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Abstract 
Let R be a ring and ( ),S ≤  a strictly ordered monoid. In this paper, we deal 
with a new approach to reflexive property for rings by using nilpotent ele-
ments, in this direction we introduce the notions of generalized power series 
reflexive and nil generalized power series reflexive, respectively. We obtain 
various necessary or sufficient conditions for a ring to be generalized power 
series reflexive and nil generalized power series reflexive. Examples are given 
to show that, nil generalized power series reflexive need not be generalized 
power series reflexive and vice versa, and nil generalized power series reflex-
ive but not semicommutative are presented. We proved that, if R is a left 
APP-ring, then R is generalized power series reflexive, and R is nil genera-
lized power series reflexive if and only if R/I is nil generalized power series 
reflexive. Moreover, we investigate ring extensions which have roles in ring 
theory. 
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1. Introduction 

Throughout this article, all rings are associated with identity unless otherwise 
stated. Any concept and notation not defined here can be found in Ribenboim 
([1] [2] [3] [4]), Elliott and Ribenboim [5]. Mason introduced the reflexive 
property for ideals, and this concept was generalized by some authors, defining 
idempotent reflexive right ideals and rings, completely reflexive rings, weakly 
reflexive rings (see namely, [6] [7] and [8]). Let R be a ring and I be a right ideal 
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of R. In [7], I is called a reflexive right ideal if for any ,x y R∈ , xRy I⊆  im-
plies yRx I⊆ . The reflexive right ideal concept is also specialized to the zero 
ideal of a ring, namely, a ring R is called reflexive [7] if its zero ideal is reflexive 
and a ring R is called completely reflexive if for any ,a b R∈ , 0ab =  implies 

0ba = . Completely reflexive rings are called reversible by Cohn in [9] and also 
studied in [10]. Reduced rings are completely reflexive and every completely ref-
lexive ring is semicommutative. The notion of Armendariz ring is introduced by 
Rege and Chhawchharia (see [11]). They defined a ring R to be Armendariz if 
( ) ( ) 0f x g x =  implies 0i ja b = , for all polynomials  
( ) 2

0 1 2
m

mf x a a x a x a x= + + + + , ( ) [ ]2
0 1 2

n
ng x b b x b x b x R x= + + + + ∈ . In 

[11], a ring R is called semicommutative if for all ,a b R∈ , 0ab =  implies  
0aRb = . This is equivalent to the definition that any left (right) annihilator of R 

is an ideal of R. 
An ideal I of a ring is called semiprime if aRa I⊆  implies a I∈  for a R∈  

and R is called semiprime if 0 is a semiprime ideal. Note that every semiprime 
ideal is reflexive by a simple computation, and so every ideal of a fully idempo-
tent ring (i.e., 2I I=  for every ideal I) is reflexive by [12]. The ring R is said to 
be weakly reflexive if 0arb =  implies bra  is nilpotent for ,a b R∈  and all 
r R∈ . The rings without nonzero nilpotent elements are said to be reduced 
rings. In [13], semicommutativity of rings is generalized to nil-semicommutativity 
of rings. A ring R is called nil-semicommutative if ,a b R∈  satisfy that ab is nilpo-
tent, then ( )arb nil R∈  for any r R∈  where ( )nil R  denotes the set of all nil-
potent elements of R. Clearly, every semicommutative ring is nil-semicommutative. 

Let ( ),S ≤  be an ordered set. Recall that ( ),S ≤  is artinian if every strictly 
decreasing sequence of elements of S is finite, and that ( ),S ≤  is narrow if every 
subset of pairwise order-incomparable elements of S is finite. Thus, ( ),S ≤  is arti-
nian and narrow if and only if every nonempty subset of S has at least one but 
only a finite number of minimal elements. Let S be a commutative monoid. Un-
less stated otherwise, the operation of S will be denoted additively, and the neu-
tral element by 0. The following definition is due to Elliott and Ribenboim [5]. 

Let ( ),S ≤  is a strictly ordered monoid (that is, ( ),S ≤  is an ordered mono-
id satisfying the condition that, if , ,s s t S′ ∈  and s s′< , then s t s t′+ < + ), 
and R a ring. Let ,SR ≤

 

 
 

 be the set of all maps :f S R→  such that  
( ) ( ){ }| 0supp f s S f s= ∈ ≠  is artinian and narrow. With pointwise addition, 

,SR ≤
 

 
 

 is an abelian additive group. For every s S∈  and ,, Sf g R ≤∈ 

 
 

, let 
( ) ( ) ( ) ( ){ }, , | , 0, 0sX f g u v S S u v s f u g v= ∈ × + = ≠ ≠ . It follows from Riben-

boim ([4], 4.1) that ( ),sX f g  is finite. This fact allows one to define the opera-
tion of convolution:  

( )( )
( ) ( )

( ) ( )
, ,

.
su v X f g

fg s f u g v
∈

= ∑  

Clearly, ( ) ( ) ( )supp fg supp f supp g⊆ + , thus by Ribenboim ([2], 3.4)  
( )supp fg  is artinian and narrow, hence ,Sfg R ≤∈ 

 
 

. With this operation, and 
pointwise addition, ,SR ≤

 

 
 

 becomes an associative ring, with identity element e, 
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namely ( )0 1e = , ( ) 0e s =  for every 0 s S≠ ∈ . Which is called the ring of 
generalized power series with coefficients in R and exponents in S. Many exam-
ples and results of rings of generalized power series are given in Ribenboim ([1] 
[2] [3] [4]), Elliott and Ribenboim [5] and Varadarajan ([14] [15]). For example, 
if { }0S =   and ≤ is the usual order, then { }

 

0 ,R R x∪ ≤ ≅ 

 

 

 , the usual ring 
of power series. If S is a commutative monoid and ≤ is the trivial order, then 

[ ],SR R S≤ ≅ 

 
 

, the monoid ring of S over R. Further examples are given in Ri-
benboim [2]. To any r R∈  and s S∈ , we associate the maps ,, S

r sc e R ≤∈ 

 
 

 
defined by  

( ) ( )
, 0, 1, ,

0, otherwise, 0, otherwise.r s

r x x s
c x e x

= = 
= = 
 

 

It is clear that rr c  is a ring embedding of R into ,SR ≤
 

 
 

, ss e , is a mo-
noid embedding of S into the multiplicative monoid of the ring ,SR ≤

 

 
 

, and 

r s s rc e e c= . Recall that a monoid S is torsion-free if the following property holds: 
If ,s t S∈ , if k is an integer, 1k ≥  and ks kt= , then s t= . 

We will write monoids multiplicatively unless otherwise indicated. If R is a 
ring and X is a nonempty subset of R, then the left (right) annihilator of X in R is 
denoted by ( )R X  ( ( )Rr X ). 

Motivated by the works on reflexivity, in this note we study new two concepts 
of reflexive property, namely, generalized power series reflexive and nilpotent 
property of it. Examples are given that, nil generalized power series reflexive 
which is neither generalized power series reflexive nor semicommutative. Since, 
every reversible ring is semicommutative, but the converse need not hold by 
([10], Lemma 1.4 and Example 1.5), so we proved that, under sufficient condi-
tions the converse is hold. If R is a left APP-ring, then R is generalized power se-
ries reflexive. Also we prove that, R is nil generalized power series reflexive if 
and only if R/I is nil generalized power series reflexive and R is nil generalized 
power series reflexive if and only if ( )nT R  is nil generalized power series ref-
lexive, when n is a positive integer. Moreover, we proved that every ring with 
identity is weakly generalized power series reflexive and when R is a left 
p.q.-Baer ring, then R is semiprime if and only if R is generalized power series 
reflexive. Also as a Corollary, of a ring R is nil reflexive of generalized power se-
ries and we give a lattice structure to the right (left) annihilators of a ring. 

In what follows,   and   denote the set of natural numbers and the ring 
of integers, and for a positive integer n, n  is the ring of integers modulo n. 
For a positive integer n, let ( )nMat R  denote the ring of all n n×  matrices and 

( )nT R  the ring of all n n×  upper triangular matrices with entries in R. We 
write [ ]R x , ( )P R , and ( )nS R , for the polynomial ring over a ring R, the 
prime radical of R, and the subring consisting of all upper triangular matrices 
over a ring R with equal main diagonal entries. 

2. Reflexive Rings of Generalized Power Series  

According to [16], a ring R is called to be quasi-Armendariz if whenever poly-

https://doi.org/10.4236/apm.2022.1211051


E. Ali 
 

 

DOI: 10.4236/apm.2022.1211051 679 Advances in Pure Mathematics 
 

nomials ( ) 2
0 1 2

m
mf x a a x a x a x= + + + + ,  

( ) [ ]2
0 1 2

n
ng x b b x b x b x R x= + + + + ∈  satisfy ( ) [ ] ( ) 0f x R x g x = , then  

0i ja Rb =  for each ,i j . It was proved in ([10], Proposition 2.4) that if R is an 
Armendariz ring, then R is completely reflexive if and only if [ ]R x  is com-
pletely reflexive. In [17], for a torsion-free and cancellative monoid, a ring R is 
said to be S-quasi-Armendariz, if whenever ,, Sf g R ≤∈ 

 
 

 satisfy , 0Sf R g≤ = 

 
 

, 
then ( ) ( ) 0f u Rg v =  for each ,u v S∈ . We start by the first concept in this 
paper. 

Definition 2.1. Let S be a torsion-free and cancellative monoid, ≤ a strict or-
der on S. A ring R is called generalized power series reflexive, if whenever  

,, Sf g R ≤∈ 

 
 

 satisfy , 0Sf R g≤ = 

 
 

, then , 0Sg R f≤ = 

 
 

.  
The following result appeared in ([18], Lemma 2.1). 
Lemma 2.2. Let S be a torsion-free and cancellative monoid, ≤ a strict order 

on S. Then ,SR ≤
 

 
 

 is reduced if and only if R is reduced.  
In [18], A ring R is called S-Armendariz ring, if for each ,, Sf g R ≤∈ 

 
 

 such 
that 0fg =  implies that ( ) ( ) 0f u g v =  for each ,u v S∈  and it was shown 
that generalized power series rings over semicommutative rings are semicom-
mutative. By ([17], Proposition 2.4) and ([18], Proposition 2.7), respectively. 

Lemma 2.3. Let ( ),S ≤  be a strictly ordered monoid and R be an S-Armendariz 
ring. Then R is semicommutative if and only if ,SR ≤

 

 
 

 is semicommutative.  
Lemma 2.4. Let S be a torsion-free and cancellative monoid, ≤ a strict order 

on S and R a reduced ring. Then R is an S-quasi-Armendariz.  
A ring R is symmetric if for all , ,a b c R∈  we have 0abc =  implies that 

0acb = . A ring R is called reversible if for all ,a b R∈  we have 0ab =  if and 
only if 0ba = . Reversible rings were defined by Cohn in [9]. He shows that 
Kothe’s conjecture is true for the class of reversible rings. Reversible rings are 
clearly reflexive. It is shown by ([8], Lemma 2.1) that a ring R is reflexive if and 
only if 0IJ =  implies 0JI =  for all ideals ,I J  of R. These arguments natu-
rally give rise to extending the study of symmetric ring property to the lattice of 
ideals. A generalization of symmetric rings was defined by Camillo, Kwak and 
Lee in [19]. A ring R is called ideal-symmetric if 0IJK =  implies 0IKJ =  for 
all ideals , ,I J K  of R. It is obvious that semiprime rings are ideal-symmetric. 

Theorem 2.5. Let R be a ring, ( ),S ≤  be a strictly ordered monoid. Assume 
that R is a reduced S-quasi-Armendariz. Then we have: 

(1) R is reflexive if and only if ,SR ≤
 

 
 

 is reflexive; 
(2) R is ideal-symmetric if and only if ,SR ≤

 

 
 

 is ideal-symmetric. 
Proof. We only prove (2), because the proof of the other case is similar. As-

sume that R is ideal-symmetric and ,
1 2 3, , Sf f f A R ≤∈ =  

 
 

 are such that  

1 2 3 0f Af Af = . Since R is a reduced S-quasi-Armendariz, hence by Lemma 2.2 
and Lemma 2.4, we have ( ) ( ) ( )1 2 3 0f u Rf v Rf w =  for all , ,u v w S∈ . Since R is 
ideal-symmetric, we have ( ) ( ) ( )1 3 2 0f u Rf w Rf v =  for each , ,u v w S∈ . Now, 
reduced of R implies that, 1 3 2 0f Af Af = . Hence ,SR ≤

 

 
 

 is ideal-symmetric. Con-
versely, suppose that A is ideal-symmetric. Let 0aRbRc =  for all , ,a b c R∈ . 
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Since R is reduced, 0caAcbAcc = . Thus 0caAccAcb =  and 0aRcRb =  for all 
, ,a b c R∈ . Therefore, R is ideal-symmetric.                         □ 
Corollary 2.6. Let S be a torsion-free and cancellative monoid, ≤ a strict order 

on S, and R a reduced ring. Then R is generalized power series reflexive rings.  
Proposition 2.7. Let S be a torsion-free and cancellative monoid, ≤ a strict 

order on S. If R is reduced semicommutative ring, then R is an S-Armendariz if 
and only if R is generalized power series reflexive rings.  

Proof. Apply Lemma 2.3 and Lemma 2.4.                            □ 
Corollary 2.8. Let ( ),S ≤  a strictly totally ordered monoid. A ring R is a 

completely reflexive ring if and only if R is generalized power series semicom-
mutative reflexive.  

An ideal I of R is said to be right s-unital if, for each a I∈  there exists an 
element e I∈  such that ae a= . Note that if I and J are right s-unital ideals, 
then so is I J  (if a I J∈  , then ( )a aIJ a I J∈ ⊆  ). 

The following result follows from Tominaga ([20], Theorem 1). 
Lemma 2.9. An ideal I of a ring R is left (resp. right) s-unital if and only if for 

any finitely many elements 1 2, , , na a a I∈ , there exists an element e I∈  such 
that i ia ea=  (resp. i ia a e= ) for each 1,2, ,i n=  .  

Clark defined quasi-Baer rings in [21]. A ring R is called quasi-Baer if the left 
annihilator of every left ideal of R is generated by an idempotent. Note that this 
definition is left-right symmetric. Some results of a quasi-Baer ring can be found 
in [21] and [22] and used them to characterize when a finite dimensional algebra 
with unity over an algebraically closed field is isomorphic to a twisted matrix 
units semigroup algebra. A ring R is called a right (resp., left) PP-ring if every 
principal right (resp., left) ideal is projective (equivalently, if the right (resp., left) 
annihilator of an element of R is generated (as a right (resp., left) ideal) by an 
idempotent of R). A ring R is called a PP-ring (also called a Rickart ring ([23], p. 
18])) if it is both right and left PP. We say a ring R is a left APP-ring if the left 
annihilator ( )Rl Ra  is right s-unital as an ideal of R for any element a R∈ . 

Proposition 2.10. Let ( ),S ≤  a strictly totally ordered monoid. If R is a re-
duced left APP-ring, then R is generalized power series reflexive.  

Proof. Let ,0 , Sf g R ≤≠ ∈ 

 
 

 with , 0Sf R g≤ = 

 
 

. We use the transfinite in-
duction to show that ( ) ( ) 0f u Rg v =  for all ,u v S∈ . Assume that ( ) 0f uπ = , 
( ) 0g vπ = . Let ( ) ( )

0 0
, ,u vu v X f g+∈ . So 0u u≤  and 0v v≤ . If 0 < ,u u  then 

0 0 0 0 0u v u v u v u v+ < + ≤ + = + , a contradiction. Thus 0u u= . Similarly, 0v v= . 
So ( ) ( ){ }0 0 0 0, ,u vX f g u v+ = . Hence for any t R∈ , from , 0Sf R g≤ = 

 
 

 we 
have,  

( )( )
( ) ( )

( ) ( ) ( ) ( )
0 0

0 0 0 0
, ,

0 .
u v t

t
u v X f c g

fc g u v f u tg v f u tg v
+∈

= + = =∑  

So ( ) ( )0 0 0f u Rg v = . Now, let Sλ ∈  with 0 0u v λ+ ≤  and assume that for 
any ( )u supp f∈  and any ( )v supp g∈ , if u v λ+ < , then ( ) ( ) 0f u Rg v = . 
We claim that ( ) ( ) 0f u Rg v = , for each ( )u supp f∈  and each ( )v supp g∈  
with u v λ+ = . For convenience, we write  
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( ) ( ) ( ) ( ){ }, , | , ,X f g u v u v u supp f v supp gλ λ= + = ∈ ∈  as  
( ){ }, | 1, 2, ,i iu v i n=   such that 1 2 nu u u< < < , where n is a positive integer 

(Note that if 1 2u u= , then from 1 1 2 2u v u v+ = +  we have 1 2v v= , and then 
( ) ( )1 1 2 2, ,u v u v= ). Since , 0Sf R g≤ = 

 
 

, for any t R∈  we have: 

( )( )
( ) ( )

( ) ( ) ( ) ( )
, , 1

0 .
t

n

t i i
u v X f c g i

fc g f u tg v f u tg v
λ

λ
∈ =

= = =∑ ∑       (3) 

Let ( )( )1 1u Re t f u R∈ . So ( )
11 0uf u Re =  and which implies  

( ) ( )
11 1 0uf u Re g v = . Let t R′∈  be an arbitrary element. Then we have  

( ) ( )
11 1 0uf u t e g v′ = . Take 

1ut t e′=  in Equation (3). Thus,  

( ) ( )
1

2
0.

n

i u i
i

f u t e g v
=

′ =∑  

Note that 1 i i iu v u v λ+ < + =  for any 2i ≥ . So by compatibility and induction 
hypothesis, ( ) ( )1 0if u Rg v =  for each 2i ≥ . Since R is right APP, ( )( )1Rr f u R  
is left s-unital. So without lose of generality and using Lemma 2.9, we can as-
sume that ( ) ( )

1i u ig v e g v= , for each 2i ≥ . Therefore  

 ( ) ( )
2

0.
n

i i
i

f u t g v
=

′ =∑                      (4) 

Let ( )( )2 2u Re r f u R∈ . So ( )
22 0uf u Re =  and then ( ) ( )

22 2 0uf u Re g v = . This 
implies ( ) ( )

22 2 0uf u Re g v = . 
Let q R∈  be an arbitrary element. So ( ) ( )

22 2 0uf u qe g v = . Also note that 

2 i i iu v u v λ+ < + =  for any 3i ≥ . So by induction hypothesis, ( ) ( )2 0if u Rg v = . 
Therefore ( ) ( )( )2i Rg v r f u R∈ , for each 3i ≥ . Since ( )( )2Rr f u R  is left s- 
unital, without lose of generality and using Lemma 2.9, again we can assume that 
( ) ( )

2i u ig v e g v= , for each 3i ≥ . Take 
2ut qe′ =  in Equation (4), so we have:  

 ( ) ( )
2

2
0.

n

i u i
i

f u qe g v
=

=∑                  (5) 

Continuing in this manner, we have ( ) ( ) 0n nf u pg v = , where p is an arbitrary 
element of R. Thus ( ) ( ) 0n nf u Rg v = . Hence ( ) ( )1 1 0n nf u Rg v− − = ,  ,  
( ) ( )2 2 0f u Rg v = , ( ) ( )1 1 0f u Rg v = . Therefore, by transfinite induction,  
( ) ( ) 0f u Rg v =  for any ,u v S∈ . By Lemma 2.2, ( ) ( ) 0g v Rf u = . Thus  

, 0Sg R f≤ = 

 
 

, the proof is done.                                    □ 
Corollary 2.11. Let ( ),S ≤  a strictly totally ordered monoid. If I is a finitely 

generated left ideal of R then for all ( )Ra l I∈ , ( )Ra al I∈ . So R is generalized 
power series reflexive.  

Proof. By Proposition 2.10 and ([24], Proposition 2.6).                 □ 
Corollary 2.12. Let ( ),S ≤  a strictly totally ordered monoid. If R is a Baer 

ring. Then R is generalized power series reversible if and only if R is generalized 
power series reflexive.  

It is obvious that commutative rings are symmetric and symmetric rings are 
reversible, but the converses do not hold by ([25], Examples I.5 and II.5) and 
([26], Examples 5 and 7). Every reversible ring is semicommutative, but the 
converse need not hold by ([10], Lemma 1.4 and Example 1.5). On the other 
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hand, it can be easily checked that reversible rings are reflexive, and hence there 
exists a reflexive and semicommutative ring which is not symmetric by ([26], 
Examples 5 and 7). However, we have the following which is a direct conse-
quence of routine computations.  

Proposition 2.13. Let ( ),S ≤  a strictly totally ordered monoid. Then R is 
generalized power series semicommutative and reflexive if and only if R is gene-
ralized power series reversible.  

A ring R is called semiprime if for any a R∈ , 0aRa = , implies 0a = . Let R 
be a ring and ( ),S ≤  a strictly totally ordered monoid. A ring R is called S-semi- 
prime if , 0Sf R f≤ = 

 
 

, then 0f =  for each ,Sf R ≤∈ 

 
 

. 
The following result appeared in ([27], Lemma 2.7). 
Lemma 2.14. Let R be a ring and ( ),S ≤  a strictly totally ordered monoid. 

Then R is a semiprime ring if and only if ,SR ≤
 

 
 

 is a semiprime ring.  
Proposition 2.15. Let ( ),S ≤  be a strictly totally ordered monoid. Assume 

that R is semiprime. Then R is reflexive ring if and only if ,SR ≤
 

 
 

 is reflexive.  
Proof. Since, semiprime is quasi-Armendriz, and so reflexive. Thus by Lemma 

2.14 and ([8], Lemma 2.1), the proof it follows from Theorem 2.5.          □ 
Corollary 2.16. ([7], Proposition 3.2) Let R be a quasi-Armendariz ring, then 

the following statements are equivalent: 
(1) R is reflexive. 
(2) [ ]R x  is reflexive. 
(3) 1;R x x−    is reflexive.  
Theorem 2.17. Let ( ),S ≤  be a strictly totally ordered monoid and R be a left 

p.q.-Baer ring. Then the following conditions are equivalent: 
(1) R is a semiprime ring; 
(2) R is generalized power series reflexive ring; 
(3) R is a right idempotent generalized power series reflexive ring;  
(4) R is a left idempotent generalized power series reflexive ring; and 
(5) ( ) ( )lS R B R= . 
Proof. (1) ⇒  (2) ⇒  (3) and (4) are obvious. (3) ⇒  (5) and (4) ⇒  (5) 

analog with the proof of ([8], Proposition 3.15).                         □ 
Let I be an index set and iR  be a ring for each i I∈ . Let ( ),S ≤  be a strictly 

ordered monoid, if there is an injective homomorphism : ii If R R
∈

→∏  such 
that, for each j I∈ , :j jf R Rπ →  is a surjective homomorphism, where  

:j i ji I R Rπ
∈

→∏  is the jth projection. We have the following. 
Proposition 2.18. Let iR  be a ring, ( ),S ≤  a strictly totally ordered monoid, 

for each i in a finite index set I. If iR  is generalized power series reflexive ring. 
for each i, then ii IR R

∈
=∏  is generalized power series reflexive ring.  

Proof. Let i
i I

R R
∈

=∏  be the direct product of rings ( )i i I
R

∈
 and iR  is gene-

ralized power series reflexive, for each i I∈ . Denote the projection iR R→  as 

iΠ . Suppose that ,, Sf g R ≤∈ 

 
 

 are such that , 0Sf R g≤ = 

 
 

. Set i if f=∏ , 

i ig g=∏  and i ih h=∏ . Then ,, S
i i if g R ≤∈ 

 
 

. For any ,u v S∈ , assume  
( ) ( )u

i i I
f u a

∈
= , ( ) ( )v

i i I
g v b

∈
= . Now, for any ,Sh R ≤∈ 

 
 

, any r R∈  and any 
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s S∈ ,  

( )( )
( ) ( )

( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( )( )

( ) ( )
( ) ( )( )

( ) ( )
( ) ( )

( )( )( )

, ,

, ,

, ,

, ,

, ,

.

s r

s r

s r

s r

s i r ii

r
u v X f c g

u v
i i ii Ii I i Iu v X f c g

u v
i i i i Iu v X f c g

i i i i I
u v X f c g

i i i
u v X f c g

i I

i i i i I

fc g s f u rg v

a r b

a r b

f u r g v

f u r g v

f h g s

∈

∈∈ ∈
∈

∈∈

∈
∈

∈
∈

∈

=

=

=

=

 
 =
 
 

=

∑

∑

∑

∑

∑

 

Since ( )( ) 0rfc g s =  we have  

( )( ) 0.
ii r if c g s =  

Thus, 0i i if h g = . Now it follows ( ) ( ) 0i i if u r g v =  for any r R∈ , any ,u v S∈  
and any i I∈ , since iR  is generalized power series reflexive. Hence, for any 

,u v S∈ ,  

( ) ( ) ( )( ) ( )( ) 0i i i i I
f u rg v f u r g v

∈
= =  

since I is finite. Thus, ( ) ( ) 0f u Rg v = . Then by reflexive ring, we have  

( )( ) ( )( ) ( ) ( ) 0.i i i i I
g v r f u g v Rf u

∈
= =  

This means that , 0Sg R f≤ = 

 
 

. Therefore R is generalized power series reflex-
ive.                                                             □ 

In the following we study ring theoretic properties and extensions related to 
the right (left) annihilators of a generalized power series reflexive rings. 

Let ( )C fγ =  be the content of f, i.e., ( ) ( ) ( ){ }|C f f u u supp f R= ∈ ⊆ . 
Since, RR c  we can identify, the content of f with  

( ) ( ) ( ){ } ,| .
i

S
iC f f uc c u supp f R ≤= ∈ ⊆  

 
 

 

Lemma 2.19. ([28], Lemma 2.1) Let R be a ring, S a strictly ordered monoid, 
,SR ≤

 

 
 

 the generalized power series ring and U R⊆ . Then  

( ) ( ) ( ) ( ), ,
, ,, .S S

S S
R RR R

R U U r U R r U≤ ≤
≤ ≤ = = 

 
   

   

   

   

 

   
   

 

By Lemma 2.19 we have two maps ( )( ) ( )( ),
,: S

S
R R

rAnn id R rAnn id Rφ ≤
≤→

 

 

 

 

 
 

 
and ( )( ) ( )( ),

,: S
S

R R
lAnn id R lAnn id Rψ ≤

≤→
 

 

 

 

 
 

 defined by ( ) ,SI I Rφ ≤=  

 
 

 
and ( ) ,SJ R Jψ ≤=  

 
 

 for every ( )( ) ( ){ }is an ideal of|R RI rAnn id R r U U R∈ =  
and ( )( ) ( ){ }is an ideal of|R RJ lAnn id R l U U R∈ = , respectively. Obviously, φ  
is injective. In the following Theorem we show that φ  and ψ  are bijective 
maps if and only if R is generalized power series reflexive. 

Theorem 2.20. Let R be a reduced ring, S a strictly ordered monoid and 
,SR ≤

 

 
 

 the generalized power series. Then the following are equivalent: 

https://doi.org/10.4236/apm.2022.1211051


E. Ali 
 

 

DOI: 10.4236/apm.2022.1211051 684 Advances in Pure Mathematics 
 

(1) R is generalized power series reflexive ring. 
(2) The function ( )( ) ( )( ),

,: S
S

R R
rAnn id R rAnn id Rφ ≤

≤→
 

 

 

 

 
 

 is bijective, wh- 
ere ( ) ,SI I Rφ ≤=  

 
 

. 
(3) The function ( )( ) ( )( ),

,: S
S

R R
lAnn id R lAnn id Rψ ≤

≤→
 

 

 

 

 
 

 is bijective, wh- 
ere ( ) ,SJ R Jψ ≤=  

 
 

.  
Proof. (1) ⇒  (2) Let ,SY R ≤⊆  

 
 

 and ( )f Y C fγ ∈=  . From Lemma 2.19 it 
is sufficient to show that ( ) ( ),

,
S

S
RR

r f r C f R≤
≤=

 

 

 

 

 
 

 for all f Y∈ . In fact, let 

( ),SR
g r f≤∈

 

 

 

 and for any ,Sh R ≤∈ 

 
 

. Then 0fhg =  and by assumption  
( ) ( ) 0i jf u tg v =  for each ( ) ,iu supp f t R∈ ∈  and each ( )jv supp g∈ . Then 

for a fixed ( ) ,iu supp f t R∈ ∈  and each ( )jv supp g∈ ,  
( ) ( ) ( )( )( )0

ii j t jf uf u tg v c c g v= =  and it follows that  

( ) ( ) ( ), ,
i i

S S
R t Ru supp f f ug r c c R r C f R≤ ≤

∈∈ =   



   
   

. So ( ) ( ),
,

S
S

RR
r f r C f R≤

≤⊆
 

 

 

 

 
 

. 
Conversely, let ( ) ,S

Rg r C f R ≤∈  

 
 

, then ( ) 0
i tf uc c g =  for each  

( ) ,iu supp f t R∈ ∈ . Hence, ( )( )( ) ( ) ( )0
i t j i jf uc c g v f u tg v= =  for each  

( ) ,iu supp f t R∈ ∈  and ( )jv supp g∈ . Thus,  

( )( )
( ) ( )

( ) ( )
, ,

0
i j s t

i j
u v X f c g

fhg s f u tg v
∈

= =∑  

and it follows that ( ),SR
g r f≤∈

 

 

 

. Hence ( ) ( ),
,

S
S

R R
r C f R r f≤

≤ ⊆
 

 

 

 

 
 

 and it 
follows that ( ) ( ),

,
S

S
R R

r C f R r f≤
≤ =

 

 

 

 

 
 

. So  

( ) ( ) ( ) ( ), ,
, , .S S

S S
f Y f Y R RR R

r Y r f r C f R r Rγ≤ ≤
≤ ≤

∈ ∈= = =
   

   

   

   

 

   
   

 

(2) ⇒  (1) Suppose that ,, Sf g R ≤∈ 

 
 

 be such that , 0Sf R g≤ = 

 
 

. Then  
( ),SR

g r f≤∈
 

 

 

 and by assumption ( ),
,

S
S

R
r f Rγ≤

≤=
 

 

 

 

 
 

 for some right ideal γ  
of R. Consequently, ( )0

jt g v
fc c=  and for any ( )iu supp f∈ ,  

( )( )( ) ( ) ( )0
jt i i jg v

fc c u f u tg v= =  for each ( ) ,iu supp f t R∈ ∈  and  

( )jv supp g∈ . Thus by reduced ring, ( ) ( ) 0j ig v tf u = , then , 0Sg R f≤ = 

 
 

. 
Hence, R is generalized power series reflexive ring. The proof of (1) ⇔  (3) is 
similar to the proof of (1) ⇔  (2).                                   □ 

Definition 2.21. A submodule N of a left R-module M is called a pure sub-
module if R RL N L M⊗ → ⊗  is a monomorphism for every right R-module L. 
By ([29], Proposition 11.3.13), for an ideal I, the following conditions are equiv-
alent: 

(1) I is right s-unital; 
(2) R/I is flat as a left R-module; 
(3) I is pure as a left ideal of R.  
Theorem 2.22. Let R be a reduced ring, ( ),S ≤  a strictly totally ordered 

monoid. Then the following statements are equivalent: 
(1) ( )Rr aR  is pure as a right ideal in R for any element a R∈ ; 
(2) ( ),

,
S

S
R

r f R≤
≤

 

 

 

 

 
 

 is pure as a right ideal in ,SR ≤
 

 
 

 for any element  
,Sf R ≤∈ 

 
 

. 
In this case R is generalized power series reflexive ring.  
Proof. Assume that the condition (1) holds. Firstly, by using the same method 
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of the proof of Proposition 2.10 we can proved that R is generalized power series 
reflexive. Finally, by using Lemma 2.9 we can see that the condition (2) holds. 

Conversely, suppose that the condition (2) holds. Let a be an element of R. 
Then ( ),

,
S

S
R

r a R≤
≤

 

 

 

 

 
 

 is left s-unital. Hence, for any ( )Rb r aR∈ , there exists 
an element ,Sf R ≤∈ 

 
 

 such that bf b= . Let ( )0f  be the constant term of f. 
Then ( ) ( )0 Rf r aR∈  and ( )0f b b= . This implies that ( )Rr aR  is left s-unital. 
Therefore condition (1) holds.                                       □ 

3. Nil Generalized Power Series Reflexive Rings 

In this section, we first give the following concept, so called nil generalized pow-
er series reflexive, that is a generalization of generalized power series reflexive 
rings and study the relations between nil generalized power series reflexive and 
some certain classes of rings. 

Definition 3.1. Let ( ),S ≤  be a strictly ordered monoid. A ring R is called nil 
generalized power series reflexive if whenever ,, Sf g R ≤∈ 

 
 

 satisfy  
( ) ,Sfhg nil R ≤∈ 

 

 

 implies ( ) ,Sghf nil R ≤∈ 

 

 

 for each ,Sh R ≤∈ 

 
 

.  
Let { }( )0 ,S = + , and ≤ is the usual order. Then 

 

,SR R x≤ ≅ 

 
 

. So the 
ring R is nil generalized power series reflexive if and only if R is nil power series 
reflexive. Hence a nil generalized power series reflexive is a generalization of nil 
power series reflexive and power series reflexive. In the next, we provide some 
examples for nil generalized power series reflexive rings. It is show that, nil ge-
neralized power series reflexive need not be generalized power series reflexive. In 
([8], Theorem 2.6), Kwak and Lee proved that R is a reflexive ring if and only if 

( )nMat R  is a reflexive ring for all 1n ≥ . However, this is not the case in nil 
generalized power series reflexive of R. There are nil generalized power series 
reflexive over which matrix rings need not be nil generalized power series ref-
lexive as shown below. 

Example 3.2. Let S be a torsion-free and cancellative monoid, ≤ a strict order 
on S. Then 

(1) If R be a ring with ( )nil R  an ideal of R. Then R is nil generalized power 
series reflexive. 

(2) For any reduced ring R, the ring ( )nT R  is nil generalized power series 
reflexive. However, the ring of all 2 2×  matrices over any field and satisfying 
the condition that 0 s≤  for every s S∈  is not nil generalized power series 
reflexive. 

(3) For R be a reduced ring. Consider the ring  

 ( )

12 13 1

23 2

3

0
| , ;1 , .0 0

0 0 0

n

n

n ijn

a a a a
a a a

S R a a R i j na a

a

  
  
    = ∈ ≤ ≤ 
  
      







    



 

Then ( )nS R  is not generalized power series reflexive, when 4n ≥ , but ( )nS R  
and R are nil generalized power series reflexive for all 1n ≥ .  
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Proof. (1) Assume that ,, Sf g R ≤∈ 

 
 

, with fhg  is nilpotent for all ,Sh R ≤∈ 

 
 

. 
So there exists a positive integer n such that ( ) 0nfhg = . Therefore  

( ) ( ) ( )( ) 0
n

f u h w g v = , for any , ,u v w S∈ . Then ( ) ( ) ( ) ( )f u h w g v nil R∈  and 
so ( ) ( ) ( ) ( ) ( ) ( ) ( )g v h w f u g v h w f u nil R∈ . Hence ( ) ( ) ( )g v h w f u  is nilpo-
tent. Thus, ghf  is nilpotent. 

(2) For a ring R, by [30],  

( )( )

( )
( )

( )

( )

0
.0 0

0 0 0

n

nil R R R R
nil R R R

nil T R nil R R

nil R

 
 
 
 =
 
 
 
 







    



  

Let R be a reduced ring. Then ( ) 0nil R =  and so ( )( )nnil T R  is an ideal. By 
(1), ( )nT R  is nil generalized power series reflexive. Let  

( )2

0 1 0 0
,

0 0 0 1
A B Mat F   
= = ∈   
   

,  

where F is a field. For any ( )2C Mat F∈ , 0 s S≠ ∈ . 
0
0 0

d
ACB  

=  
 

 is nilpo-

tent, but 
0 0
0 1

BCA  
=  
 

 is not nilpotent. Therefore ( )2Mat F  is not nil gene-

ralized power series reflexive. 
(3) By the same argument as in ([8], Example 2.3) that ( )nS R  is not genera-

lized power series reflexive when 4n ≥ . Since R is reduced, R is nil generalized 
power series reflexive. Note that  

 ( )( ) ( )

12 13 1

23 2

3

0
| , ;1 , .0 0

0 0 0

n

n

n ijn

a a a a
a a a

nil S R a nil R a R i j na a

a

  
  
    = ∈ ∈ ≤ ≤ 
  
      







    



 

The ring R being reduced implies that ( )( )nnil S R  is an ideal. By (1), ( )nS R  
is nil generalized power series reflexive.                                □ 

By Example 3.2(2), for n by n upper triangular matrix ring over R. It is easy to 
verify the next proposition.  

Proposition 3.3. Let R be a ring, ( ),S ≤  a strictly ordered monoid. A ring R 
is nil generalized power series reflexive if and only if ( )nT R  is nil generalized 
power series reflexive, for any positive integer n.  

Proof. Suppose that ( )nT R  is nil generalized power series reflexive. Note that 
R is isomorphic to the subring of ( )nT R . Thus R is nil generalized power series 
reflexive, since each subring of nil generalized power series reflexive ring is also 
nil generalized power series reflexive. For the forward implication, let  

( ) ,, S
nf g T R ≤∈ 

 

 

 such that ( )( ),S
nfhg nil T R ≤∈ 

 

 

, where  
( ) ( ),ij ijf f u h h w= =  and ( )ijg g v= , for all , ,u w v S∈  and ( ),i j th entry of 
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( ) ( ),f u h w  and ( )g v  respectively. Since  
( )( ) ( ) ( ){ }, |S

n ij ijnil T R a a nil R≤ = ∈ 

 

 

, then we have ( )ii ii iif h g nil R∈  for each 
1 i n≤ ≤ . Since R is nil generalized power series reflexive, there exists some posi-
tive integer , , ,u w v im  such that ( ) ( ) ( )( ) , , , 0u w v im

ii ii iif u h w g v = . Let  

{ }, , , , ,max |1u w v u w v im m i n= ≤ ≤ . Then ( ) ( ) ( )ii ii iif u h w g v  is nilpotent and so  
( ) ( ) ( )ii ii iig v h w f u  is nilpotent. Therefore, ( )nT R  is nil generalized power se-

ries reflexive.                                                     □ 
Now we shall give an example to show that there exists a nil generalized power 

series reflexive ring which is not generalized power series reflexive. Also genera-
lized power series reflexive rings may not be nil generalized power series reflex-
ive either as shown below.  

Example 3.4. There exists a nil generalized power series reflexive ring which 
is neither generalized power series reflexive nor semicommutative.  

Proof. Let R be a reduced ring. By Examples 3.2(2), ( )2T R  is nil generalized  

power series reflexive. On the other hand, ( )( )2

0
|

0 0
b

nil T R b R
   = ∈  
   

. Con-

sider ( )2

0 1 1 0
,

0 0 0 0
T R   

∈   
   

. Then 
0 1 1 0

0
0 0 0 0 0

R R
R

   
=   

   
,  

1 0 1 1 0 1
0

0 0 0 1 0 0
   

≠   
   

 for 
1 1
0 1

R 
∈ 

 
. This shows that ( )2T R  is not gene-

ralized power series reflexive. ( )2T R  is also not semicommutative (by Lemma 2.3). 

For if, 
1 1
0 0

A  
=  
 

, 
0 1
0 1

B
− 

=  
 

 and ( )2

1 1
0 1

C T R 
= ∈ 
 

, then 0AB = , but 

0ACB ≠ .                                                        □ 
It is shown by ([8], Lemma 2.1) that a ring R is reflexive if and only if 0IJ =  

implies 0JI =  for all ideals ,I J  of R. 
Lemma 3.5. Let S be a torsion-free and cancellative monoid, ≤ a strict order 

on S. For a ring R, consider the following conditions. 
(1) R is nil generalized power series reflexive. 
(2) If ARB  is a nil set, then so is BRA  for any subsets ,A B  of R. 
(3) If IJ  is nil, then JI  is nil for all right (or left) ideals ,I J  of R. 
Then (1) ⇒  (2) ⇒  (3).  
Proof. (1) ⇒  (2) Assume that R is nil generalized power series reflexive. Let 
,A B  be two nonempty subsets of R with ARB is a nil set. For any f A∈  and 

g B∈ , fhg  is nilpotent for all h R∈ . Then ghf  is nilpotent. This implies 
that BRA is nil. 

(2) ⇒  (3) Let I and J be any right ideals of R such that IJ is nil. Since IR I⊆ , 
IRJ is nil. By (2), JRI is nil. Since JI JRI⊆ , we get JI is nil. Assume that I and J 
be any left ideals of R such that IJ is nil. Since RJ J⊂  and then IRJ IJ⊆ , IRJ 
is nil. By (2), JRI is nil. Since JI JRI⊆ , we get JI is nil.                  □ 

Lemma 3.6. Let S be a torsion-free and cancellative monoid, ≤ a strict order 
on S. The following conditions are equivalent for a ring ,R u S∈ . 

(1) ( ) ( )f u R nil R⊆  for any ( ) ( )f u nil R∈ . 
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(2) ( ) ( )Rf u nil R⊆  for any ( ) ( )f u nil R∈ .  
Proof. (1) ⇒  (2) Assume that ( ) ( ) ( )f u h w nil R∈  for all ( )h w R∈ , for 

any , ,u v w S∈ , for any ( ) ( )f u nil R∈ . Let ( ) ( )( ) 0
n

f u h w =  for some posi-
tive integer n. Then ( ) ( )( ) 1

0
n

h w f u
+
= , hence ( ) ( )h w f u  is nilpotent. Thus 

( ) ( )Rf u nil R⊆ . Similarly, we can show (2) ⇒  (1).                    □ 
The next result gives a source of nil generalized power series reflexive.  
Proposition 3.7. Let S be a torsion-free and cancellative monoid, ≤ a strict 

order on S and R be a ring such that ( ) ( )f u R nil R⊆  for any ( ) ( )f u nil R∈ , 
for each u S∈ . Then R is nil generalized power series reflexive.  

Proof. Assume that ,, Sf g R ≤∈ 

 
 

, with ( ) ,Sfhg nil R ≤∈ 

 

 

 for any  
,Sh R ≤∈ 

 
 

. So there exists a positive integer n such that ( ) 0nfhg = . Therefore 
( ) ( ) ( )( ) 0

n
f u h w g v = , for any , ,u v w S∈ . So ( ) ( ) ( ) ( )f u h w g v nil R∈ , by 

hypothesis, ( ) ( ) ( )f u g v R nil R⊆ . Hence ( ) ( ) ( ) ( )g v h w f u nil R∈  for any  
( )h w R∈ . Thus, ( ) ,Sghf nil R ≤∈ 

 

 

.                                 □ 
According to ([31], Lemma 2.7). If R is iS -compatible for each i, then R is 

S-compatible. By ([32], Lemma 3.1), in a semicommutative ring R, ( )nil R  is 
an ideal of R. In ([7], Example 2.1) shows that any semicommutative ring need 
not be reflexive, but this is not the case when we deal with nil-reflexive rings. It 
can be observed that every semicommutative ring is nil generalized power series 
reflexive as a consequence of Proposition 3.7. But we give its direct proof in the 
next. 

In [7], weakly reflexive rings are studied in detail for rings having an identity. 
However weakly reflexive rings are nothing but all rings with identity as it is 
shown below. 

Lemma 3.8. Let S be a torsion-free and cancellative monoid, ≤ a strict order 
on S. Then every ring with identity is nil generalized power series reflexive.  

Proof. Let ,, Sf g R ≤∈ 

 
 

, with 0fhg = , for all ,Sh R ≤∈ 

 
 

. Then  
( ) ( ) ( ) 0f u h w g v = , for any , ,u v w S∈ . and so  
( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )2

0g v h w f u g v h w f v g u h w f u= =  for all ( )h w R∈ .  
Hence ( ) ( ) ( )g v h w f u  is nilpotent for all ( )h w R∈ . Thus, 0ghf = . There-
fore, R is nil generalized power series reflexive.                          □ 

Proposition 3.9. Let S be a torsion-free and cancellative monoid, ≤ a strict 
order on S. Then every semicommutative ring is nil generalized power series 
reflexive.  

Proof. Let R be semicommutative ring. Let ,, Sf g R ≤∈ 

 
 

 with  
( ) ,Sfhg nil R ≤∈ 

 

 

 for all ,Sh R ≤∈ 

 
 

, and any , ,u w v S∈ , define the operation 
of convolution:  

( )( )
( ) ( )

( ) ( ) ( )
, , , ,

0.
su w v X f h g

fhg s f u h w g v
∈

= =∑  

By Lemma 3.6 we have ( ) ( ) ( )f u g v nil R∈ . So ( ) ( ) ( )g v f u nil R∈ , for any 
,u v S∈ . Since R is semicommutative, ( ) ( ) ( ) ( )g v h w f u nil R∈  for any  
( )h w R∈ . Thus ( ) ,Sghf nil R ≤∈ 

 

 

. Therefore R is nil generalized power series 
reflexive.                                                        □ 
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Proposition 3.10. Let ( ),S ≤  be a strictly ordered monoid. If R is finite sub-
direct product of nil generalized power series reflexive rings, then R is nil gene-
ralized power series reflexive ring.  

Proof. Let ( )1, ,kI k l=   be ideals of R such that R/Ik is nil generalized pow-
er series reflexive and 1

0l
kk

I
=

=


. Let f and g be in ,SR ≤
 

 
 

 with  
( ) ,Sfhg nil R ≤∈ 

 

 

, for all ,Sh R ≤∈ 

 
 

. Clearly ( ) ,S
kf h g nil R I ≤∈ 

 

 

. Since R/Ik 
is nil generalized power series reflexive, we have ( ) ( ) ( )( ) , , ,u w v kr

kf u h w g v I∈ , for 
each , ,u w v S∈  and 1, ,k l=  . Assume that { }, , , , ,max | 1, ,u w v u w v kr r k l= =  . 
So ( ) ( ) ( )( ) , ,

1
0u w vr l

kk
f u h w g v I

=
∈ =


. Hence ( ) ( ) ( ) ( )f u h w g v nil R∈ , for 
each , ,u w v S∈ , then ( ) ( ) ( ) ( )g v h w f u nil R∈ . Thus, ( ) ,Sghf nil R ≤∈ 

 

 

, and 
we are done.                                                    □ 

In the next result it is presented that any corner ring of nil generalized power 
series reflexive ring inherits the nil generalized power series reflexivity property. 
But the nil generalized power series reflexivity property is not Morita invariant 
because of Examples 3.2. 

Proposition 3.11. Let ( ),S ≤  a strictly ordered monoid. Let R be a ring and 
2e e R= ∈ . If R is nil generalized power series reflexive, then so is eRe .  
Proof. Let ( ) ,, Sefe ege eRe ≤∈ 

 

 

 with ( ) ( ) ,Sefe ehe ege nil eRe ≤∈ 

 

 

 for all  
( ) ,Sehe eRe ≤∈ 

 

 

. Let e be an idempotent of R. It is easy to see that ec  is an 
idempotent element of ( ) ,SeRe ≤

 

 

 

 and e ec g gc=  for every ,Sg R ≤∈ 

 
 

. Then 
( )( ) ( ) ,S

e ec f c g nil eR ≤∈ 

 

 

. Since R is nil generalized power series reflexive, we 
have ( ) ,Sfhg nil R ≤∈ 

 

 

, and so ( ) ,Sghf nil R ≤∈ 

 

 

. Then there exists m∈  
such that ( )( ) 0

m
efe ehe ege = . Hence ( ) ( ) ,Sege ehe efe nil eRe ≤∈ 

 

 

.        □ 
Corollary 3.12. Let R be a ring, ( ),S ≤  a strictly ordered monoid. For a cen-

tral idempotent e of a ring ,R eR  and ( )1 e R−  are nil generalized power series 
reflexive if and only if R is nil generalized power series reflexive.  

Proof. Assume that eR  and ( )1 e R−  are nil generalized power series ref-
lexive. Since the nil generalized power series reflexivity property is closed under 
finite direct products, ( )1R eR e R≅ × −  is nil generalized power series reflexive. 
The converse is trivial by Proposition 3.11.                             □ 

In the next, we investigate the relations between a ring R and R/I for some 
ideal I of R in terms of nil generalized power series reflexivity. By Theorem 2.5, 
symmetric ring is nil generalized power series reflexive. 

Theorem 3.13. Let R be a ring, ( ),S ≤  a strictly ordered monoid. If I be an 
ideal of R contained in ( )nil R . Then R is nil generalized power series reflexive 
if and only if R/I is nil generalized power series reflexive. 

Proof. (1) “⇒ ” Let ( ) ,, Sf g R I ≤∈ 

 

 

 with ( ) ,Sf h g nil R I ≤∈ 

 

 

 for all  
( ) ,Sh R I ≤∈ 

 

 

. By hypothesis, the order ( ),S ≤  can be refined to a strict total 
order ≤ on S. We will use transfinite induction on the strictly totally ordered set 
( ),S ≤  to show that ( ) ,Sg h f nil R I ≤∈ 

 

 

. Firstly, by transfinite induction to 
show ( ) ( ) ( ) ( )g v h w f u nil R∈  for any ( )u supp f∈  and any ( )v supp g∈ . 
Since ( )supp f  and ( )supp g  are nonempty subsets of S, the set of minimal 
elements of ( )supp f  and ( )supp g , respectively, are finite and non-empty. 
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Let 0u  and 0v  denote the minimum elements of ( )supp f  and ( )supp g  in 
the ≤ order, respectively. By analogy with the proof of Proposition 2.10, we can 
show that ( ) ( )0 0 0f u Rf v = . Therefore, by transfinite induction, we can proof 
that ( ) ( ) ( ) 0f u h w f v = . Since ( ) ,Sf h g nil R I ≤∈ 

 

 

. Then there exists n∈  
such that ( ) 0

n
f h g = . So ( ) ( ) ( )( )n

f u h w g v I∈ , for any , ,u w v S∈ . Since 
( )I nil R⊆ , ( ) ( ) ( )( ) 0

n
f u h w g v = . Hence ( ) ( ) ( ) ( )f u h w g v nil R∈ , so  

( ) ( ) ( ) ( )g v h w f u nil R∈ , by R is nil generalized power series reflexive,  
( ) ,Sghf nil R ≤∈ 

 

 

. Thus ( ) ,Sg h f nil R I ≤∈ 

 

 

 for all ( ) ,Sh R I ≤∈ 

 

 

. There-
fore R/I is nil generalized power series reflexive. 

“⇐ ” Let ,, Sf g R ≤∈ 

 
 

 and suppose that ( ) ,Sfhg nil R ≤∈ 

 

 

 for all  
,Sh R ≤∈ 

 
 

. Then ( ) ,Sf h g nil R I ≤∈ 

 

 

 and so ( ) ,Sg h f nil R I ≤∈ 

 

 

 since R/I 
is nil generalized power series reflexive. There exists m∈  such that  
( ) 0

m
g h f = . This shows that ( ) ( ) ( )( )m

g v h w f u I∈ . Since ( )I nil R⊆ ,  
( ) ( ) ( )( ) ( )m

g v h w f u nil R∈ . So there exists n∈  such that  
( ) ( ) ( )( )( ) 0

nm
g v h w f u =  and so ( ) ( ) ( ) ( )g v h w f u nil R∈ . Thus,  

( ) ,Sghf nil R ≤∈ 

 

 

. Therefore, R is nil generalized power series reflexive.     □ 
Now we give some characterizations of nil generalized power series reflexivity 

by using the prime radical of a ring. 
Corollary 3.14. Let R be a ring, ( ),S ≤  a strictly ordered monoid. A ring R is 

nil generalized power series reflexive if and only if ( )R P R  is nil generalized 
power series reflexive.  

Proof. Since every element of ( )P R  is nilpotent, it follows from Theorem 
3.13.                                                            □ 

We close this section by determining abelian semiperfect nil generalized pow-
er series reflexive rings.  

Theorem 3.15. Let R be a ring, ( ),S ≤  a strictly ordered monoid. Consider 
the following statements. 

(1) R is a finite direct sum of local nil generalized power series reflexive rings. 
(2) R is a semiperfect nil generalized power series reflexive ring. 
Then (1) ⇒  (2) If R is abelian, then (2) ⇒  (1).  
Proof. (1) ⇒  (2) Assume that R is a finite direct sum of local nil generalized 

power series reflexive rings. Then R is semiperfect because local rings are semi-
perfect and a finite direct sum of semiperfect rings is semiperfect, and moreover 
R is nil generalized power series reflexive by Proposition 2.18.  

(2) ⇒  (1) Suppose that R is an abelian semiperfect nil generalized power series 
reflexive ring. Since R is semiperfect, R has a finite orthogonal set { }1 2, , , ne e e  of 
local idempotents whose sum is 1 by ([33], Theorem 27.6), say 1 21 ne e e= + + +  
such that each i ie Re  is a local ring where 1 i n≤ ≤ . The ring R being abelian 
implies i i ie Re e R= . Each ie R  is a nil generalized power series reflexive by 
Proposition 3.11. Hence R is nil generalized power series reflexive by Proposi-
tion 2.18.                                                        □ 
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