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Abstract 
In this manuscript, we have studied a fractional-order tri-trophic model with 
the help of Caputo operator. The total population is divided into three parts, 
namely prey, intermediate predator and top predator. In addition, the preda-
tor fear impact on prey population is suggested in this paper. Existence and 
uniqueness along with non-negativity and boundedness of the model system 
have been investigated. We have studied the local stability at all equilibrium 
points. Also, we have discussed global stability and Hopf bifurcation of our 
suggested model at interior equilibrium point. The Adam-Bashforth-Moulton 
approach is utilized to approximate the solution to the proposed model. With 
the help of MATLAB, we were able to conduct graphical demonstrations and 
numerical simulations. 
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1. Introduction 

Due to its worldwide existence and domination, the progressive connection be-
tween predator and prey has been studied. Fear of predators on prey has been 
shown to have a significant impact on anti-predator defenses and lower prey re-
production in recent zoological studies on terrestrial vertebrates. Prey that is 
afraid forage less, which may lower fertility, and they live by famine [1] [2]. 
Furthermore, the fear effect has a negative impact on the physiological state of 
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young prey, which has a negative impact on their adult survival. All organisms 
in taxonomy face the risk of predation, and they display a range of anti-predator 
behaviours, including as adjustments to habitat utilisation, feeding behaviour, 
alertness, and physiological changes [3] [4] [5]. However, there is clear evidence 
that predator fear is just as important as direct eating. Fear is induced by such 
behavioral changes, which can lead to stress-related physiology and have a poor 
impact on physical health [6] [7] [8], which can affect reproductive health and 
survival. As a result, predator fear has long-term implications for population 
dynamics and ecosystems. Fear of predators on prey causes people to spend 
more time being watchful instead of foraging and looking for better food and 
reduced habitats [9] [10] [11]. As a result, impact of fear on reproductive success 
and adult body mass growth are still present. Because people become more at-
tentive when density declines, fear of predators may amplify Allee effects. Indi-
vidual attentiveness rises when group size diminishes, according to field study 
on social animals. Predation is causing small groups of prey to become extinct 
[12]. In population demographics, group defense is a common phrase that de-
scribes an occurrence in which predation is reduced as prey’s capacity to pro-
tect or hide themselves increases when they are in large numbers or form a 
group. 

The fractional order derivative, unlike the conventional derivative, has an es-
sential trait known as the memory effect. For biological systems, fractional order 
derivatives are connected to the entire time domain, whereas integer order de-
rivatives reflect a change or a specific attribute at a certain moment [13]. As a 
result, the fractional order derivative is more suited to simulating memory diffi-
culties in biological systems [14]. Recent study areas including ecological mod-
eling, epidemiology, financial mathematics, and the physical and mathematical 
sciences have seen an increase in popularity of the fractional order system. The 
difference between our conventional integer order system and fractional order 
systems are illustrated in a number of articles on fractional order platforms 
[15]-[20]. Some ideas have been offered to show our research into various stabil-
ity criterions such as limit cycle, Hopf bifurcations, global stability, and so on. 
The effect of fear has been taken up recently in the study prey-predator models 
[21] [22]. The authors in [23] studied the global asymptotic stability and hopf 
bifurcation in a homogeneous diffusive predator-prey System with Holling type 
II functional response. Hopf bifurcation analysis of the repressilator model is 
proposed in [24]. Our major goal is to combine the fear effect with Caputo frac-
tional order model. 

1.1. Motivation and Novelties of the Article 

In order to replicate real-world issues, several innovative fractional operators 
with various properties have been designed. Moreover, the integer derivative has 
a local identity, whereas the fractional derivative has a global character. Numer-
ous varieties of fractional derivatives, both with and without singular kernels, are 
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available today. Leibniz’s query from 1695 marks the beginning of the fractional 
derivative. The fractional derivative also improves in the improvement of the 
system’s consistency domain. We have the derivatives of Caputo, Riemann- 
Liouville, and Katugampola for singular kernels [25] [26]. There are two varie-
ties of fractional derivatives without singular kernels: the Caputo-Fabrizio frac-
tional derivative, which has an exponential kernel, and the Atangana-Baleanu 
fractional derivative, which has a Mittag-Leffler kernel [27]. Numerous academic 
articles, monographs, and novels have provided evidence to support this claim; 
for instance, [28]-[32]. Motivated by the abovementioned works and the advan-
tages of Caputo derivatives, this study built a prey predator model with fear ef-
fect in Caputo sense. Because the Caputo derivative allows for the inclusion of 
conventional starting and boundary conditions in the derivation and because the 
derivative of a constant is zero, as opposed to the Riemann-Liouville fractional de-
rivative, it is particularly helpful for describing real-world problems. Non-local op-
erators, which may represent non-localities and certain memory effects, are typ-
ically better suited for such situations since they can account for power law, fad-
ing memory, and overlap effects. 

The objective of the current work is: 
● To study a tri-tropic prey predator model in Caputo environment and its 

stability analysis. 
● Determination of all equilibrium points. 
● Existence of Hopf bifurcation of the proposed model. 
● Numerical Solution by Adam-Bashforth method. 

1.2. Structure of the Paper 

We discuss some important definitions and characteristics of fractional deriva-
tives related to this article in Section 2. We have formulated a tri-tropic prey 
predator model with fear effect in Section 3. Section 4 consists of the existence, 
uniqueness, non-negativity, boundedness of solutions of the system. We have 
studied the local stability and global stability in Section 5. Influence of fear on 
population density in the model system is described in Section 6. In Section 7, 
we have analyzed Hopf bifurcation of the model system with respect to the fear 
effect parameter. In Section 8, we have used MATLAB (2018a) for numerical 
simulations in order to demonstrate the validity of our mathematical conclu-
sions. Section 9 consists of the conclusion. 

2. Preliminaries 

The definitions and features of fractional derivatives that we offer the reader are 
both informative and practical. 

Definition 1. [33] “The Caputo fractional derivative of order 0 1< ≤α  for 
the function [ ]: 0,nu C ∞ →   is defined as 

( )( ) ( ) ( )
( )10

1 1 d d
d

ntC
t n nD u t u z z

n zt z + −=
Γ − −

∫α
αα

, 
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where [ ]0,nC ∞  is a n tines continuously differentiable function and the Gamma 
function is defined by Γ( ) such that 1n n− < <α ”. 

Theorem 1. [34] “If ( )C
tD u tα  is piecewise continuous, then  

( )( )( ) ( )( ) ( ) ( )1 1
0 0l iC i

t iL D u t z L u t z u− − −
=

= −∑α α α , 1l l− < ≤ ∈α , where the 
Laplace transform is denoted by ( )( )L g t ”. 

Theorem 2. [35] “One-parametric and two-parametric Mittag-Leffler func-

tions are described as follows: ( ) ( )1 0
1 1

i

a i

zE z
a i

∞

=
=

Γ +∑  and  

( ) ( )1 2, 0
1 2

i

a a i

zE z
a i a

∞

=
=

Γ +∑ , where 1 2,a a +∈ ”. 

Lemma 1. [36] “Let ( ) [ ]0 1, ,u t C p q< ≤ ∈α  and if ( )C
tD u tα  is continuous 

in [ ],p q , then ( ) ( ) ( ) ( ) ( )1 C
tu x u p x p D u z= + − ⋅

Γ
α α

α
, where 0 z x≤ ≤ ,  

( ],x p q∀ ∈ ”. 

Note 1. “If ( ) 0C
tD u t ≥α  ( ( ) 0C

tD u t ≤α ), ( ),t p q∈ , then ( )u t  is a non-de- 
creasing (non-increasing) function for [ ],t p q∈ ”. 

Lemma 2. “Let us consider the fractional order system as 

( )( ) ( ) ( )0 0 0 0 0

1 2, , , , , , 1, 2, ,C n j
t t t t t tD Y t Y Y y y y y j n= Ψ = = 

α , 

with 0 1< <α , ( ) ( ) ( ) ( )( )1 2, , , nY t y t y t y t=   and ( ) [ ]0: , n nY t ×Ψ ∞ →  . For 
calculate the equilibrium points, we have ( ) 0YΨ = . These equilibrium points 
are locally asymptotically stable iff each eigenvalue jλ  of the Jacobian matrix  

( ) ( )
( )

1 2
1 2

Ψ ,Ψ , ,Ψ

, , ,
n

n
J Y

y y y
∂

=
∂





 calculated at the equilibrium points satisfies  

( )arg
2j
π

>
αλ ”. 

Lemma 3. “Assume that ( )u t +∈  is a differentiable function. Then, for any 

0t > , ( ) ( )
( ) ( )( )
*

* *
*ln 1C C

t t

u t uD u t u u D u t
u tu

  
− − ≤ −       

α α , *u +∈ ,  

( )0,1∀ ∈α ”. 

3. Model Formulation 

Step-1: Particular species never occupy the entire space in nature; they are ei-
ther prey or predators of other species. The dynamical prey-predator model 
makes an assumption about the functional response, which is quantified by the 
amount of prey taken per predator per unit time. Let ( ) ( ),u t v t  and ( )w t  
represent the density of the prey population, intermediate predator, and top 
predator, respectively, at any time t. To formulate the model system, the follow-
ing assumption is made: 

1) In the absence of a predator, the prey population ( )u t  increases logisti-
cally at an inherent growth rate of r, with k representing the environment’s car-
rying capacity.  
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2) According to Holling Type-I functional response, the intermediate predator 
( )v t  consumes the prey species of with the predation rate 1a . With the preda-

tion 1b , the top predator ( )w t  also consumes the prey according to the law of 
mass action (Holling Type-I functional response). 

3) The intermediate predator’s energy conversion coefficient and natural date 
rate, respectively are 2a  and 1m . 

4) The energy conversion coefficient of predation and the natural date rate of 
the top predator, respectively are 2b  and 2m . 

5) 1γ  is the intra-specific predation rate of top predator.  
Kar and Ghosh [37] suggested the model system in the following way de-

pending on these assumptions: 

1 1

2 1

2
2 2 1

d  1 ,
d
d ,
d
d
d

.

u ur u a uv b uw
t k
v a uv m v
t
w b uw m w w
t

 = − − − 
 

= −

= − −γ

                   (3.1) 

Setp-2: We have now changed the model by include a fear element that the 
intermediate predator causes in the prey. Then, we write down the model system  

with the fear factor ( ) 1,
1

g v
v

=
+

ρ
ρ

 where ρ  represents the fear level as fol-

lows: 

1 1

2 1

2
2 2 1

d 1 ,
d 1
d ,
d
d
d

.

u r uu a uv b uw
t v k
v a uv m v
t
w b uw m w w
t

 = − − − +  

= −

= − −

ρ

γ

                (3.2) 

The function ( ) 1,
1

g v
v

=
+

ρ
ρ

, due to fear (felt by prey) of predator, the birth  

rate of prey species is reduced. In biological aspects of ( ), , ,v g vρ ρ , it is appro-
priate to assume: 

( ) ( ) ( ) ( )

( ) ( )

0, 1, ,0 1, lim , 0, lim , 0,

, ,
0, 0.

v
g v g g v g v

g v g v
v

→∞ →∞
= = = =

∂ ∂
< <

∂ ∂

ρ
ρ ρ ρ

ρ ρ
ρ

 

Step-3: We have analyzed the suggested model utilizing the Caputo derivative 
of order 0 1< ≤α . 

1 1

2 1

2
2 2 1

1 ,
1

,

.

C
t

C
t

C
t

r uD u u a uv b uw
v k

D v a uv m v

D w b uw m w w

∨
∨∨

∨∨

∨∨

∨ ∨ ∨

 
 = − − −
 +  

= −

= − −

α
α α α

α α

α α α

α α α α

ρ

γ

            (3.3)  

https://doi.org/10.4236/apm.2022.1211050


S. Paul et al. 
 

 

DOI: 10.4236/apm.2022.1211050 657 Advances in Pure Mathematics 
 

Step-4: Now, we rewrite the parameters as follows for the sake of computation 
convenience: r r

∨
=α , ∨

=αρ ρ , k k
∨
=α , 1 1a a∨

=α , 1 1b b
∨

=α , 2 2a a∨
=α , 1 1m m∨

=α , 

2 2b b
∨

=α , 2 2m m∨
=α , 1 1

∨
=αγ γ . 

With beginning circumstances, the improved model system (3.3) may even-
tually be stated as follows: 

1 1

2 1
2

2 2 1

1

.

,
1

,

C
t

C
t

C
t

r uD u u a uv b uw
v k

D v a uv m v

D w b uw m w w

 = − − − +  
= −

= − −

α

α

α

ρ

γ

             (3.4) 

4. Analysis of the Model 

This section investigates the existence, uniqueness, non-negativity, and boun-
dedness of the proposed model. 

4.1. Existence and Uniqueness 

Theorem 4.1.1. There exists a unique solution of the proposed model (3.4) 
for each non-negative initial condition. 

Proof: We are seeking for a sufficient condition for the presence and unique-
ness of the proposed model (3.4) solutions in the region ( ]0,TΠ× , where, 

( ){ }3, , : max , ,u v w u v w MΠ = ∈ ≤ . 

The method employed in [38] is used. Consider a mapping  
( ) ( ) ( ) ( )( )1 2 3, ,F Y F Y F Y F Y=  where ( ), ,Y u v w=  and ( ), ,Y u v w= :  

( )1 1 11 ,
1

r uF Y u a uv b uw
v k

 = − − − +  ρ
 

( )2 2 1 ,F Y a uv m v= −  

( ) 2
3 2 2 1 .F Y b uw m w w= − −γ  

For any ,Y Y ∈Π : 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

( )

1 1 2 2 3 3

1 1 1 1

2 2
2 1 2 1 2 2 1 2 2 1

2 2
1 2

2 2
1 2 1 2 1

1 1
1 1

1 1

F Y F Y F Y F Y F Y F Y F Y F Y

r u r uu a uv b uw u a u v b uw
v k v k

a uv m v a u v m v b uw m w w b uw m w w

u u rr u u a a uv u v
v v k

b b uw uw m v v m w w w w

− = − + − + −

   = − − − − − + +   + +   

+ − − + + − − − + +

≤ − + − + + −
+ +

+ + − + − + − + −

ρ ρ

γ γ

ρ ρ

γ

 

( ) ( )
( )( )

( )

( )( )
( )

( )( ) ( )

( )

1 2

1 2 1 2 1

1 2

1 2 1 2 1

( )
1 1

2
1 1 1 1

2

u u uv vu rr u u u u a a uv u v
v v k

b b uw uw m v v m w w w w w w

uv vuu u Mrr r u u a a uv u v
v v v v k

b b uw uw m v v m w w M w w

− + −
= + − + + + −

+ +

+ + − + − + − + − +

−−
≤ + + − + + −

+ + + +

+ + − + − + − + −

ρ
ρ ρ

γ

ρ
ρ ρ ρ ρ

γ
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( )
( )( ) ( )

( ) ( )

1 2

1 2 1 2 1

1 2 3

21
1 1

.

2

uv vuMr u u r a a uv u v
k v v

b b uw uw m v v m M w w

G u u G v v G w w

G Y Y

− ≤ + − + + + −  + + 

+ + − + − + + −





≤ − + − + −





≤ −

ρ
ρ ρ

γ  

where { }1 2 3max , ,G G G G=  and 1
21 MG r

k
 = + 
 

,  

( )
( )( ) ( ) ( )2 1 2 1 2 11 1

uv vu
G r a a uv u v b b uw uw m

v v
−

= + + − + + − +
+ +
ρ
ρ ρ

,  

3 2 12G m M= + γ . 

As a result, ( )F Y  fulfils the Lipschitz requirement. As a consequence, the 
fractional order system (3.4) exists and is unique. 

4.2. Positivity and Boundedness of Proposed Model 

Theorem 4.2.1. The model system’s solutions are all non-negative. 
Proof: Let us assume ( ) ( ) ( ) ( )( )0 0 0 0, ,Z t u t v t w t += ∈Ω  be the initial solution 

and ( ){ }, , : , ,u v w u v w +
+Ω = ∈Ω ∈ , where { }0+ =   . Let us choose a 

constant  , 0t t C≤ <  such that 

( )
( )
( )

00, when

0

0

u t t t C

u

u +

 > ≤ <
 =


<





 

From system (3.4), we have ( ) 0C
tD u t =α  at ( ) 0u = . 

Using Lemma 1, we get ( ) 0u + = , that contradicts ( ) 0u + < . So ( ) 0u t ≥  
[ )0 ,t t∀ ∈ ∞ . In similar way we have ( ) ( )0, 0v t w t≥ ≥  [ )0 ,t t∀ ∈ ∞ .  

Theorem 4.2.2. The model system (3.4) has bounded solutions. 
Proof: Let the function  

( ) ( ) ( ) ( )1 1

2 2

a bX t u t v t w t
a b

= + + .               (4.1) 

Differentiating with respect to time on the above function, we have 

( ) ( ) ( ) ( )

( ) ( )

1 1

2 2

21 1 1 2 1 1
1 1 1 1

2 2 2

21 1 1 1 1 2 1 1

2 2 2 2

2 21 1 1 1

2 2 2

1
1

1
1

1 1

C C C C
t t t t

a bD X t D u t D v t D w t
a b

a m b m br uu a uv b uw a uv v b uw w w
v k a b a

a m a b b m br uu v uw w w
v k a a b b

a b br rf u v w u k w k
a b v k a v

= + +

 = − − − + − + − − +  

 = − − + − − +  

 
≤ − + + − − − +  + + 

α α α α

γ
ρ

γ
ρ

γ
ρ ρ

 

where, { }1 1min , ,f r m= γ . 
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Therefore, ( ) ( )C
tD X t fX t R+ ≤α , where, 

1
rR k

v
=

+ ρ
. 

With the help of Laplace transform, we have, 

( )( ) ( ) ( )( )1 0  Rp L X t p X f L X t
p

−− + =α α  

 ( )( )( ) ( )1 0L X t p f p X R+ + = +α α  

 ( )( ) ( ) ( )
1 1 1

0 0
.

p X R p X RL X t
p f p f p f+ + +

+
= = +

+ + +

α α

α α α          (4.2)  

Taking inverse Laplace transform, we have 

( ) ( ) ( ) ( ),1 , 10 .X t X E ft Rt E Rt+= − + −α α α
α α α  

According to Mittag-Leffler function, 

( ) ( ) ( ), ,
1

c d c c dE z zE z
d+= +

Γ
. 

Hence, ( ) ( ) ( ),10 R RX t X E ft
f f

 
= − − + 
 

α
α . 

Thus ( )lim  t
RSup X t
f→∞ ≤ .                   (4.3)  

And hence the model (3.4) is bounded above by R
f

. 

As a result, all of the system’s (3.4) solutions will be bounded in 3
+ . 

5. Stability Analysis 

In this part, we’ll identify all of system (3.4)’s trivial and non-trivial equilibrium 
points, as well as their existence conditions.  

5.1. Equilibrium Points and Existence Criteria 

There are five different types of equilibrium points in system (3.4). 
1) ( )0 0,0,0E : Trivial equilibrium, 
2) ( )1 ,0,0E k : Axial equilibrium, 
3) ( )2 1 1, ,0E u v : Planar equilibrium where, 

1
1

2

mu
a

=  and 1v  is to be obtained from the equation  

1
1 1

1

1 0.
1

ur a v
v k
 − − = +  ρ

 

2 1
1 1

1 2

11 0.
mrv v

a a k
 

⇒ + − − ⋅ = 
 

ρ  

Hence 1v  is positive if 1

1 2

14 1 1
mr

a a k
 

⋅ − < 
 

ρ . 

4) ( )3 2 2,0,E u w : Planar equilibrium points where, 

https://doi.org/10.4236/apm.2022.1211050


S. Paul et al. 
 

 

DOI: 10.4236/apm.2022.1211050 660 Advances in Pure Mathematics 
 

1
2

2

mu
a

= , 2 2 1
2

1 2 2

1
m b mw

m a
 

= − 
 γ

. 

Hence 2w  is positive if 2 1

2 2

1
b m
m a

> . 

5) The interior equilibrium is ( )* * * *, ,E u v w , here ( )* * *, ,u v w  are the posi-
tive roots of the following system of equations 

*
1 1

2 1

2 2 1

1 0,
1

0,
0.

r uE a v b w
v k

a u m
b u m w

 − − − = +  
− =
− − =

ρ

γ
               (5.1)  

After solving the above equations, we get: 

* *1 2 2 1

2 1 2 2

, 1 .
m m b mu w
a m a

 
= = − 

 γ
                (5.2) 

Hence *u  and *w  is positive if 

2 1

2 2

1
b m
m a

> .                       (5.3) 

And *v  is to be determined from the following equation 

1 11 0
1

r u a v b w
v k
 − − − = +  ρ

.                (5.4) 

The Equation (5.4) has a positive root for 

( ) ( )
*2* *

1 1 1 14 1 .ua b w b w r a
k

  
+ > − −  

   
ρ ρ  

5.2. Local stability 

The Jacobian matrix of the model (3.4) at ( ), ,u v w  can be represent as 

( ), ,
A B C

J u v w D E O
F O G

 
 =  
  

. 

where, 1 1
21

1
r uA a v b w

v k
 = − − − +  ρ

, 
( ) 12

1

1

uru
kB a u
v

 − 
 = − −
+

ρ

ρ
, 

1 2 2 1 2 1 2 1, , , , 2C b u D a v E a u m F b w G b u m w= − = = − = = − − γ  

Theorem 5.2.1. The system (3.4) always exhibits unstable behavior at  
( )0 0,0,0E . 

Proof: The eigenvalues of the Jacobian matrix are given by 1 r=λ , 2 1m= −λ , 

3 2m= −λ . It follows that ( )1arg
2
π

<
αλ  and ( )arg

2j
π

= π >
αλ  ( 1,2j = ). So, 

the system (3.4) is unstable at ( )0 0,0,0E . 

Theorem 5.2.2. The system (3.4) is locally stable at ( )1 ,0,0E k  if 1 2

2 2

m mk
a b
+

>
+

. 
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Proof: The eigenvalue is 1 r= −λ . To solve the equation  

( ) ( )( )2
1 2 2 2 1 2 2 2 0m m a k b k m a k m b k+ + − − + − − =  λ λ ,      (5.5) 

we find another two eigenvalues. 
Therefore, the condition of negative roots of Equation (5.5) is 

( )1 2 2 2 .m m a b k+ < +  

So the system (3.4) is locally stable if 2 2

2 2

a bk
a b
+

>
+

. 

Theorem 5.2.3. The model system (3.4) is locally stable at ( )2 1 1, ,0E u v  if  
( ) ( )1 1 2 2b m a m< . 

Proof: The matrix(J) at ( )2 1 1, ,0E u v  can be written as: 

( ) ( )

1
1

1 1
1 1 1 1 12

1 21
2

2 1

1 1
2

2

1
2

1
1 1

0 0

0 0

uru
u mr ka v a u b

v k av
V E

a v
b m m

a

  −      − − − − − +   +
=  
 
 
 

 

⋅


⋅

−

ρ

ρ ρ
. 

One of the eigenvalue of Jacobian matrix is 1 1
1 2

2

b m m
a

 
=

⋅
− 

 
λ  and the other 

two eigenvalues are obtain from of the equation  

( )
( )

1
1

2 1
1 1 1 1 2 12

1 1

1
2

1 0
1 1

uru
ur ka v a u a v

v k v

  −       − − − + + =    +   + 
 
 

ρ
λ λ

ρ ρ
. So the system 

(3.4) is locally stable if ( ) ( )1 1 2 2b m a m< . 

Theorem 5.2.4. The model system (3.4) is locally asymptotically stable at 

( )* * * *, ,E u v w  if 0iA > , for 1,2,3i =  and 1 2 3 0A A A− > .  
Proof: The characteristic equation of the Jacobian matrix at ( )* * * *, ,E u v w  is 

given by 
3 2

1 2 3 0A A A+ + + =λ λ λ .                   (5.6)  

where,  

( )
*

*
1 1*1

ruA w
v k

= +
+

γ
ρ

, 

( ) ( )

*
*

*
* * * * *

2 1 1 2 2 12* *

1

1 1

uru
kruA w b u w b a v a u

v k v

 
−

 
 
 ⋅

 
 = + + + + + 
  

⋅
ρ

γ
ρ ρ

, 

( )

*
*

* * *
3 2 1 12*

1

1

uru
k

A a v w a u
v

  
−  

  = + + 
  

ρ
γ

ρ
. 
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The roots of (5.6) are negative or have a negative real component, according to 
Rowth-Hurwitz criterion if 1 30, 0A A> >  and 1 2 3 0A A A− > .  

5.3. Global Stability 

In this section we discuss the global stability of the system (3.4). 
Theorem 5.3.1. The system (3.4) is globally asymptotically stable at  

( )* * * *, ,E u v w  if 

( )
( )( )

( )
( )( ) ( )

* *
* *

2 2* *
0

1 1 1 1

r uv vurv v a w w b
v v k v v

   −
   − − + − − ≥
   + + + +   

ρ

ρ ρ ρ ρ
. 

Proof: Let the function L at ( )* * * *, ,E u v w : 

( ) ( )

( )

* * * *
* *

* *
*

log log

log

u vL u u u v v v
u v

ww w w
w

      = − − + − −            
  + − −     

        (5.7) 

Taking time derivative of the above equation is 
* * *

C C C C
t t t t

u u v v w wD L D u D v D w
u v w
− − −

= + +α α α α .        (5.8)  

Using Lemma 3, then 

[ ]

( ) ( )[ ]

( )[ ]

( )

* *

1 1 2 1

*
2

2 2 1

* *
1 1 2 1

*
2 2 1

*
2 2 1 1 1

1
1

1
1

1
1

C
t

u u r u v vD L u a uv b uw a uv m v
u v k v

w w b uw m w w
w
r uu u a v b w v v a u m

v k

w w b u m w

r uu u b u m w a v b w
v k

 − − ≤ − − − + −  +   
−  + − − 

  ≤ − − − − + − −  +   

+ − − −

  = − − − − − −  +   

α

ρ

γ

ρ

γ

γ
ρ

 

( )[ ] ( )[ ]

( )

( ) { } { }
( ) { } { }

( )
( )( )

( )( )
( )( )

* *
2 1 2 2 1

*
* * *

1 1 1 1*

* *
2 1 2 1

* * *
2 2 1 2 2 1

2* * *

* *

1 1
1 1

1 1 1 1

v v a u m w w b u m w

r u r uu u a v b w a v b w
v k kv

v v a u m a u m

w w b u m w b u m w

r u u r u u v v r

k v v k v v

+ − − + − − −

       ≤ − − − − − − − −      + +        
 + − − − − 
 + − − − − − − 

− − −
− − −

+ + + +

γ

ρ ρ

γ γ

ρ ρ ρ ρ

( ) ( )
( )( )

* * *

*1 1

u u uv vu

k v v

− −

+ +

ρ

ρ ρ
 

( )( ) ( )( ) ( )
( )

( )( ) ( )

2* * * * *
2 2 1

2*
2*

1*1 1

a u u v v b u u w w w w

r u u
w w

k v v

γ

γ
ρ ρ

+ − − + − − − −

−
≤ − − −

+ +
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( )( )
( )( )

( ) ( )
( )( ) ( )

* *
2*

* *
* *

2*

1 1

.
1 1

ru u v v a
v v

r uv vu
u u w w b

k v v

ρ ρ

ρ

ρ ρ

 
 − − − −
 + + 

 −
 − − − −
 + + 

 

So 0C
tD L ≤α , if  

( )
( )( )

( )
( )( ) ( )

* *
* *

2 2* *
0

1 1 1 1

r uv vurv v a w w b
v v k v v

   −
   − − + − − ≥
   + + + +   

ρ

ρ ρ ρ ρ
. 

6. Influence of Fear on Population Density in the Proposed  
Model  

The main objective of this section is to investigate the impact of fear all popula-
tions. To look at this, we must first separate each component of the fear factor 
ρ  at ( )* * * *, ,E u v w . 

Now * 1

2

mu
a

= , * 2 2 1

1 2 2

1
m b mw

a m
 

= − 
 γ

. Hence *u  and *w  is positive if 

2 1

2 2

1
b m
a m

> , and *v  is the solution of the equation 

*2 * 0Rv Sv T+ + = ,                       (6.1) 

where ( )1R a= ρ , 2 2 1
1 1

1 2 2

1
m b mS a b

a m
    = + −   

     
ρ

γ
 and  

2 2 1 1
1

1 2 2 2

11 1
m b m mT b r

a m a k
     = − − − ⋅    
     γ

. 

Differentiating (6.1) w.r. to ρ , we have 
* **

*

d
d 2

v Lv Mv
Rv S

 + = −
+ρ

, where 

2 2 1
1 1

1 2 2

, 1
m b mL a M b

a m
   = = −  
   γ

 

and ( )( )*
1 1 2 1 2 1 2 2 1

1
2

v a a a b b m a m X Y= − − − + +ρ γ
ρ

, with  

( )2 1
1 2 1 2 1 2 2 14 1

a mX a r a b b m a m
k

  = − − − + −  
  

ρ γ ,  

( ){ }2
1 2 1 2 1 2 2 1Y a a b b m a m= + −ρ γ . 

As a result, the sign of 
*d

d
v
ρ

 is always negative, suggesting that as the fear level  

ρ  rises, v  decreases. Differentiating equations (5.2) with respect to fear level 
ρ , we have 

* *d d0 and 0.
d d
u w

= =
ρ ρ
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As a result, we observed that as fear levels rise, the density of intermediate 
predators decreases. 

7. Hopf-Bifurcation 

Theorem 7.1. Let us consider ( ),C
tD u h u=α ρ , where 30 1,u< < ∈α . A 

fractional order Hopf bifurcation is proposed in which the model (3.4) under-
goes a Hopf bifurcation through *E  at the value *=ρ ρ  if 
● The Jacobian matrix has two complex-conjugate eigenvalues 1,2λ . 
● ( )*

1,2 , 0θ α ρ = . 

● 
*

1,2 0
ρ ρ

θ
ρ

=

∂
≠

∂
, where ( ) ( )( )*, arg , 1,2

2i i iαθ α ρ λ ρπ
= − = . 

Proof: For *=ρ ρ , the characteristic Equation (5.6) becomes 
3 2

1 2 1 2 0+ + + =λ ϕ λ ϕ λ ϕ ϕ . 

i.e., ( )( )2
2 1 0+ + =λ φ λ ϕ . 

i.e., 1 2, i= − ±λ φ ϕ . 

Let 1 2 2 2 3 1, ,i i= = − = −λ ϕ λ ϕ λ ϕ . 
For ( )* *,∈ − +ρ ρ δ ρ δ , where 0>δ , then we have 

( ) ( ) ( )1 1 2i k= +λ ρ σ ρ σ , 

( ) ( ) ( )2 1 2i k= −λ ρ σ ρ σ , 

( )3 1= −λ ρ ϕ . 

Now the condition 
*

1,2 0
=

∂
≠

∂ ρ ρ

θ
ρ

 at *=ρ ρ , is verify below. 

Substitute ( ) ( ) ( )1 1 2i= +λ ρ σ ρ σ ρ  into the characteristic equation and tak-
ing derivative with respect to ρ , we get 

( ) ( ) ( ) ( ) ( )1 2 1 0A B S′ ′− + =ρ σ ρ ρ σ ρ ρ , 

( ) ( ) ( ) ( ) ( )1 2 2 0B A S′ ′+ + =ρ σ ρ ρ σ ρ ρ . 

where 

( ) ( ) ( ) ( ) ( ) ( )2 2
1 1 1 2 23 2 3A = + + −ρ σ ρ ϕ ρ σ ρ ϕ ρ σ ρ , 

( ) ( ) ( ) ( ) ( )1 2 1 26 2B = +ρ σ ρ σ ρ ϕ ρ σ ρ , 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2
1 1 1 2 1 3 1 1S ′ ′ ′ ′= + + −ρ σ ρ ϕ ρ ϕ ρ σ ρ ϕ ρ ϕ ρ σ ρ , 

( ) ( ) ( ) ( ) ( ) ( )2 1 2 1 2 22S ′ ′= +ρ σ ρ σ ρ ϕ ρ ϕ ρ σ ρ . 

Noticing that, ( ) ( ) ( )* * *
1 2 20,= =σ ρ σ ρ ϕ ρ . 

We have, ( ) ( )* *
22A = −ρ ϕ ρ , 

( ) ( ) ( )* * *
1 22B =ρ ϕ ρ ϕ ρ , 

( ) ( ) ( ) ( )* * *
1 3 1 2S ′ ′= −ρ ϕ ρ ϕ ρ ϕ ρ , 
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( ) ( ) ( )* *
2 2 2S ′= −ρ ϕ ρ ϕ ρ . 

Therefore, 

( )( )( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )( )

*

* * * *
2 1

2 2* *

* * * * * * * *
1 2 2 1 2 2 2 3

2 * 2 * *
2 1 2

* * * * *
1 2 3 1 2

2* *
2 1

d at
d

2 2 2

4

0.
2

Re

B S A S

A B

=

+
= −

   +   
′ ′ ′+ −

= −
 + 

′ ′ ′− +
= − ≠

 +  

λ ρ ρ ρ
ρ

ρ ρ ρ ρ

ρ ρ

ϕ ρ ϕ ρ ϕ ρ ϕ ρ ϕ ρ ϕ ρ ϕ ρ ϕ ρ

ϕ ρ ϕ ρ ϕ ρ

ϕ ρ ϕ ρ ϕ ρ ϕ ρ ϕ ρ

ϕ ρ ϕ ρ

 

when, ( ) ( ) ( ) ( ) ( )* * * * *
1 2 3 1 2 0′ ′ ′− + ≠ϕ ρ ϕ ρ ϕ ρ ϕ ρ ϕ ρ , and ( ) ( )* *

3 1 0= − ≠λ ρ ϕ ρ . 

8. Numerical Discussions 

To validate the theoretical findings presented in the earlier portions of this study, 
numerical simulations have been carried out using the modified Predictor-corre- 
ctor approach [39] [40] in the Matlab framework. The Adams-Bashforth-Moulton 
scheme is employed for the numerical study. 

( ) ( )( ),C
t j j jD F t g t F t=α , ( ) 00r r

j jF F= ,            (8.1) 

0,1,2, ,r =    α , j∈  

where 0
r
jF ∈ , 0>α  and in the Caputo interpretation, tDα  is equivalent to 

the popular Volterra integral equation. 

( ) ( ) ( ) ( )( )11
00 0

1 , d
!

tn
r

j j j jn

tF t F t u g u F u u
n

−−  
=

= + −
Γ∑ ∫

αα

α
, j∈ .    (8.2) 

We established model parameter values for numerical simulation purposes 
based on information from appropriate journal articles (see Table 1). This sec-
tion is divided into four parts. The stability of our proposed model is discussed 
at 2E , 3E  and *E  in Part 1. Part 2 delves into the dynamical behavior of all 
population of various fractional orders. Part 3 is to explore the Hopf bifurcation 
of the model system (3.4). Graph of mean density of all population with respect 
to the variation of α  is discussed in Part 4. 

Part 1:  
The stability of our suggested model is discussed in this section. The parame-

ter values used for the numerical simulations in Part 1 is provided in Table 1. 
Instead of the trivial 0E  and axial 1E , we are more concerned in the stability of 
the coexistence equilibrium 2E , 3E  and *E . System (3.4) is shown in Figures 
1-3 to be asymptotically stable for 0.999=α . 

Part 2: 
The parameter values in Table 1 are used to examine the dynamical behaviour  
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Table 1. Parameter values for numerical study. 

Parameters 
Planer Interior 

Source 
2E  3E  *E  

1a  0.006 0.055 0.45 [41] 

2a  0.007 0.00084 0.07 [41] 

1b  0.003 0.002 0.003 [41] 

2b  0.0001 0.015 0.01 Assumed 

2m  0.0001 0.001 0.00001 [41] 

1γ  0.008 0.0001 0.008 [41] 

r 0.51 2.3 2.51 [42] 

1m  0.009 0.06 0.09 [42] 

ρ  0.5 0.5 0.5 Assumed 

K 5 95 110 Assumed 

 

 
(a) 

 
(b) 

Figure 1. The system’s time series and phase portrait are consistent with Table 1 at 2E . 
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(a) 

 
(b) 

Figure 2. The system’s time series and phase portrait are consistent with Table 1 at 3E . 

 

 
(a) 
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(b) 

Figure 3. The system’s time series and phase portrait are consistent with Table 1 at *E . 
 
of the entire population. Figures 4(a)-(c) depict all populations’ behavior over 
time for different fractional orders α. Figure 4(a) depicts that the number of 
prey population increases when α  changes from 0.85 to 0.95. We see in Figure 
4(b) that number of intermediate predator population increases when α in-
creases. Figure 4(c) depicts that the number of top predator population increas-
es with time when α changes from 0.95 to 0.8. 

Part-3: 
In this part, it is explored whether the model system (3.4) exhibits a Hopf bi-

furcation with fractional order 1=α . The relevance of Hopf bifurcation is dis-
cussed using the following set of parametric variables. 

The bifurcation analysis is investigated using the values of the parameters in 
Table 2. The model system’s unique endemic equilibrium ( )* 2.5,6.91,6.33E  is 
obtained using the parameters in Table 2. Figure 5 shows the Hopf bifurcation 
diagram of the model system (3.4) with respect to the parameter ρ  taking 

1=α . Also Figure 5 depicts that the model remains stable until ρ  crosses its 
threshold value * 0.05= =ρ ρ , when ρ  crosses its threshold value the model 
become unstable. 

Part 4: 
Figure 6 shows the change in mean density of prey, intermediate predator and 

top predator with respect to the variation of α . Figure 6(a) depicts that mean 
density of prey population increases for 0 0.1≤ ≤α , decreases for  
0.1 0.8< ≤α  and oscillates for 0.8>α . Figure 6(b) shows that mean density 
of intermediate predator population increases for 0 0.45≤ ≤α , decreases for 
0.45 0.7< ≤α  and oscillates for 0.7>α . Figure 6(c) depicts that mean densi-
ty of top predator population decreases for 0 0.8≤ ≤α . 
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(a) 

 
(b) 

 
(c) 

Figure 4. Variation of α  with respect to time of the model (3.4) corresponds to Table 
1. 
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(a) 

 
(b) 

 
(c) 

Figure 5. Bifurcation diagram of the system (3.4) corresponds with Table 2. 
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(a) 

 
(b) 

 
(c) 

Figure 6. Graph of mean density of all population with respect to the variation of α . 
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Table 2. Parameter values for study of Hopf bifurcation. 

Parameters r 1a  2a  1b  2b  1m  2m  1γ  ρ  K 

Values 2 0.0041 0.02 0.04 0.02 0.05 0.031 0.003 0.5 155 

Source [39] [40] [39] [39] [40] [39] [39] [39] Assumed [39] 

9. Conclusion 

A fractional order prey-predator system with a fear impact on the prey pop-
ulation has been suggested. The non-negativity, boundedness, and unique-
ness of the model system’s solutions have been demonstrated and investi-
gated. The equilibrium points have been determined, and the stability of all 
of the model system’s possible equilibrium points has been studied both 
analytically and numerically. The system’s local and global stability are both es-
tablished. Under constrained parametric circumstances, the system is found to 
be locally and globally asymptotically stable. The system is found to have 
Hopf bifurcations with respect to the parameter ρ . Local stability and Hopf 
bifurcation analysis have been the focus of our research. Fractional deriva-
tives and integrals are a difficult idea to convey since they are derived from 
pure mathematics. The influence of predator anxiety on the population of prey 
is proposed in this research. A higher order indexing can be associated with 
weak memory, but a lower order classification can be associated with distant 
memory since the fractional order and memory are coupled. As a result, our re-
search suggests that weak memories can help to improve the predator-prey sys-
tem’s ability to cohabit peacefully, but powerful memories can actually make this 
situation worse. The discretization technique and FDE12 based on Adams- 
Bashforth-Moulton scheme are used to perform simulation studies. The 
concept of fractional calculus has nothing to do with any major geometrical 
meaning, such as function trend or convexity. Finally, we translate our ma-
thematical findings into ecological terms as follows: a large number of prey re-
fuges are produced in the system as a result of the prey species’ profound recol-
lection of the exogenous effects that fear has on their life cycles. However, as we 
gradually lower the model system’s order, especially in the case of a low amount 
of predator-induced fear, the dynamics of the model system change away from 
its unstable behavior and toward stability. Consequently, our extensive mathe-
matical findings show that weak memory might contribute to the stable exis-
tence of the predator-prey system whereas excessive memory of the species de-
grades the stability of the model system. In the suggested model (3.4), there is 
more work to be done, such as determining the species’ maturity to release 
harmful compounds into the environment. The model is now more realistic and 
intriguing as a result of these changes. We will leave this for further study. 
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