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Abstract 
The present work considers the endpoint in the abstract metric space. It firstly 
introduces the metric space of partially ordered groups and the metric space 
of partially ordered modules, respectively; and defines the convergence of se-
quences and the multi-valued weak contractions, etc., on the introduced space. 
And then, with the methods of functional analysis and abstract algebra, it 
successively establishes an endpoint theorem for the metric space of partially 
ordered groups and an endpoint theorem for the metric space of partially or-
dered modules. The contributions of this article extend the theory of cone 
metric space constructed by Huang and Zhang (2007) and some recent results 
on the fixed point and endpoint theory, such as the endpoint theorem given 
by Amini-Harandi (2010). 
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1. Introduction 

Let ( ),X d  be a complete metric space. Denote by ( )CB X  the class of all 
nonempty closed and bounded subsets of X. Denote by ( ),H A B  the Hausdorff 
metric of A and B with respect to d, that is, 

( ) ( ) ( ), max sup , ,sup , ,
x A y B

H A B d x B d y A
∈ ∈

 =  
 

 

for all ( ),A B CB X∈ , where ( ) ( ), inf ,
y B

d x B d x y
∈

= . Further let : 2XT X →  be 
a multi-valued/set-valued map. A point x  is called a fixed point of T if x Tx∈ . 
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Define ( ) { }:Fix T x X x Tx= ∈ ∈ . A point x  is called an endpoint/a stationary 
point of a multi-valued map T  if { }Tx x= . We denote the set of all endpoints 
of T by ( )End T . 

The investigation of endpoint of multi-valued mappings is an important ex-
tending of the study of fixed point, which was made as early as 30 years ago, and 
has received great attention in recent years, see e.g. ref. [1] and ref. [2], and the 
references therein. In particular, Amini-Harandi [1] (2010) proved the Theorem 
1.1 below. 

Theorem 1.1 (Theorem 2.1 of [1]). Let ( ),X d  be a complete metric space 
and ( ):T X CB X→  be a set-valued map that satisfies  

( ) ( )( ), , ,H Tx Ty d x yψ≤                   (1.1) 

for each ,x y X∈ , where [ ) [ ): 0, 0,ψ +∞ → +∞  is upper semicontinuous 
(u.s.c.), ( ) <t tψ  for each 0t >  and satisfies ( )( )liminf 0

t
t tψ

→+∞
− > . Then T 

has a unique endpoint if and only if T has the approximate endpoint property. 
(i.e. ( )inf sup , 0

x X y Tx
d x y

∈ ∈
= .) 

Huang and Zhang ref. [3] (2007) introduced the concept of cone metric space, 
and established some fixed point theorems for contractive type maps in a normal 
cone metric space. Subsequently, some other authors gave many results about the 
fixed point theory in cone metric spaces. For example, Rezapour and Hamlbara-
ni ref. [4] (2008) generalized some results of [3]. Raja and Vaezpour ref. [5] (2008) 
presented some extensions of Banach’s Contraction Principle in complete cone 
metric spaces. Aage and Salunke ref. [6] (2011) proved some fixed point theo-
rems for the expansion onto mappings on complete cone metric spaces. Also, 
many common fixed point theorems were proved for maps on cone metric 
spaces in some literatures, for example, see Ilić and Rakočević ref. [7] (2008); 
Arshad, Azam and Vetro ref. [8] (2009), whose results generalized and unified 
many fixed point theorems. Rezapour and Haghi ref. [9] (2009), as well as Haghi 
and Rezapour ref. [10] (2010) studied fixed points of multifunctions (i.e. mul-
ti-valued mappings) on normal cone metric spaces and on regular cone metric 
spaces, respectively. Moreover, Wardowski ref. [11] (2009) introduced a kind of 
set-valued contractions in cone metric spaces and established endpoint and fixed 
point theorems for his contractions. 

In addition, Rezapour and Haghi [9] (2009) introduced the concept of cone 
topology on cone metric space. Lakshmikantham and Ćirić ref. [12] (2009) in-
troduced the concept of a mixed g-monotone mapping and prove coupled coin-
cidence and coupled common fixed point theorems for such nonlinear contrac-
tive mappings in partially ordered complete metric spaces. Harjani and Sada-
rangani ref. [13] (2009) present some fixed point theorems for weakly contrac-
tive maps in a complete metric space endowed with a partial order. And Zhang 
ref. [14] (2010) proved some new fixed point and coupled fixed point theorems 
for multivalued monotone mappings in ordered metric spaces. Finally, Ami-
ni-Harandi ref. [15] (2011) studied fixed point theorems for a kind of genera-
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lized quasicontraction maps in so called the vector modular spaces. 
Motivated by the contributions stated above, the present work studies the 

endpoint in the abstract metric space. The remainder of the paper is organized 
as follows. In Section 2, it introduces the metric space valued in a partially or-
dered group endowed with a topological structure and the metric space valued in 
a partially ordered module endowed with a topological structure, and establishes 
some fundamental concepts of analysis on the introduced spaces, such as the 
convergence of sequences, which extends the theory of cone metric space; the 
multi-valued weak contractions, and so on. In Section 3, it focuses on addressing 
the endpoint theory in the metric space of partially ordered group. And finally in 
Section 4, it focuses on addressing the endpoint theory in the metric space of 
partially ordered module. 

2. Preliminaries 

This section provides necessary preliminaries for our discussions. 
We first make the following explanations. For a partial order   of a set, we 

write a b  to indicate that a b  but a b≠ , where a  and b  are ele-
ments of the set. And for a group G  with partial order  , we write G+  and 
G+  to indicate respectively the sets { }:a G a θ∈   and { }:a G a θ∈  , 
where θ  indicates the identity element of G . 

Definition 2.1. Let G be an abelian/a commutative group with partial order 
 . We call G a  -partially ordered group, a partially ordered group for sim-
plicity, if   satisfies the law (g1) , , ,a b a c b c a b c G⇒ + + ∀ ∈  . Let further 
G be an R-module and the integral ring R be a ≤-partially ordered group. As-
sume that the partial order < satisfies the law (r1): 1 0> , where 1 and 0 are the 
unit element and the identity element of R, respectively. Assume also that the 
partial orders < and   satisfy the law (m1): , ,a b ra rb a b G⇒ ∀ ∈   and 

r R+∀ ∈  (i.e. 0r > ). Then we call G an ( ), ,R ≤  -partially ordered module, a 
partially ordered module for simplicity. 

Remark 2.2. 1) For convenience, we focus our attention to study under the 
assumption that there exist non-identity elements in group G below. 2) Note 
that each element of a group has an inverse element. From (g1), we can easily 
obtain the order relation: (g1)' , , ,a b a c b c a b c G⇔ + + ∀ ∈  . In addition, 
from (m1), we can easily obtain the order relation: (m1)' ,a b ra rb⇒ 

,a b G∀ ∈  and r R+∀ ∈ . 3) From (m1), we can also obtain the order relations: 
(m2) , ,r s ra sa r s R< ⇒ ∀ ∈

 and a G+∀ ∈ ; and (m2)' ,r s ra sa≤ ⇒   
,r s R∀ ∈  and a G+∀ ∈ . In fact, let r s< , then, by (g1), we have 0 s r< − . Let 

also a G+∈ , i.e. aθ  . Then, by (m1), we have ( ) ( )s r s r aθ− −  
( )s r aθ⇒ − . From (g1), this leads to ( )ra ra s r a sa+ − = . So we have 

(m2). Finally, from (m2), it is obvious that we have (m2)'. 4) It is obvious that 
the partially ordered module is a special kind of the partially ordered group. 

Example 2.3. Let E be a Banach space over the real field   and P be a subset 
of E. P is called a cone if and only if: 1) P is closed, nonempty, and { }P θ≠ ; 2) 
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, , ,r s a b P ra sb P+∈ ∈ ⇒ + ∈ ; 3) a P∈  and a P a θ− ∈ ⇒ = . Here +  
denotes all the non-negative real numbers. For a given cone P of E, define the 
partial order   on E by x y  if and only if y x P− ∈ , see [3]. Then it can 
be easily verified that E is an ( ), ,≤  -partially ordered module, and therefore, 
of course, is a  -partially ordered group. Here ≤ is the usual order of  . 

In the following part of this section G is supposed either of a  -partially or-
dered group and an ( ), ,R ≤  -partially ordered module unless otherwise speci-
fied. 

Definition 2.4. Let   be a non-empty relation of G.   is called an ana-
lytic topological structure of partially ordered group G if it satisfies: (t1) 

, ,a b a b a b G⇒ ∀ ∈  ; (t2) ,a b b c a c⇒  ; (t3) a b ⇒

, , ,a c b c a b c G+ + ∀ ∈ ; (t4) ,a aθ ε ε θ θ∀ ⇒ =  ; and (t5) ε θ∀  , 
there exists η θ  such that η ε .   is called an analytic topological 
structure of partially ordered module G if it also satisfies: (t6) a b ⇒  

, ,ra rb a b G∀ ∈  and r R+∀ ∈ . 
Remark 2.5. In the definition above, for   is non-empty, there are actually 

infinite elements ε  such that ε θ  in G . In fact, since   is a non-empty 
relation, there exist at least two elements a  and b  such that a b . By (t3), 
we have b aθ − . Thus, according to (t5), the result holds.  

Example 2.6. For the partially ordered module E of Example 2.3, define the 
relation   by x y

 if and only if y x intP− ∈ , where intP  denotes the 
interior of P, see [3] and [4]. Then we can verify that   is an analytic topolog-
ical structure of E. In fact, it is obvious that   satisfies (t1), (t3), (t5) and (t6). 
To prove (t2), let a b  and b c . Then, from b c , we have ( )c bθ − . 

So there is an r +∈  such that ( )( ),N c b r P− ⊂ , where ( )( ),N c b r− =

( ){ }:x E x c b r∈ − − <  and x  indicates the norm of x . Consider 

( )( ),N c a r− . Let ( )( ),u N c a r∈ − . Then ( ) ( )u b a c b− − − − = ( )u c a− −

r< . This implies ( ) ( )( ),u b a N c b r P− − ∈ − ⊂ . On the other hand, ( )b a P− ∈  

for a b . So ( ) ( )u u b a b a P= − − + − ∈ . Namely ( )( ),N c a r P− ⊂ . Hence 

c aθ − , e.g. a c , that is, (t2) holds. To prove (t4), assume ,aθ ε

ε θ∀  . Let c θ . Then c
n

θ . By regarding c
n

 as ε , we have c a
n

⇒  

c ca a P
n n

θ− ⇒ − ∈  for all n∈ , where   represents all the natural 

numbers. This leads to a P− ∈  because c
n

θ→  (in norm) and P is  

closed. So, by a P∈ , we have a θ= . That is, (t4) holds. Therefore,   is an 
analytic topological structure of E. 

Definition 2.7. Let   be an analytic topological structure of G and a G+∈ . 
A sequence { }na  of G+  is said to be convergent to a  (in  ) if ε θ∀  , 
there is a natural number N such that na aθ ε−   for all n N> , denoted 
by na a→  or lim nn

a a
→∞

= . 
Remark 2.8. 1) Let   be an analytic topological structure of G, which is 
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different from the  . Suppose   is also an analytic topological structure of G, 
and sequence { }na  of G+  converges to θ  in  . Then we can easily know 
that na  converges to θ  in  . (In fact, let ε θ . Then, from (t5), there ex-
ists η θ  such that η ε . For the η , since na θ→  in  , there is a nat-
ural number N such that na η  for all n N> . By (t2) and η ε , this leads 
to na ε  for all n N> . Hence na θ→  in  .) That is, the convergence in 
  is stronger than in  . So, in the case, the convergence in   can be re-
garded as a kind of weak convergence. 2) For the analytic topological structure 
  of the partially ordered module E in Example 2.6, it can be easily verified 
that   is different from the   if E is a two-dimensional Euclidean space and 

( ){ }, : 0, 0P x y x y= ≥ ≥ . 3) It can be easily verified that for an analytic topolog-
ical structure   of G, na a b a θ→ ⇔ ∀   , there is a natural number N 
such that na a b  for all n N> . In fact, assume na a→ . b a∀  , let 

b aε = − . Then, by (t3), we have ε θ . So, there is a natural number N such 
that na aθ ε−   for all n N> . From (g1)' and (t3), this leads to 

na a b  for all n N> . Conversely, ε θ∀  , let b a ε= + . Then 
b a θ  . So, there is a natural number N such that na a b ⇒

na aθ ε−   for all n N> . Note that a θ . This shows na a→ . 
Remark 2.9. For the E and the analytic topological structure   of Example 

2.6, let { }na  be a sequence in E+ . Assume na θ→  in norm. Then, ε θ∀  , 
there exists r +∈  such that ( ),N r Pε ⊂ . Due to na θ→  in norm, there 
exists also a natural number N such that na r<  for all n N> . Therefore, 
( ) ( ) ( ) ( ),n n na r a N r a intPε ε ε ε ε− − < ⇒ − ∈ ⇒ − ∈ , that is, na ε , for all 

n N> . This implies that na θ→  in   if na θ→  in norm. 
G always associates with an analytic topological structure   and the con-

vergence of the sequences of G+  is in   are assumed below. 
Lemma 2.10. Let { }na  and { }nb  be two sequences of G+ . We have the 

three conclusions as follows. 1) If na θ→ , then lim nn
a

→∞
 is unique. 2) If 

na θ→  and nb θ→ , then n na b θ+ → . 3) If n nb a a θ    for all n∈  
and nb a→ , then ( )n nb a θ− → . 

Proof. Proving 1). Let lim nn
a a

→∞
= . Then there is a natural number 1N  such 

that na a  for all 1n N> . On the other hand, ε θ∀  , since na θ→ , there 
is a natural number 2N  such that naε θ   for all 2n N> . Let 

{ }1 2max , 1n N N= + . Then, naε   and na a θ  . From (t2), this leads to 
aε θ  . By virtue of (t4), we have a θ= . Hence 1) holds. 

Proving 2). Let ε θ . By (t5), there exists η θ  such that ε η θ−  . For 

na θ→  and nb θ→ , there are natural numbers 1N  and 2N  such that 

1,na n Nη ∀ >  and 2,nb n Nε η− ∀ > . Put { }1 2max ,N N N= . We have: 
,n na b n Nη ε η ε+ + − = ∀ > . Hence, n na b θ+ → . That is 2) holds. 

Proving 3). Arguing by contradiction, assume ( )lim n nn
b a θ

→∞
− ≠ . Then there 

exists a δ θ  and a subsequence { }i in nb a−  such that ( )i in nb a δ− 
 does 

not hold for all i∈ . From 
ina a , by (g1)', we have 

i i in n nb a b a− − . This 
implies that 

inb a δ−   does not hold for all i∈ . (In fact, if for some 
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i∈ , 
inb a δ−  , then, from (t2) and 

i i in n nb a b a− − , we have 

i in nb a δ−  , which contradicts that ( )i in nb a δ− 
 does not hold.) Hence 

lim nn
b a

→∞
≠ . The contradiction shows 3) holds.   

Definition 2.11. G is called regular if every decreasing sequence { }na  of G+  
is convergent. That is, if a sequence { }na  of G+  satisfies 1n na a +  for all 
n∈ , then exists a a G+∈  such that na  converges to a . 

Remark 2.12. 1) Let ,A G A+⊆ ≠ ∅  and a G+∈ . a  is called the infimum 
of A if and only if a  is a lower bound of A, and c a  for each lower bound c 
of A, denoted by infA . 2) It is obvious that there is at most one infimum for 
each subset of G+ . In fact, for any A G+⊆ , let a  and b  be two infimums of 
A. Then both a b  and b a  hold. Hence a b= . This shows that A has at 
most one infimum. 3) In particular, G is regular if for each non-empty subset A 
of G+ , infA  exists and there exists a sequence { }na  of A such that na  con-
verges to infA . Actually, let { }na  be a decreasing sequence of G+ . Then, in the 
case, { }ninf a  exists and there exists a subsequence { }ina  of { }na  such that 

{ }ina  converges to { }ninf a . Since { }ina  converges to { }ninf a , ε θ∀  , 
there is a natural number I such that { }

in na inf aε θ−   for all i I≥ . For 
{ }na  decreasing, this leads to { }n na inf aε θ−   for all In n≥ . That is, 
{ }na  converges to { }ninf a . Hence G is regular. 

Definition 2.13. Let X be a non-empty set. Suppose the mapping 
:d X X G× →  satisfies 
(d1) ( ),d x y θ  for all ,x y X∈  and ( ),d x y θ=  if and only if x y= , 
(d2) ( ) ( ), ,d x y d y x=  for all ,x y X∈ , 
(d3) ( ) ( ) ( ), , ,d x y d x z d z y+  for all , ,x y z X∈ . 

Then d is called a metric (on X) valued in partially ordered group G, and 
( ),X d  is called a metric space valued in partially ordered group G, when G is a 
partially ordered group; a metric of group and a metric space of group for sim-
plicity, respectively. (Then d is called a metric valued in partially ordered mod-
ule G, and ( ),X d  is called a metric space valued in partially ordered module 
G, when G is a partially ordered module.) 

In the rest of this section, we always assume that ( ),X d  is either of a metric 
space valued in partially ordered group G and a metric space valued in partially 
ordered module G. 

Definition 2.14. For given ( ),X d , let x X∈  and { }nx  be a sequence in X.  
1) We call that { }nx  converges to x  if and only if ( ),nd x x θ→ , denoted 

by lim nn
x x

→∞
=  or nx x→ .  

2) { }nx  is a Cauchy sequence if and only if ( ),n md x x θ→ , that is, ε θ∀  , 
there is a natural number N such that ( ),n md x x ε  for all ,n m N≥ .  

3) ( ),X d  is complete if and only if every Cauchy sequence is convergent.  
4) ( ),X d  is regular if and only if G is regular. 
Remark 2.15. The relation between the regular space and the complete space 

is an interesting question for further research. 
Definition 2.16. Given ( ),X d , let ( ): 2XT X → −∅  be a multi-valued 
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mapping and : X X Gϕ +× →  be a mapping with ( ) ( ), ,x y d x yϕ   for all 
( ),d x y θ . T is called a multi-valued (ϕ -)weak contraction on ( ),X d  if, for 

all different ,x y X∈ , x Tx′∀ ∈ , there exists y Ty∈  such that  

( ) ( ), , .d x y x yϕ′                      (2.1) 

T is called a global multi-valued (ϕ -)weak contraction on ( ),X d  if, for all 
different ,x y X∈ , we have  

( ) ( ), , , , .d x y x y x Tx y Tyϕ′ ′ ′ ′∀ ∈ ∀ ∈              (2.2) 

The weak contraction T is called to satisfy C-condition (convergence condition) 
if ( ) ( ), ,n n n nd x y x yϕ θ− → , then ( ),n nd x y θ→ , where nx  and ny  are two 
sequences of X. 

Remark 2.17. 1) It is obvious that a global multi-valued weak contraction is a 
multi-valued weak contraction. 2) The weak contraction T is called to satisfy 
C'-condition if ( ) ( ) ( ), ,n m n md x x x x n mϕ θ− → ≠ , that is, ε θ∀  , there is a N 
such that ( ) ( ), ,n m n md x x x xϕ ε−   for all ,n m N>  and n m≠ , then 
( ),n md x x θ→ . 3) If T satisfies C-condition, then it also satisfies C'-condition. In 

fact, for the set ( ){ }, : , ,n m n m n m∈ ≠  is countable, it can be rewritten as the 
sequence ( ){ },i ix y′ ′ . Assume ( ) ( ) ( ), ,n m n md x x x x n mϕ θ− → ≠ . Let ε θ . 
Then there exists a natural number N such that ( ) ( ), ,n m n md x x x xϕ ε−   
whenever ,n m N>  and n m≠ . Because the set ( ){ }, : ,n m n m N≤  is finite, 
there is a natural number I such that if i I>  and ( ) ( ), ,i i n mx y x x′ ′ = , then 

,n m N> . This implies i I∀ > , we have ( ) ( ), ,i i i id x y x yϕ ε′ ′ ′ ′−  . Hence 
( ) ( ), ,i i i id x y x yϕ θ′ ′ ′ ′− → . For T satisfies C-condition, we have ( ),i id x y θ′ ′ → . 

Further, due to ( ),i id x y θ′ ′ → , ε θ∀  , there is a natural number I ′  such 
that ( ),i id x y ε′ ′

  whenever i I ′> . Since the set { }:i i I ′≤  is finite, there is a 
natural number N ′  such that if ,n m N ′> , n m≠  and ( ) ( ), ,n m i ix x x y′ ′= , 
then i I ′> . That is, ,n m N ′∀ > , n m≠ , we have ( ),n md x x ε . Note that 
( ),n md x x θ=  when n m= . This leads to ( ),n md x x θ→ . 
Definition 2.18. A map ( ): 2XT X → −∅  on ( ),X d  is said to have ap-

proximate endpoint property if there exist a sequence { }nx  of X and a sequence 
{ }na  of G+  with na θ→  such that  

( ), , ,n n n n nd x x a x Tx′ ′∀ ∈                   (2.3) 

for all n∈ . 
Remark 2.19. When ( ),X d  is the usual complete metric space, it can be 

easily verified that T has the approximate endpoint property in Theorem 1.1 
and T has the approximate endpoint property defined in Definition 2.18 are 
equivalent. (In fact, if T has the approximate endpoint property in Theorem 
1.1, that is, ( )inf sup , 0

x X y Tx
d x y

∈ ∈
= , then there is a sequence { }nx  of X such that  

( )sup , 0
n

n
y Tx

d x y
∈

→ . Let ( )sup ,
n

n n
y Tx

a d x y
∈

= . Then ( ), ,n n n n nd x x a x Tx′ ′≤ ∀ ∈  and 
0na → . This shows that T has the approximate endpoint property defined in 

Definition 2.18. On the other hand, if T has the approximate endpoint property 
defined in Definition 2.18, that is, there exist a sequence { }nx  of X and a se-
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quence { }na  of +  with 0na →  such that ( ), ,n n n n nd x x a x Tx′ ′≤ ∀ ∈ , then  
( )sup ,

n
n n

y Tx
d x y a

∈
≤  for all n∈ . This implies that ( )inf sup , 0

x X y Tx
d x y

∈ ∈
= , namely,  

T has the approximate endpoint property in Theorem 1.1. Hence we have the 
equivalence stated above.)  

Lemma 2.20. Let T be a multi-valued weak contraction on ( ),X d . Then we 
have the following two conclusions. 1) T has approximate endpoint property if T 
has endpoints. 2) T has one endpoint at most. (i.e. ( ) 1End T ≤ . Here ( )End T  
denotes the cardinal number of ( )End T .) 

Proof. 1) is obvious. In fact, let x  be an endpoint of T. Put nx x=  and 

na θ=  for all n∈ . Then na θ→  and (2.3) holds for all n∈ . Hence T 
has the approximate endpoint property. To prove 2), assume ( ) 1End T > . 
Then, there exist ( ),x y End T∈  such that x y≠ . From (2.1), we have 
( ) ( ), ,d x y x yϕ . Note that ( ) ( ), ,x y d x yϕ   for any ( ),d x y θ . This im-

plies ( ),d x y θ= . Hence, from (d1), we have x y= . This contradicts x y≠ . 
So ( ) 1End T ≤ , that is, 2) holds.   

3. Main Results 

In this section, we always assume that ( ),X d  is a metric space valued in par-
tially ordered group G. 

Now we are ready to prove our main results. We first present the following 
Theorem 3.1, which extends Theorem 1.1 (Theorem 2.1 of Amini-Harandi [1]) 
to the case of the metric space of group. 

Theorem 3.1. Let T be a multi-valued weak contraction on complete ( ),X d  
and satisfy C-condition. Then T has a unique endpoint if and only if it has the 
approximate endpoint property. 

Proof. The necessity is clear from the 1) of Lemma 2.20. Next we prove the 
sufficiency. 

Since T has the approximate endpoint property, there exist sequences { }nx  
of X and { }na  of G+  satisfying (2.3) and na θ→ . If there exists a subsequence 

{ }inx  such that 
inx  being the same point x  of X for all i∈ , then we can 

easily know that x  is an endpoint of T from (2.3). (In fact, for any given 
x Tx′∈ , we have ( ),

ind x x a′   for all i∈ . Since na θ→ , we have 

( )
ina iθ→ →∞ . So we have ( ),d x xθ ε′

  for all ε θ . This implies 
( ),d x x θ′ =  from (t4), that is, x x′= . Hence x  is an endpoint of T.) Other-

wise, without loss of generality, we can assume n mx x≠  whenever n m≠  and 
continue to prove as follows. 

For any different ,n m∈ , let n nx Tx′ ∈ . Then  

( ) ( ) ( ), , , .n m n n n md x x d x x d x x′ ′+                (3.1) 

Since n mx x≠ , according to (2.1), there exists m mx Tx∈  such that  

( ) ( ), , .n m n md x x x xϕ′   

Using this and (3.1), we further obtain  
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( ) ( ) ( ) ( )
( ) ( ) ( )

, , , ,

, , , .
n m n n n m m m

n n n m m m

d x x d x x d x x d x x

d x x x x d x xϕ

′ ′+ +

′ + +




         (3.2) 

By (2.3), we have ( ),n n nd x x a′   and ( ),m m md x x a . From (3.2), this leads 
to  

( ) ( )
( ) ( )
, ,

, , , .
n m n n m m

n m n m n m

d x x a x x a

d x x x x a a n m

ϕ

ϕ

+ +

⇒ − + ≠




           (3.3) 

For n mx x≠ , we have ( ),n md x x θ . So, ( ) ( ), ,n m n md x x x xϕ θ−  . On the 
other hand, noting that na θ→ , following the proof on the 2) of Lemma 2.10, we 
can easily know that n ma a θ+ → . Thus we can obtain ( ) ( ), ,n m n md x x x xϕ− →  
( )n mx xθ ≠  from (3.3). This implies ( ),n md x x θ→  for T satisfies the 

C-condition, which leads to ϕ  satisfies the C'-condition, see the 2) and 3) of 
Remark 2.17. Hence, { }nx  is a Cauchy sequence. Since ( ),X d  is complete, 
there is a x X∈  such that nx x→ . 

We show x  is an endpoint of T below. 
Since n mx x≠  whenever n m≠ , without loss of generality, we can assume 

nx x≠  for any n∈ . Let x Tx′∈ . Then, for all n∈ , we have  

( ) ( ) ( ), , , .n nd x x d x x d x x′ ′ +                 (3.4) 

For nx x≠ , by (2.1), there exists n nx Tx∈  such that  

( ) ( ) ( ), , , .n n nd x x x x d x xϕ′
                 (3.5) 

In terms of (3.4), (3.5) and (2.3), we obtain  

( ) ( ) ( ) ( )
( ) ( )
( ) ( )

, , , ,

, ,

, , .

n n n n

n n n

n n n

d x x d x x d x x d x x

x x a d x x

d x x a d x x

ϕ

′ ′ + +

+ +

+ +





 

Since ( ), nd x x θ→  and na θ→ , by the 2) of Lemma 2.10, we obtain 
( ) ( ), ,n n nd x x d x x a θ+ + → . So, ( ),d x x ε′

  for all ε θ . Note also that 
( ),d x x θ′  . From (t4), we have ( ),d x x θ′ = . Hence x x′= . That is, 

( )x End T∈ . 
Finally, the uniqueness is directly obtained from the 2) of Lemma 2.20. The 

proof completes.   
Remark 3.2. Here we make a simple explanation for Theorem 3.1 extending 

Theorem 1.1. Firstly, it is obvious that for the usual order ≤ of the real field  , 
  is a ≤-partially ordered group with analytic topological structure >. Further, 
due that ( ),X d  in Theorem 1.1 is a complete metric space, it is a complete 
metric space of the group   with analytic topological structure >. That is, 
( ),X d  satisfies the requirement of Theorem 3.1. Secondly, for the ( )tψ  in 
Theorem 1.1, let ( ) ( )( ), ,x y d x yϕ ψ= , then ( ),x yϕ  is a mapping from 
X X×  to +  and ( ) ( ), ,x y d x yϕ <  for all ( ),d x y θ> . For the mapping T 

in Theorem 1.1 and the ϕ  defined above, we have ( ) ( ), ,H Tx Ty x yϕ≤  for all 
different ,x y X∈ , that is,  
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( ) ( ) ( )max sup , , sup , , .
x Tx y Ty

d x Ty d Tx y x yϕ
′ ′∈ ∈

 ′ ′ ≤ 
 

 

This leads to ( ) ( ) ( ) ( )sup , , , , ,
x Tx

d x Ty x y d x Ty x y x Txϕ ϕ
′∈

′ ′ ′≤ ⇒ ≤ ∀ ∈ .  Thus,  

for Ty  is closed and bounded, x Tx′∀ ∈ , there is a y Ty∈  such that 
( ) ( ), ,d x y x yϕ′ ≤ . This shows that T is a multi-valued weak contraction on the 

space ( ),X d . Thirdly, if ( ) ( ), , 0n n n nd x y x yϕ− → , then ( ), 0n nd x y → , that 
is, T satisfies the C-condition. In fact, if ( ),n nd x y  does not converge to 0, then 
there exist a 0δ >  and a subsequence ( ){ },

i in nd x y  such that  

( ) ( )( ), ,
i i i in n n nd x y d x yψ δ− >  

for all i∈ .   We show the fact is true as follows. Let ( ),n n nd d x y=  and 

nd  do not converge to 0. If { }nd  is unbounded, without loss of generality, we 
can assume that { }nd  increases and converges to +∞ . For  

( )( ) ( )( ){ }liminf lim inf : 0
t t

t t s s s tψ ψ
→+∞ →+∞

 − = − > >   

and  

( )( ){ } ( )( ){ }inf : inf :k k nd d k n s s s dψ ψ− > ≥ − > , 

we have  

( )( ) ( )( ){ }
( )( ){ } ( )( ){ }

lim inf lim inf :

lim inf : lim inf : 0.

n n k kn n

nn t

d d d d k n

s s s d s s s t

ψ ψ

ψ ψ
→∞ →∞

→∞ →+∞

 − = − > 

   ≥ − > = − > >   

 

Hence there exist a 0δ >  and a subsequence { }ind  such that 

( )i in nd dψ δ− >  for all i∈ , that is, the fact is true. If { }nd  is bounded, 

without loss of generality, we assume that { }nd  increases and converges to a 

point 0t′ > . Then, for ψ  is u.s.c. at t′ , i.e. ( ) ( )limsup
t t

t tψ ψ
′→

′≤ , and 

( )t tψ ′ ′< , we have  

( )( ) ( ) ( )liminf limsup 0
t t t t

t t t t t tψ ψ ψ
′→ ′→

′ ′ ′− = − ≥ − > . 

Note that { }nd  increases and  

( )( ){ } ( )( )
0

lim inf : 0 liminf
t t t

t t t t t t tψ ψ
′∆ → →

 ′− < − < ∆ = −  . 

We have  

( )( ) ( )( ){ }
( )( ){ } ( )( ){ }
( )( ){ } ( )( )

0

0

lim inf lim inf :

lim inf : lim inf : 0

lim inf : 0 liminf 0.

n n k kn n

nn t

t t t

d d d d k n

t t d t t t t t t t

t t t t t t t

ψ ψ

ψ ψ

ψ ψ

→∞ →∞

→∞ ∆ →

′∆ → →

 − = − > 

   ′ ′≥ − < < = − < − < ∆   

 ′≥ − < − < ∆ = − > 

 

Hence the fact is also true.   That is, ( ) ( ), ,
i i i in n n nd x y x yϕ δ− >  for all 

i∈ . This contradicts ( ) ( ), ,n n n nd x y x yϕ−  converges to 0. Hence T satisfies 
the C-condition. Finally, for the T has the approximate endpoint property of 
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Theorem 1.1, from Remark 2.19, it has the approximate endpoint property (de-
fined in Definition 2.18). Hence we can directly obtain Theorem 1.1 from Theo-
rem 3.1. 

Next we further present the following Theorem 3.3, which shows, in the set-
ting that ( ),X d  is complete and regular, if the global multi-valued weak con-
traction satisfies C-condition, then it has the approximate endpoint property, so 
has a unique endpoint from Theorem 3.1. 

Theorem 3.3. Let ( ),X d  be complete and regular, T be a global mul-
ti-valued weak contraction on ( ),X d  and satisfy C-condition. Then T has a 
unique endpoint. 

Proof. We first prove the existence of endpoints. 
Arguing by contradiction, assume T has no endpoint. Then for any x X∈ , 

there is at least one y Tx∈  such that y x≠ . Hence there must be a sequence 
{ }ny  of X such that 1n ny Ty+ ∈  and 1n ny y+ ≠  for all n∈ . Note T is a glob-
al multi-valued weak contraction. In terms of 1n ny Ty+ ∈ , 1n ny y+ ≠ , (2.2) and 
( ) ( ), ,x y d x yϕ   for ( ),d x y θ , we have  

( ) ( ) ( )1 2 1 1, , ,n n n n n nd y y y y d y yϕ+ + + +              (3.6) 

for all n∈ . Hence the sequence ( ){ }1,n nd y y +  is decreasing. So, for G is reg-
ular, there exists a G+∈  such that ( )1,n nd y y a+ → . Hence, from (3.6), we 
have ( ) ( )1 1, ,n n n na y y d y yϕ + + . Further, according to the 3) of Lemma 2.10, 
we obtain ( ) ( )1 1, ,n n n nd y y y yϕ θ+ +− → . For T satisfies C-condition, this leads 
to ( )1,n nd y y θ+ → . And by (3.6) we further have ( )1,n ny yϕ θ+ → . Now let 

1n nx y +=  and ( )1,n n na y yϕ += . Then we have ( ), ,n n n n nd x x a x Tx′ ′∀ ∈  and 

na θ→ . That is, T has the approximate endpoint property. Thus, by Theorem 
3.1, T has endpoints. This contradicts our assumption. Hence the existence of 
endpoints is true. 

Finally, the uniqueness follows directly from the 2) of Lemma 2.20. This ends 
the proof.   

For the single-valued weak contraction can be regarded as a kind of specific 
global multi-valued weak contraction, from Theorem 3.3, we can immediately 
derive the Corollary 3.4 below, which generalizes Lemma 2.4 and Corollary 2.5 
of [1]. 

Corollary 3.4. Let ( ),X d  be complete and regular, f  be a single-valued 
weak contraction on ( ),X d  and satisfy C-condition. Then T has a unique fixed 
point. 

Remark 3.5. The multi-valued weak contraction cannot have the approximate 
endpoint property, even in the usual metric space, for instance, see the Example 
2.3 of [1]. 

4. Endpoint Theory for the Metric Space of Module 

Note that a metric space of module is a special metric space of group. As appli-
cations of the results proved above, this section discusses the endpoint theory for 
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the metric space of module. We always assume ( ),X d  is a metric space of 
module G in this section. 

By regarding ( ) ( ), ,x y d x yα  as ( ),x yϕ , we can easily derive the next 
Theorem 4.1 from Theorem 3.1 and Theorem 3.3. 

Theorem 4.1. Let ( ),X d  be complete, ( ): 2XT X → −∅  be a mul-
ti-valued mapping. Let also [ ) { }( ): 0,1 : 0 1X X r R rα × → = ∈ ≤ <  be a map-
ping, which satisfies: for any two sequences { }nx  and { }ny  of X with 

( ) ( )1 , ,n n n nx y d x yα θ − →  , there is an [ )0,1α ∈  such that ( ),n nx yα α≤  
for all n∈ , as well as ( )1 α−  has multiplicative inverse ( ) 11 α −−  and 
( ) 11 0α −− > . Then we have the following two conclusions. 

1) Suppose for all different ,x y X∈ , x Tx′∀ ∈ , there exists y Ty∈  such 
that ( ) ( ) ( ), , ,d x y x y d x yα′  . Then T has a unique endpoint if and only if T 
has the approximate endpoint property. 

2) Let ( ),X d  be regular. Suppose for all different ,x y X∈ , we have 
( ) ( ) ( ), , ,d x y x y d x yα′ ′  , ,x Tx y Ty′ ′∀ ∈ ∀ ∈ . Then T has a unique endpoint. 
Proof. Let ( ) ( ) ( ), , ,x y x y d x yϕ α= . Then : X X Gϕ +× →  is a mapping. 

Since ( ), 1x yα  , by (m2), see the 3) of remark 2.2, we have ( ) ( ), ,x y x yϕ α=  
( ) ( ), ,d x y d x y  for all ( ),d x y θ . We prove the statement that if 
( ) ( ), ,n n n nd x y x yϕ θ− → , then ( ),n nd x y θ→  below. 
Let { }nx  and { }ny  be two sequences of X. Then  

( ) ( ) ( ) ( ), , 1 , ,n n n n n n n nd x y x y x y d x yϕ α − = −  . 

So, if ( ) ( ), ,n n n nd x y x yϕ θ− → , then  

( ) ( )1 , , .n n n nx y d x yα θ − →                    (4.1) 

Hence there exists an [ )0,1α ∈  such that ( ), ,n nx y nα α≤ ∀ ∈ . By (g1)', 
this further leads to ( ) ( )1 1 ,n nx yα α − ≤ −  . Since also ( ),n nd x y θ , by 
(m2)', we have  

( ) ( ) ( ) ( )1 , 1 , , , .n n n n n nd x y x y d x y nα α − − ∀ ∈          (4.2) 

In terms of (4.1) and (4.2), we obtain ( ) ( )1 ,n nd x yα θ− → . For 1α < , we 
have 1 0α− > . Let ε θ . By (t6), we have ( )1 α ε θ−  . Hence, there exists 
a natural N such that ( ) ( ) ( )1 , 1n nd x yα α ε− −  for all n N> . For 
( ) 11 0α −− > , from (t6), we obtain also ( ),n nd x y ε  for all n N> . This im-
plies ( ),n nd x y θ→ . 

For conclusion 1), by ( ) ( ) ( ) ( ), , , ,x y x y d x y d x yϕ α=   for all ( ),d x y θ  
and the statement proved above, it is obvious that T is a multi-valued weak con-
traction on the space ( ),X d  and satisfies C-condition. Hence we can imme-
diately know that the conclusion is true from Theorem 3.1. For conclusion 2), T 
is clearly a global multi-valued weak contraction and satisfies C-condition. Note 
that ( ),X d  is regular. We can immediately know that the conclusion is true 
from Theorem 3.3. This completes the proof.   

Replacing, in Theorem 4.1, ( ),x yα  by α , we directly obtain the following 
Corollary 4.2. 
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Corollary 4.2. Let ( ),X d  be complete, ( ): 2XT X → −∅  be a mul-
ti-valued mapping. Let also [ )0,1α ∈  with ( ) 11 α −−  and ( ) 11 0α −− > . 1) 
Suppose T satisfies for all different ,x y X∈ , x Tx′∀ ∈ , there exists y Ty∈  
such that ( ) ( ), ,d x y d x yα′  . Then T has a unique endpoint if and only if T 
has the approximate endpoint property. 2) Let ( ),X d  be regular. Suppose T 
satisfies for all different ,x y X∈ , ( ) ( ), , , ,d x y d x y x Tx y Tyα′ ′ ′ ′∀ ∈ ∀ ∈ . 
Then T has a unique endpoint. 

Proof. Let ( ),x yα α= . And then applying Theorem 4.1, we obtain the Co-
rollary instantly.   

Finally, in the 2) of Corollary 4.2, replacing also multi-valued mapping by sin-
gle-valued mapping, we obtain Corollary 4.3 below. 

Corollary 4.3. Let ( ),X d  be complete and regular, :T X X→  be a sin-
gle-valued mapping, [ )0,1α ∈  with ( ) 11 α −−  and ( ) 11 0α −− > . Suppose T 
satisfies for all different ,x y X∈ , ( ) ( ), ,d Tx Ty d x yα . Then T has a unique 
fixed point. 

Remark 4.4. In particular, when ( ),X d  is the usual complete metric space, 
Corollary 4.3 is just the famous Banach fixed point theorem. 
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