕ = . 
The solution of the Perron-Frobenius’s equation is a particular case of the 

equation ( ) 0f yθ = . 
First, we show the effect of an iteration on ( ),0 0ne y =  and on ( ),0 0f yθ = . 
Proposition 
Iteration ( )a f a

 

  acts as a derivation on ( ),0 0f yθ =  and on  
( ),0 0ne y =  or on ( ),0 0nH y =  in the sense:  

( ) ( ) ( )
0

,0 ,f f a
a f a y y a aθ θ

=
⇒ ∂ ∂

  

    

and ( ) ( )1,0 0 ,0nne ey y+= 

  

( ) ( )1n nf f +
  induces ( ) ( )1,0 ,0n ne y e y+→  or ( ) ( )1,0 ,0n nH y H y+→ . 

By induction, all the coordinates of dn N∈  in ( ),0ne y  are: 

1 dn n n= = = =


  .  
■ The demonstration in [1] is based on the mean’s formula for 0a → . 
For example, we study the impact of ( )a f a

 

  on ( )( ), ,fD y a f aθ=
 

.  
As ( ), , 0f y a aθ =

 

:  

( )( ) ( ), , , ,f fD y a f a y a aθ θ= −
   

 

So: ( )( ) ( )( )( )( )( ), ,fD f a a y a a r f a a aθ= − ∂ + − ∂
      

 

When 0a →  ( ) ( )~ 1f a a a λ− −
   

 

 ( ) ( )( )~ 1 ,0fD a y aλ θ− ∂ ∂
  

 

Then, if we iterate f , that means ( )a f a , we obtain: 

( ) ( )( )1~ 1 ,0d
fD a y aλ θ=

=
− ∂ ∂∏

 



. 

If this quantity is null for all a, then ( ),0 0f y aθ∂ ∂ = . For similar raisons, if 
( ), 0ne y a = , then: ( )( ) ( ) ( )~ 1 ,0,n ne f a a e y ay λ − ∂ ∂

   

. ■ 

3. Solution of the Resolvent R0 

Now, we choose a sufficiently large index dn N∈ , with 1 dn n n n= = = = =


   
Lemma 
For a fixed 0nb ≠ , under non-resonance conditions, if a solution of  
( ) ( ) 0m

n m n my b e yθ ∗ ∗
≤= Σ =  exists, the zeros of ( )ne y  are zeros of ( )n yθ ∗ . 

■ The solution of this equation is obtained as the following: 
We choose a sufficiently large index dn N∈  such as: ( ) ( )n y yϕ ϕ→  

uniformly. 
Then: ( ) ( )m

nf m n my b e yθ ≤= Σ  verifies uniformly: 

( ) ( )nf fy yθ θ− <  . 

As ( ) 0f yθ = , we search an approximation ( ) 0n yθ ∗ = , and estimators mb∗  such 
as we have: 

( ) ( ) 0m
n m n my b e yθ ∗ ∗

≤= Σ = . 
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- For 0y = : 0 1b = . As ( )n yθ ∗  is a polynomial, the condition ( ) 0n yθ ∗ =  
implies ether all the coefficients of ( )n yθ ∗  are null or the solution is valid only 
for the y verifying ( ) 0n yθ ∗ = . But, as the term of highest degree of ( )n yθ ∗  
is: ( )1 n n

nb yλ− , we must have, under non-resonance conditions and for all 
0nb ≠ , ( ) 0ne y = . (Because all the other gaps ( )me y  have a lower total de-

gree for all m n< ). 
Then, zeros of ( )ne y  are zeros of ( )n yθ ∗ . ■ 
Theorem 
Under the non-resonance condition, we can find a unique convergent solu-

tion of ( ) ( ) 0m
n m n my b e yθ ∗ ∗

≤= Σ = , up to an arbitrary constant b: 

( ) ( )1 n
n y be yφ = − . 

We obtain a lattice distribution defined by the zeros of ( )ne y . 
In the repellent case where 1nλ  , we have:  

( ) ( )~ 1n ny bH yφ − .  

Then, the distribution of the real zeros of the polynomials ( )nH y  gives the dis-
tribution of the Perron-Frobenius’s measure when n →∞ . 

We obtain a lattice distribution defined by the zeros of ( )nH y . 
■ We note the polynomials ( ) ( )01 1m n

n m n m ny b y b yφ ϕ∗ ∗
< ≤= + Σ = + .  

and ( ) ( )01fn m n m my b H yφ∗ ∗
< ≤= + Σ  

So: ( ) ( ) ( )n n fny y yθ φ φ∗ ∗ ∗= − . 

- We search a solution under the condition ( ) 0ne y = . 
1) Now, for all y  verifying ( ) 0ne y = , can we find a solution of ( ) 0n yθ ∗ = ? 
For all m n< , we note: 

( ) ( ) ( ) ( )1
m n

n m n m n nA y b e y y b e yθ∗ ∗ ∗
− <= Σ = − . 

If ( ) 0n yθ ∗ = :  
( ) ( ) ( ) ( )1 01m n n n k

n m n m n n n k n nkA y b e y b e y b y b h yλ∗ ∗
− < < <= Σ = − = − − − Σ  
Where all the coefficients of ( ) ( )m m

me y y H y= −  are known because  
( ) 0

k
m k m mkH y h y< ≤= Σ  is defined by the coefficients of the Bell’s polynomials.  
So, we study in ( )1nA y∗

−  all the terms of my  with degree m n< : 

( ) ( )1 0 0
m k k

n m n m k m mk n k n nkA y b y h y b h y∗ ∗
− < < ≤ < <= Σ −Σ = − Σ  

for a fixed arbitrarily 0n nb b∗ = ≠ . 
2) We obtain a finite triangular system of linear equations: it can be solved 

step by step and we can identify in a unique way all the unknown coefficients mb∗  
in function of the fixed nb  and the coefficients mkh  of ( ) 0

k
m k m mkH y h y< ≤= Σ  

with dm n N≤ ∈ . 
3) This solution is unique for all 0n nb b∗ = ≠  arbitrarily fixed, near to the so-

lution of ( ) 0f yθ = , as the mb∗  converge to the mb . So, we have constructed the 
polynomials ( ) 1n yφ∗ −  and ( ) 1fn yφ∗ −  and we can write ( ) ( )1 n

n ny b yφ ϕ∗ = +  
where nb  is arbitrary. That means ( ) 1n yφ∗ =  when ( ) 0n yϕ = ; then, we can 
choose now ( ) ( )n ny e yϕ = . ■ 
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Different cases can happen according to 1nλ   or 1nλ  .  
If all the coordinates of λ  are less than 1, the process converges to the fixed 

point.  
If some of them are less than 1, but others are greater than 1, we have a hyper-

bolic situation under no resonance conditions. 
When n n ny yλ  , we can write for large n:  

( ) ( )~ 1n ny bH yφ − . ■ 

And now we have to study the zeros of ( )nH y . 
Remark (demonstration in [1]) 
Under the condition that the set C is rectangular, if ( )q y  is the density of real 

zeros of ( )nH y  when n →∞ , then the invariant density ( )p x  of the Perron- 
Frobenius’s measure is: 

( ) ( ) ( )p x x q x x= − ∂ ∂ . 

4. Study of the Zeros of ( )nH y  in the Repellent Case 

We suppose f  is C∞ , without resonance, and dC ⊂   bounded. The prob-
lem is reduced to find the asymptotic distribution of the zeros of ( )nH y  in the 
repellent case. Here, the distribution of the f -invariant measure P is given in 
general by the distribution of the real zeros of ( )1nH y−  when n →∞ . 

4.1. The Plancherel-Rotach’s Method 

We will see soon that all the real zeros of ( )nH y  are distinct when the steepest 
descent’s method [3] can be applied to ( )nH y  and we get an estimation of the 
asymptotic distribution of these real zeros.  
- First, we use the steepest descent’s method as Plancherel and Rotach do [4]. 

We recall that the polynomial: 

 ( ) ( ) ( ) ( )
1 0 0

yf a yf a yf an n n n
n a a

H e e a ey a−
−

= =
∂ = ∂= ∂ ∂   

can be represented by the Cauchy’s integral: 

 ( )
( )

( ) ln
1 d d

yf a
yf a n a

n n

eH a K e ay K
a

−
− Γ Γ

== ∫ ∫ 

 

where Γ is a closed polydisk around the fixed point 0 of f , da∈ , K is a finite 
non-null function, without importance in the context [3]. We take  

1 dn n n n== =


.  
We note the integrand ( ) ( ) lnn a yf a n aγ = −  
And we call ( )aγ  the Plancherel-Rotach’s function. 

- Second, with Plancherel and Rotach, we use the steepest descent’s method. 
We search the critical point of ( )aγ . Under the numerous conditions of the 
general position, the critical point ca  maximizing ( )n ae γ  gives the solution. 
The critical point ca  is defined by the equation:  

( ) ( ) 0n a a y f a a n aγ∂ ∂ = ∂ ∂ − = . 
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(A sufficient condition to get this maximum is that the hessian matrix of ( )aγ , 
which is Hermitian, is definite negative at ca ). Let s ny=  with s ny=

 

, 
then: 

( ) ( ) 1 0a a s f a a aγ∂ ∂ = ∂ ∂ − = . 

The critical point must be isolated from the other critical points and at a finite 
distance. Some coordinates of ca  can be real, the others are complex. Then: 

( ) ( )( ) ( )( )( )1 exp expn c cH y K a aγ γ− ′= − . 

( ca  is the conjugate of ca ). We notice that K ′  or the real part ( )e γℜ  of  
( )aγ  cannot annul ( )1nH y− , but, among the solutions, we have to choose  
( )γℜ  maximum. Then, only the imaginary part ( )m γℑ  of ( )aγ  can nullify 

( )1nH y− . 
Proposition 
Under the conditions of the general position, the critical point ca  of the PR- 

function ( )aγ  gives the real zeros of ( )nH y . For all complex coordinates a  
of ca : 

( ) ( )( )m m lnn yf a n a kγℑ = ℑ − = π . 

As each iteration f


 acts as a derivation on ( )1nH y− , we see: 

( )( ) ( )( )m m lnn a s f a a k nγℑ = ℑ − = π
    

. 

We obtain asymptotically ( )( )m aγ κℑ → π
 

 when n →∞ . 
The [ ]0,1k n κ→ ∈

 

 have an identic independent uniform distribution on 
[ ]0,1 . 

In the unidimensional case, the repartition of the zeros is: 

( ) ( )( )d m dq s s f a s= ℑ π . 

■ We can tie these distributions of the PF-equation to each fixed point ( )0 0f = . 
Then, we have local solutions. All these distributions can be masked in various 
situations. The principle of the maximum of the real part ( )e γℜ  of ( )aγ  pro-
vides a method to define the fuzzy frontiers of the different domains of attrac-
tion. 

As everybody knows, the steepest descent’s method is difficult to use, but it 
indicates a very large variety of behaviors [3].  

In the case of unidimensional function, the repartition of the zeros verifies: 

 ( )( )m aγ κℑ = π  with 0aγ∂ ∂ =  

So: ( ) ( ){ }d Prob 1 zero , d dq s s s s s κ= ∈ + =  

 ( ) ( ) ( )( )d m d d d m dq s s s s f a sγ= ℑ π = ℑ π  

Because: ( )d ds s a a s f aγ γ γ= ∂ ∂ + ∂ ∂ ⋅∂ ∂ = . ■ 

Remark 
If the n



 are not equal, we take 1 dn n nµ + + + +=


  , and we fix:  
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z n µ=
 

. Then, if y n s z sµ= =
    

 and ln lnn a z aµ=
   

, the Plancherel- 
Rotach’s function is: 

( ) ( )( ) ( )lna z s f a a z aµγ µ µ γ= Σ − = Σ
       

 

If 1 dn n n n= = = ==


  , we have: 1z =


. 

4.2. Real or Imaginary Coordinates of the Solutions 

The reality or the imaginary of the coordinates of ca  may vary with the orien-
tation of y. The right framework to analyze this question seems to be the Morse’s 
theory.  

4.3. Examples  

- Let the logistic map [4]: ( ) 2 2f a a aλ= − ; and ( ) ( )2 2 lna s a a aγ λ= − − ; 

 ( )2 1 0a s a aγ λ∂ ∂ = − − =  

we put 2cossλ ϑ= , we have: 22cos 1 0a s saϑ − − =  with roots: ia s e ϑ±=  

and: ( )( ) ( )2m m 2 sin 2f a a a sλ ϑℑ = ℑ − = . 

( ) ( )( ) ( )d m d 1 cos 2 dq s s f a s ϑ ϑ= ℑ π = − π  

So: ( ) ( ) 22 1 4q s sλ λ= π − . 

If we put cos
2

st λϑ= =   

Then t follows: ( ) ( ) 2 dd 1 t tW t t 2 π −= . 

We recover directly a well-known result: Let ( ) ( )2 2
,

y a an n
n e aaH y

λ − =  
 

∂ ∂   

where ( )2 2y a a
e

λ −
 is (with easy transformations) like the generatrix function  

( )22ta a
e

−
 of the Hermite polynomials ( )nH t . The law of the zeros of ( )nH x  is 

known as the semi-circular Wigner’s law: ( ) ( ) 2d 2 1 dW t t t t= π − . 
- Then, the density of the logistic corresponding to q(s) is:  

( ) ( )
2

d d 2 d 1 d
44

sp s s q s s s
s

λ λ 
 = − = − π −
 
 

 

( ) ( )2 22 4p s s sλ λ= π − . 

We deduce that the density of the logistic map follows a Beta (1/2, 1/2) low in a 
more general situation than in the Ulam-Von Neumann’s case [5]. 

- The map 
2

1 2
aa aλ= + , for 1λ > . We have neglected this important case in  

our previous papers. In general, this iteration tends to infinite. The corre-
sponding Hermite polynomials ( )nH x  are always positive except if 0x =  
for the odd index n. It seems that this iteration can serve as a parameter in 
multidimensional case. So, we will say that “ 0x =  half the time” and arbi-
trary for even indexes n.  
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- m-Hermitian case: ( ) mf a a a mλ= − . 
The Plancherel-Rotach’s function is: ( ) ( ) lnma s a a m aγ λ= − − . 
With the critical point a  defined by the trinomial equation: 

( ) ( )d d 1 0ma a s a aγ λ= − − =  

studied by H. Fell. 
Consequence  
We take now a quadratic function f  in d  with ( )0 0f = . We write the 

PR function ( )aγ  for every fixed point 0 of ( )f a :  

( ) 2 2f a a Qaλ= +  

the hessian of sQ is symmetric. For all s such as sQ is non-degenerate, it exists an 
orthogonal transformation T: a Tu= , with: T sQT D′ = , the diagonal matrix of 
eigenvalues of sQ and: 

( )
( )

1 1

11

ln ln ln ln Vol

ln Vol ln ln ln .

dd

d d

a a a a

u u u u

==

= =

= =

==

= = =

= = = =

∑ ∏
∑∏



 

 

 

 



 

Because the volume ( ) ( )Vol Vola u=  is invariant under an orthogonal trans-
formation.  

We note 2D K=
 

 if 1, , p=   and 2 2D K= −
 

 if 1, ,p d= +  . 
Then, the P.R. function ( )aγ  becomes:  

( ) ( )

( ) ( )

2

2 2 2 2
1 1 1 1

2 2 2 2
1 1

ln ln

2 2 ln

2 ln 2

2

ln

d p d d
p

p d
p

u sf Tu Tu s Tu Du u

u K u K u u

u K u u u K u u

γ λ
= = = =

= = = + =

= =

= = +

+

= − = + −

= Λ − −

Λ + − + Λ −= −

∑ ∑ ∑ ∑
∑ ∑

   

      

   

 

         

 

 

where u s TuλΛ = . 
If we note: ( ) 2 2 2 lnu u K u uγ + = Λ + −

     

  

and ( ) 2 2 2 lnu u K u uγ − = Λ − −
     

 

So: ( ) ( ) ( )1 1
p d

pu u uγ γ γ= =
+ −= = +

= +∑ ∑ 

 

 

. 

And, applying the logistic calculus to each ( )uγ + 

 and ( )uγ − 

, we obtain p 
conditions 0uΛ =

 

 half the time and d-p random independent variables fol-
lowing a Beta (1/2, 1/2) low. But, we may have other fixed points: ( ) 21a Qaλ− = .  

Remark 
- We can extend these results to a C∞  function f  with the Morse-Palais 

Lemma as in [6], (p.174 et seq.), if the hessian is definite.  

5. A differential Equation as a Repellent Iteration 

We consider ordinary differential equation [1]:  

( )d da t F a=  

where da C∈ ⊂   or d
 , t +∈ , ( )F a  is a C∞ -application of a C∈  in 

C. The domain C is supposed bounded. The problem is to find a function ( )a t  
verifying this equation with an initial condition: ( )0 0a t a= . 
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We use the theorical solution of Caratheodory ( )a t  for 0t t> : 

( ) ( )( ) ( )( )
0

0 0 0d ,
t

t
a t a F a u u a S a a t= + = +∫ . 

The differential iteration 
We associate the differential iteration ( )f a  belonging in the bounded do-

main C: 

( ) ( )f a a F aδ= +   

where t nδ =  is the path. When we iterate n times, we have: 

 ( ) ( )( )0
n

na f a t= . 

The method gives the solution na  by iterating n times ( )f a  from a starting 
point ( )0a t  with the path t nδ =  and this solution ( )na a t→  when  
n →∞ : 

For n p> : ( ) ( ) ( ) ( )( )1
0 0 0

p nn
n ppa f a a t F aδ = −

=
= = + ∑  ( ) ( )0 0n na a t S aδ= + . 

Then, when n →∞ : ( ) ( ) ( ) ( )( )
0

0 0lim d
tn

tn
f a a t a F a u u

→∞
= = + ∫  

with ( ) ( )( ) ( )( )
0

0 0, d
t

n t
S a S a t a F a u uδ → = ∫ . 

The fixed points of a differential iteration are the zeros α  of F: ( ) 0F α = . 

5.1. The Invariant Measure of a Differential Iteration 

Now, we submit a probabilistic version of the Poincaré-Bendixon’s problem in 
d

 .  
Proposition 
Under the previous hypothesis, all the non-null measures verify: 

( )( ) ( )( )( )01
00
, d 0yX vyS a X tE yS a X t e v+ =∫ . 

Then, we have asymptotic random cycles around each fixed point. For all these 
cycles, the times of return in each very small borelian set around a point of a cycle 
are constant in probability. Along each cycle, the conditional probability has a 
constant density. 
■ With ( ) ( )f a a F aδ= +  for every measurable function F. Then, for 

 ( ) ( ) ( ) ( )( )1
0 0 0

p nn
n ppa f a a t F aδ = −

=
= = + ∑  with t nδ = , we must have the re-

solving equation in the neighborhood each fixed point for one or n iterations: 

( ) ( ) ( )( ) ( ) ( )( )nyf X yf XyXy E e E e E eφ = = = . 

That means, especially for ( )nf : 

 ( )
( ) ( )( ) ( )( )( )0 ,1 0
n

ny S a Xyf XyX yX
nf y E e e E e e δθ = − = − =  

As: ( ) ( )( ) ( )( )
0

0 0d ,
t

n t
S a F a u u S a a tδ → =∫ . 

By continuity:  

( ) ( )( )( )( ) ( )( )( )( )0 1,

0
1 d d d 0yS a X t yX vyS X tyX

nf y E e e E e v vθ +→ − = =∫  
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But ( )
( ) ( )( ) ( )( )( ) 0
n y X tyf XyX yX

f y E e e E e eθ = − → − = . 

In consequence, if ( )( )( )( )( )1

0
d d d 0yX vyS X tE e v v+ =∫ , we have non-null 

measures verifying ( ) 0,f y yθ = ∀ . In other words, ( ) ( )0a t a t=  for the invar-
iant non-null measure and some 0t . Under this condition, the asymptotic be-
havior is random periodic cycles with an unknown almost period 0T t t= − .  

But, when we have many fixed points, the complete solution is more difficult 
because we meet some problems with domains of domination (see Section 4) 
and transitions from a domain of a fixed point to an another. ■ 

Remarks 
- Theoretically, if we know the probability’s measure, we can define some sta-

tistics (mean, standard deviation…). 
- We can try to extend these results to PDE equations and obtain other new 

results, as in the following:  
Let the PDE: ( )a u F a∂ ∂ =  
Where da C∈ ⊂   or d , pu∈  with d p> . 
After transformation of the PDE into iterations, suppose that one can use the 

Caratheodory’s solution for the PDE: 

 ( ) ( ) ( )( )0 da u a u F a v v= + ∫ .  

And we see that the only asymptotic solutions for a non-null measure are peri-
odic cycles with the unknown almost period 0T u u= − . 

5.2. Examples 

1) Suppose that F has a hessian definite negative, then, when 0δ → , it is easy 
to verify that the critical point verifies: 1ay = , with an approximation of 

( ) ( ) ( )
0

ya vy f an n
n a

H y yF a e aδ+

=
= ∂ ∂  for 0δ → .  

The critical point ca  is real and we don’t have a probabilistic solution.  
2) Suppose we have a linearity in b: Let ( ),a b=a  with da∈  and b∈ . 
We write: ( )d dt F=a a  as: with ( ) ( ) ( ) ( ) ( )( ),F f a b g a h a b k a= + +a  

 ( ) ( )d da t f a b g a= + ; ( ) ( )d db t h a b k a= +  

where: ( ) ( )0 0 0g k= =  in order to have ( )F =0 0 . 
We write the Plancherel-Rotach’s function with then ( ),y y z= , dy∈  and 

z∈  

( ) ( ) ( )( )( ) ( ) ( )( )( )n y a f a b g a z b h a b k aγ δ δ= + + + + +a  

Putting z zδ ′=  and b bδ′ =  such as zb z b′ ′=  for 0δ > , we obtain when 
0δ → :  

( ) ( )( ) ln lnn y a f a b z b n b n aγ ′ ′ ′ ′ ′→ + + − −a  

Where ( ),a b′ ′=a  (The change b bδ′ =  doesn’t modify the equation  
( ) 0f yθ = ). And the critical point is defined by: 
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( ) 0b yf a b z b nγ ′ ′ ′ ′∂ ∂ = + − =  

( ) 0a ya yb f a a nγ ′∂ ∂ = + ∂ ∂ − =  
So: ( )( ) ( ) ( )( ) 0ya yf a z ny f a a n yf a z′ ′+ + ∂ ∂ − + = . 

The imaginary critical points give the distribution of the cycles. Under general 
conditions, this distribution doesn’t depend on ( ) ( ) ( ), ,g a h a k a  but only on 
( )f a . 

6. Critical frequencies 

Asymptotically, we have random cycles. Let ( )a t  be a point on a such asymp-
totic cycle and a very small invariant borelian around this point. So, we have 
many large times to return in this borelian. In the differential iteration, we have 
many and large ( )t kT nτ = +  which give the same ( )a t  where T is a ran-
dom quasi-period [6]. 

Proposition 
When the number of iterations n →∞  and if the la hessian of yF is definite 

negative, the approximation with defines s y n=  in function of the critical point 
a : 

( ) 1 0s ts F a a a+ ∂ ∂ − =   

where ( )1 1 , 1,2, ,a a d= =


  . 
If as  is a particular solution and if s  is an eigenvector of ( )F a a−∂ ∂  for 

the eigenvalue 1/t, the general solution is disjunctive: 

as s=  if 1 at λ≠ −  or s s=
  if 1 at λ≠ − . 

The eigenvalue 1/t can be interpreted as a critical asymptotic frequency. 
■ Contrary to the previous Section 5, we don’t write the critical point a  as a 

function of s, but s as a function of a . For fixed a on an asymptotic cycle, we 
recognize the linear affine equation of s depending on the parameter t. We have 
to find a particular solution as : 

( ) 1 0a as ts F a a a+ ∂ ∂ − = . 

Formally: ( )( ) ( )1
1as Id t F a a a

−
= + ∂ ∂ . 

This solution as  is valid for all 1 at λ≠ −  where aλ  is eigenvalue of  
( )F a a∂ ∂  at the critical point a. If 1 at λ≠ − , as  is a particular solution of 

the equation and the general solution will be as s s= +
 , then:  

 ( ) ( ) 1 0a as s t s s F a a a+ ∂ ∂+ − =+
   

And: ( )s ts F a a= − ∂ ∂
  . 

As 1 at λ≠ − , 0s = . The general solution is disjunctive and shows a disconti-
nuity at the eigenvalues aλ . ■ 

Remark: calculation of as  

as  is obtained with ( )( ) 1
Id F a aτ

−
+ ∂ ∂  for all 1 aτ λ≠ −  which doesn’t be-

long to the spectrum of ( )F a a−∂ ∂  with the series development of τ .  
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Remark: the Fredholm alternative 
Here, we have the Fredholm alternative: either we have as  for all 1 aτ λ≠ −  

or s  for 1 0aτ λ≠ − > . Suppose we start with 0 1 aτ λ< < − , but τ  is in-
creasing: what happens when 1 aτ λ→ − ? What is the physical interpretation? 
Can we connect this phenomenon to some physical constants or boundaries?  

7. Case Where the Hessian Is Degenerated: The Lorenz’s  
Equation 

Generally, the hessian is not definite negative. The Lorenz’s equation [7] is a 
particularly important example because the differential iteration can be broken 
down into three independent iterations which have a remarkable feature: a par-
tial linearity; an iteration with a negative hessian which induces a probabilistic 
solution and another with a positive hessian. It is an ideal example to clarify the 
previous results.  

However, as there is an interpenetration of the distributions related to each 
fixed point, the connection between the various results remains delicate. The prob-
abilistic presentation seems to be the least bad: it gives the probability of pres-
ence except at the places where the domination changes; in this case, we go from 
a basin to an another. 

7.1. The Iteration at Its Repellent Fixed Points 

The vectors of this equation are written in bold notations: 

( )d dt F=a a  where ( ), ,a b c=a :  

( )d da t b aσ= −  

d db t a b acρ= − −  

d dc t c abβ= − + . 

The differential equation applies a bounded set C in itself for 0tδ > >  (the phe-
nomenon is occurring between a cold sphere at −50˚ and hot sphere, the earth, 
at +15˚ as the terrestrial atmosphere is modelled by Lorenz).  

The differential iteration ( )1 f=a a  associated with a given path t nδ =  is: 

 ( )1a a b aδσ= + −  

( )1b b a b acδ ρ= + − −   

( )1c c c abδ β= + − + . 

This iteration is quadratic, but has a linearity in a .  
We recall the known results concerning the fixed points:  
The fixed points are zeros of ( ) 0F =a . If 1ρ >  and ( )1α β ρ= − , it ex-

ists three fixed points: the point ( )0,0,0=0 , and two others symmetric with 
respect to the axis of c: 

 ( )2, ,α α α β+ =α  and ( )2, ,αα α β− = − −α .  

At 0, the eigenvalue’s equation λ  of the linear part is: 
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 ( ) ( )( )1 0β λ σ λ λ σρ+ + + − =   ,  

But, at +α  or at −α :  

 ( )( ) ( )21 2 0λ β λ σ λ α σ λ+ + + − + =  

Coefficients , ,β σ ρ  are such as these three fixed points are repellent; that means 
we have to study the distributions around each fixed point. We don’t speak here 
about attractive cycles, resonances, and some particular values of the parameters, 
etc. It remains many points to clarify.  

7.2. Analysis of the Hessian  

Projecting ( )f a  onto an axis ( ), ,x y z=y , we write: 

 ( ) ( ) ( )f L Qδ= +y a a a  

where ( )L a  is linear for a :  

( ) ( )( ) ( )( ) ( )1L x a b a y b a b zcδσ δ ρ δβ= + − + + − + −a  

 ( ) 1 2 3L aL b cL L= + +a   

with: ( )1 1L x yδσ δρ= − +   

( )2 1L x yδσ δ+= −  

( )3 1L z δβ= −  

and ( )Q a  is quadratic: ( ) ( )Q zb yc a= −a . 
The hessian ( )Q a  is degenerated and not definite negative. But, Q doesn’t 

change when we translate the origin from a fixed point to an another.  
First, we examine the matrix of ( )Q a : 

 
0

0 0
0 0

z y
Q z

y

− 
 =  
 − 

 

Let 2 2y zµ = +  the positive eigenvalue of the characteristic equation of Q:  

 ( )2 2 2 0y zµ µ − − =  

The matrix of the eigenvectors T is orthogonal and constant for all a . 

 

0
1 2

2
_ 2

T y z z

z y y

µ µ

µ

 
 

= − 
 − 

 

Corresponding to the diagonal matrix of the eigenvectors: 
0 0 0
0 0

_ 0 0
µ

µ

 
 Λ = − 
  

. 

7.3. Change of Basis Near 0 

- We calculate in the basis of eigenvectors directly with the Hermite’s polyno-
mials. As T is orthogonal, the transposed T’ is also its inverse: 1T T −′ = . 

Then, the application T=u a  with ( ), ,u v w=u  transforms: 
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( ) ( ) ( )f G yf T ′=y a u u   

( ) ( ) ( )2 2Q Q T w vδµ′ = −a u  

( )L LT ′a u . 

Now, in the basis u , the function ( ) ( )yf T G′ =u u  is factorized into three in-
dependent functions: 

 ( ) ( ) ( ) ( )1 2 3G g gu wgv+= +u  

with: ( )1 1g u ul= ; ( ) 2
2 2g l v vv δµ= − ; ( ) 2

3 3w wg l wδµ= + . 
Where: ( ) ( )( )1 1 1 2l x y zδσ δ δβ+ − + −=  

( ) ( ) ( )( )2 1 1 2l xx y y x y z zδσ δρ µ δσ δ δβ µ+ − + − − −= −  

( ) ( ) ( )( )3 1 1 2l xx y z x y z yδσ δρ µ δσ δ δβ µ+ − + − − −= −  

- To calculate 1l , 2l  et 3l , we form:  

( ) ( ) ( )( ) ( )1 1L a a x x y b x y zcδσ δρ δσ δ δβ= − + + + − + −  

with: ( )1 1L yx δσ δρ− += ; ( )2 1L x yδσ δ+= − ; ( )3 1L z δβ= −  

Then: ( ) ( )1 2 3 1 2 3

0 2 2
1, , , ,

2

y z
l l l LT L L L zl y

z y
µ

µ µ
=

 
 

′= = − 
 − 

u u u u . 

- We get 3 independent iterations:  
. the first iteration 1g  is linear; 
. the second 2g  is a random iteration; 
. the third 3g  remains positive, except if 3 0l =  half the time. 

- Let the resolving gap ( ) ( )( )( )
0

0yfn n n

a
e e δ

=
= ∂ ∂ ∂ ∂ =ay a   

For t δ∀ ≤ , putting T ′=a u , we have: 

( ) ( )( )( )
0

0yf Tn n n ne T e δ′

=
= ∂ ∂ ∂ ∂ =u

u
u u  

( )( ) ( )( ) ( )( ) ( )( )1 2 3yf T g u g v g wn n n n n n n ne e u e v e w′∂ ∂ = ∂ ∂ ⋅∂ ∂ ⋅∂ ∂u u .  

This gives: ( )( ) ( )1 1
1

g u g un n ne u l e=∂ ∂  
( )( ) ( )( ) ( )2 2

2
g v g vn n

ne v H g v e∂ ∂ =  

 ( )( ) ( )( ) ( )3 3
3

g w g wn n
ne w H g w e∂ ∂ =  

And: ( ) ( )( ) ( )( ) ( )( )1 2 3
0

0yf Tn n
n n

u
e l H g v H g w e δ′

=
= ∂ ∂ =uu . 

Proposition 
The solution around the fixed point 0 consists of the intersection of the family 

of random surfaces defined by:  

( )2 2 1 2,1 2l lowµ β   

with the surfaces 0x y zσ β− − =  and ( ) ( ) 2 0x y z x y z yσ ρ σ β− + + − + = . 
■ With the same calculations of encodings and interchanging the derivations, 

we have: 

1 0nl δ∂ ∂ = ; ( )( )2 0nH g v δ∂ ∂ = ; ( )( )3 0nH g w δ∂ ∂ =  
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We study separately the three expressions: 
- First: ( ) 1

11 1 0n nl l lnδ δ −∂ ∂ ∂ ∂ == . 
Either 1 0l x y zδ σ β∂ ∂ − − == , or: ( )1 ~ 2 0l y z+ =  

- Second: the polynomial ( )( )3nH g w  when 0w =  is a Hermite’s polynomial 
( )nH x  where x is ( )3 2x il δµ= . This polynomial ( )( )3 2n

ni H il δµ  is 
always positive half the time. In a general way:  

( ) ( )1 0n nH x nH x xδ δ−∂ ∂ = ∂ ∂ = . So: ( )3d 2 d 0l δµ δ = ,  

And ( )( )3 ~ 2 2 0l xz y z y µ+ − =  half the time. 
- Third: in the case of ( )( )2nH g w , in addition to the solution 2 0l = , we 

have to find the possible invariant distribution of ( )( )2 2 0nH l δµ = . 
Let the integrand of ( ) ( )2 lnn w g w n wγ = − . 
When 0δ → , ( )( )2 ~ 2 2l xy y z z µ+ −  with 2 2y zµ = + . 
By normalization of the coordinates ( ) ( ), , , ,x y z n nr ns ntδ δ δ δ= = =x s , we 

obtain: 

( )( ) ( ) ( )
1

2 2 2
2 2~ 2 2l n rs s t t s t n lδ δ+ − + = s   

( ) ( )
22 2 212n s t nδµ δ δ µ= + = s   

( ) ( ) ( )( )( )2
2 ln lnn v n l v v vγ δ µ δ δ δ= − − +s s  

Putting v vδ = , we have: ( ) ( ) ( )( )2
2 lnn v n l v v vγ µ= − −s s . 

We search the critical point: ( ) ( ) ( )2d d 2 1 0v v l v vγ µ= − − =s s  
The imaginary roots are: ( ) ( ) ( ) ( ) ( ) ( )2 2

2 24 21 16v l i lµ µ µ= ± −s s s s s s . 
Under the condition: ( ) ( )2

2 8l µ<s s : 

( )( ) ( )3 ~ 2 2 0l rt s t s µ+ − =s  half the time, 

Implies: ( ) ( ) ( ) 22 2
2

122l s t s t= − − +s  
The condition becomes: ( ) ( ) 24 2 2 3

16s t s t− + <  

1 0l =  implies 0s t+ = , then: 8s < . 
In any case, we observe that the conditions 3 1 0l l= =  allow us to express r et 

t depending on s and we can write that the density of zeros of s is now:  

( ) ( ) ( )( )Prob 1 zero between , dd dq s s mf v s ss s s+ ℑ== π  

( ) ( ) ( ) ( ) ( )2
2 2d 8 8 d dq s s l l sµ µ κ= − π =s s s s . 

Then, κ  follows a uniform low on (0, 1) with: 0s t+ =  (or: 0x y zσ β− − = ) 
and: ( )2 0xy y z z+ − = . 

We also remark that the normalization doesn’t affect the coefficients of the 
orthogonal matrix: 

( ) ( ) ( ), , , , , ,T x y z T nr n s n t T r s tδ δ δ= = . ■  

7.4. Analysis near α+  and α−  

We now verify similar results the two other fixed points +α  and −α .  
We search the distributions around the two other fixed points. To pass from 
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the fixed point 0 to the fixed point +α  or −α , we have just to put in the itera-
tion instead of ( ), ,a b c=a : ( )2, ,a b cα α βα+′ ′ ′ ′+ = + + +a α  or  

( )2, ,a b cα βα α+′′ ′′ ′′ ′′− = − − +a α . 
- Calculation for +α   

So, for +′ + =a aα ; 1 +′ ′= +a a α  and ( )1 f=a a  where ( )1 1 1 1, ,a b c=a  be-
comes 

( ) ( )1 1 f f+ +′ ′= + = = +a a a aα α ;  

then: ( )1 Fδ +′ ′ ′= + +a a a α   
As: ( ) ( ) ( ) ( )( ), ? ,F b a a b ac c abσ ρ β= − − − +a  

( )1 f=a a  becomes for ++a α : 

( )1 1ba a a aσδ′ − == +  

( ) ( ) ( )2 2
1 1–a b ac c a b c ab b ρ α α β δ α α βδ δ− + − − = + − −′ = +  

( ) ( ) ( )1 1c c c ab a b c a bβ δδ α δα′ = + − + + + = + +  

The projection of ( )f a  on an axis ( ), ,x y z=y  can be written:  

( ) ( ) ( )2
1 1 1f xa yb y c a zc z a bδ α α β δα+′ = + + − + + +ay  

( ) ( ) ( )( )2f f a yy z y z b cδ α α β α α′ = + − + −y a a  

and ( )Q a  is invariant: ( ) ( ) ( )f L Qδ′ ′= +a ay a  
( )L a  is linear for a : ( ) ( ) ( )( )2L L a z y z b y cδ α α β α α′ = + − + −a a  

( ) 1 2 3L aL bL cL′ ′ ′ ′= + +a   

with: ( )2
1 1L L z yδ α α β′ −+= ; 2 2L L zδ α′ = + ; 3 3L L yδ α′ = − . 

Then T and Λ remain invariant. The following is only a calculus. 
We calculate 1l′ , 2l′  et 3l′ , with 

( ) ( ) ( )( ) ( )1 1L a x x y b x y zcδσ δρ δσ δ δβ= − + + + − + −a : 

where ( )1 1L x yδσ δρ− += ; ( )2 1L x yδσ δ+= − ; ( )3 1L z δβ= −  

And: 

( )

( )( )2
1 2

1 2

3

3, ,

0 2 2
1, ,

2

l l l L

y z
L z y L z L y z y

z y

T

δ α α β δ α δ α µ
µ µ

 
 

+ − +

′ ′ ′

− − 
 − 

′ ′= =

=

l u u u

. 

The results are modified; if ( )1 2 3, ,l l l=l  is related to 0 and ( )1 2 3, ,l l l′ ′ ′ ′=l  to 
α+  

( )1 1 2l l z yδα= +′ −  

( ) ( )( )2 2 2 2l l z y y z z yδα α β µ= +′ − − +  

( ) ( )( )3 3 2 2l l z y z y z yδα α β µ= +′ − + +  

The following calculations remain the same with these modifications. 
- Calculation for −α   

When a  becomes −′′ +a α  the calculation is the same with the coordinates: 

( )1 1ba aa aδσ′ −+ =′ =  
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( ) ( ) ( )2 2
11 –a b ac cb b a b c aρ α α β δ α βδ αδ − + −′ + −+ =′=  

( ) ( ) ( )1 1c c c ab a b c a bβ δδ α δα′′ = + − + − + = − + . 

It remains the problems of domination and frontiers between the various dis-
tributions attached at each fixed point. 

Remark  
We have to go back to the original coordinates. And the solution gives only 

the probabilities of presence... 

8. Conclusions 

After this study, we can say, under good conditions, that an EDO is determinis-
tic near the origin of the process, but have random or fixed cycles after a very 
long time.  

With this probabilistic method, we obtain some new results, but we meet also 
many new difficulties due to the particular steepest descent’s method used to 
study the Plancherel-Rotach’s function. Many things have to be lightened 
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