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Abstract

The present work considers the endpoint in the abstract metric space. It firstly
introduces the metric space of partially ordered groups and the metric space
of partially ordered modules, respectively; and defines the convergence of se-
quences and the multi-valued weak contractions, etc., on the introduced space.
And then, with the methods of functional analysis and abstract algebra, it
successively establishes an endpoint theorem for the metric space of partially
ordered groups and an endpoint theorem for the metric space of partially or-
dered modules. The contributions of this article extend the theory of cone
metric space constructed by Huang and Zhang (2007) and some recent results
on the fixed point and endpoint theory, such as the endpoint theorem given
by Amini-Harandi (2010).

Keywords
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1. Introduction

Let (X,d) be a complete metric space. Denote by CB(X) the class of all
nonempty closed and bounded subsets of X. Denote by H (A, B) the Hausdorff
metric of 4 and B with respect to d, that is,

H(AB)= max{supd (x,B),supd (y, A)}
xeA yeB

forall A,BeCB(X),where d(x,B)= ing d(x,y).Furtherlet T:X — 2* be
ye
a multi-valued/set-valued map. A point X is called a fixed point of 7'if X eTX.
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Define Fix(T)={xe X :xeTx}.A point X is called an endpoint/a stationary
point of a multi-valued map T if Tx={x}. We denote the set of all endpoints
of 7by End(T).

The investigation of endpoint of multi-valued mappings is an important ex-
tending of the study of fixed point, which was made as early as 30 years ago, and
has received great attention in recent years, see e.g. ref. [1] and ref. [2], and the
references therein. In particular, Amini-Harandi [1] (2010) proved the Theorem
1.1 below.

Theorem 1.1 (Theorem 2.1 of [1]). Let (X,d) be a complete metric space
and T:X —CB(X) bea set-valued map that satisfies

H (Tx,Ty) <y (d(xy)), (1.1)

for each Xx,ye X , where y: [O,+oo) — [O,+oo) is upper semicontinuous
(us.c.), y(t)<t for each t>0 and satisfies liminf (t-w(t))>0. Then T
has a unique endpoint if and only if T has the approximate endpoint property.
(ie. |Xr€1I supd(x,y)=0.)

Huangy EaTrxld Zhang ref. [3] (2007) introduced the concept of cone metric space,
and established some fixed point theorems for contractive type maps in a normal
cone metric space. Subsequently, some other authors gave many results about the
fixed point theory in cone metric spaces. For example, Rezapour and Hamlbara-
ni ref. [4] (2008) generalized some results of [3]. Raja and Vaezpour ref. [5] (2008)
presented some extensions of Banach’s Contraction Principle in complete cone
metric spaces. Aage and Salunke ref. [6] (2011) proved some fixed point theo-
rems for the expansion onto mappings on complete cone metric spaces. Also,
many common fixed point theorems were proved for maps on cone metric
spaces in some literatures, for example, see Ili¢ and Rakocevi¢ ref. [7] (2008);
Arshad, Azam and Vetro ref. [8] (2009), whose results generalized and unified
many fixed point theorems. Rezapour and Haghi ref. [9] (2009), as well as Haghi
and Rezapour ref. [10] (2010) studied fixed points of multifunctions (Z.e. mul-
ti-valued mappings) on normal cone metric spaces and on regular cone metric
spaces, respectively. Moreover, Wardowski ref. [11] (2009) introduced a kind of
set-valued contractions in cone metric spaces and established endpoint and fixed
point theorems for his contractions.

In addition, Rezapour and Haghi [9] (2009) introduced the concept of cone
topology on cone metric space. Lakshmikantham and Ciri¢ ref. [12] (2009) in-
troduced the concept of a mixed g-monotone mapping and prove coupled coin-
cidence and coupled common fixed point theorems for such nonlinear contrac-
tive mappings in partially ordered complete metric spaces. Harjani and Sada-
rangani ref. [13] (2009) present some fixed point theorems for weakly contrac-
tive maps in a complete metric space endowed with a partial order. And Zhang
ref. [14] (2010) proved some new fixed point and coupled fixed point theorems
for multivalued monotone mappings in ordered metric spaces. Finally, Ami-

ni-Harandi ref. [15] (2011) studied fixed point theorems for a kind of genera-
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lized quasicontraction maps in so called the vector modular spaces.

Motivated by the contributions stated above, the present work studies the
endpoint in the abstract metric space. The remainder of the paper is organized
as follows. In Section 2, it introduces the metric space valued in a partially or-
dered group endowed with a topological structure and the metric space valued in
a partially ordered module endowed with a topological structure, and establishes
some fundamental concepts of analysis on the introduced spaces, such as the
convergence of sequences, which extends the theory of cone metric space; the
multi-valued weak contractions, and so on. In Section 3, it focuses on addressing
the endpoint theory in the metric space of partially ordered group. And finally in
Section 4, it focuses on addressing the endpoint theory in the metric space of

partially ordered module.

2. Preliminaries

This section provides necessary preliminaries for our discussions.

We first make the following explanations. For a partial order < of a set, we
write a<Db to indicate that a<b but a=b, where a and b are ele-
ments of the set. And for a group G with partial order <, we write G, and
G" to indicate respectively the sets {aeG:ax>6} and {aeG:a>6},
where 6 indicates the identity elementof G.

Definition 2.1. Let G be an abelian/a commutative group with partial order
<. We call Ga < -partially ordered group, a partially ordered group for sim-
plicity, if < satisfies the law (gl) a<b=a+c=<b+c,Va,b,ceG. Let further
G be an R-module and the integral ring R be a <-partially ordered group. As-
sume that the partial order < satisfies the law (r1): 1> 0, where 1 and 0 are the
unit element and the identity element of R, respectively. Assume also that the
partial orders < and < satisfy the law (ml): a<b=ra<rb,Va,beG and
VreR" (ie. r>0). Then we call Gan (R,S,j) -partially ordered module, a
partially ordered module for simplicity.

Remark 2.2. 1) For convenience, we focus our attention to study under the
assumption that there exist non-identity elements in group G below. 2) Note
that each element of a group has an inverse element. From (gl), we can easily
obtain the order relation: (gl)' a<b< a+c=<b+c,Va,b,ceG . In addition,
from (ml), we can easily obtain the order relation: (ml)' a<b=ra=rb,
Va,beG and VreR,.3) From (ml), we can also obtain the order relations:
(m2) r<s=ra<saVvr,seR and VaeG"; and (m2) r<s—=ra=<sa,
vr,seR and VaeG,.Infact, let I <S, then, by (gl), we have 0<sS—r. Let
also aeG"', ie @<a . Then, by (ml), we have (s-r)@=<(s—r)a
= 6@ <(s—r)a. From (gl), this leads to ra<ra+(s—r)a=sa. So we have
(m2). Finally, from (m2), it is obvious that we have (m2)'. 4) It is obvious that
the partially ordered module is a special kind of the partially ordered group.

Example 2.3. Let £be a Banach space over the real field R and Pbe a subset
of E. Pis called a cone if and only if: 1) Pis closed, nonempty, and P = {6} ; 2)
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r,seR,,abeP=ra+sbeP; 3) aecP and -acP=a=6. Here R,
denotes all the non-negative real numbers. For a given cone P of E, define the
partial order < on Eby x=<vy if and only if y—XxeP, see [3]. Then it can
be easily verified that Fis an (R, <, j) -partially ordered module, and therefore,
of course, is a < -partially ordered group. Here < is the usual order of R.

In the following part of this section G'is supposed either of a =< -partially or-
dered group and an (R,<,=) -partially ordered module unless otherwise speci-
fied.

Definition 2.4. Let < be a non-empty relation of G. < is called an ana-
Iytic topological structure of partially ordered group G if it satisfies: (tl)
a<b=a<b,VvabeG ; (t2) a=<bb<c=axc ; (3) a<b=
a+c<bh+c,Va,bceG; (t4) <a<xeg Vex>O=a=60; and (t5) Ve> 40,
there exists 7> 6 such that < e&. < is called an analytic topological
structure of partially ordered module G if it also satisfies: (t6) a<b=
ra<rb,vVa,beG and VreR".

Remark 2.5. In the definition above, for < is non-empty, there are actually
infinite elements & such that &> 6 in G. In fact, since < is a non-empty
relation, there exist at least two elements a and b such that a<b. By (t3),
we have 9 < b—a. Thus, according to (t5), the result holds.

Example 2.6. For the partially ordered module £ of Example 2.3, define the
relation < by x< vy if and only if y—xeintP, where intP denotes the
interior of 2, see [3] and [4]. Then we can verify that < is an analytic topolog-
ical structure of E. In fact, it is obvious that < satisfies (t1), (t3), (t5) and (6).
To prove (2),let a=<b and b<c. Then, from b<c,wehave < (c-b).

So there is an reR" such that N((c—b),r)cP, where N((c—b),r):
{XE E :||X—(c—b)||< r} and |x| indicates the norm of x . Consider
N((c—a),r). Let ueN((c-a),r). Then |u—(b-a)—(c—b)|= |u-(c-a)|
< r. This implies u—(b—a)e N ((C—b),r)c P. On the other hand, (b—a)eP
for a<b. So u=u—(b—a)+(b—a)eP. Namely N((c—a),r)cP. Hence
f<c-a, eg a<c, that is, (t2) holds. To prove (t4), assume f<a< ¢,

Ve>6.Let ¢>0.Then S 0. By regarding Case , we have ‘sa=
n n n

c C

——a>»0=——-aecP for all neN, where N represents all the natural

n n

c
numbers. This leads to —-a€P because —— 6 (in norm) and P is
n

closed. So, by ae P, we have a=¢. That is, (t4) holds. Therefore, < is an
analytic topological structure of E.

Definition 2.7. Let < be an analytic topological structure of Gand aeG,.
A sequence {a,} of G, is said to be convergent to a (in <) if Ve>46,
there is a natural number N such that § <a —a<¢ for all n> N, denoted
by a,—>a or lima,=a.

n—wo

Remark 2.8. 1) Let < be an analytic topological structure of G, which is
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different from the <. Suppose = is also an analytic topological structure of G,
and sequence {a,} of G, converges to @ in <. Then we can easily know
that a, convergesto 6 in <. (Infact,let ¢> 0. Then, from (t5), there ex-
ists 7> 6 such that 5 < &. For the 77, since a, > 6 in <, there is a nat-
ural number Nsuch that a, <7 forall n>N.By (t2) and 7 < ¢, this leads
to a, <& forall n>N.Hence a, >6 in <.) That is, the convergence in
< is stronger than in <. So, in the case, the convergence in <« can be re-
garded as a kind of weak convergence. 2) For the analytic topological structure
< of the partially ordered module £ in Example 2.6, it can be easily verified
that < is different from the < if Eis a two-dimensional Euclidean space and
P= {(X, y)ix>0,y> O} . 3) It can be easily verified that for an analytic topolog-
ical structure < of G a, »>a< Vb>a> 46, there is a natural number N
such that a<a, <b for all n>N . In fact, assume a, >a. Vb>a, let
g=Db—a. Then, by (t3), we have &> 6. So, there is a natural number N such
that € <a,—-a<k¢ for all n>N . From (gl) and (t3), this leads to
a<a,<b for all n>N . Conversely, Ve>0 , let b=a+g . Then
b>a>=@ . So, there is a natural number N such that a<a, <b=
f=<a,—a<¢ forall n>N.Notethat a>¢@. Thisshows a, > a.

Remark 2.9. For the £ and the analytic topological structure < of Example
2.6,let {a,} beasequencein E, .Assume &, — @ innorm. Then, V&> 0,
there exists reR" such that N(&,r)cP. Due to &, — 6 in norm, there
exists also a natural number N such that ||a,|<r for all n>N. Therefore,
le-a,)-¢|<r=(s-a,)eN(e,r)=(c-a,)cintP, that is, &, <&, for all
n> N . This implies that 8, > 6 in <« if a, > 6 innorm.

G always associates with an analytic topological structure < and the con-
vergence of the sequences of G, isin < are assumed below.

Lemma 2.10. Ler {a,} and {b,} be two sequences of G,. We have the
three conclusions as follows. 1) If a, —> 0, then lima, is unique. 2) If
a, >0 and b, >0, then a,+b —0.3) If b, =a >a=0 forall neN
and b, —>a, then (b,—-a,)—>6.

Proof. Proving 1). Let lima, =a. Then there is a natural number N; such
that a, =a forall n> Nn:wOn the other hand, V&> @, since a, — 6, there
is a natural number N, such that &>a,>6 for all n>N, . Let
n=max{N;,N,}+1. Then, £>a, and a, =a>6@. From (t2), this leads to
&> a = 0. Byvirtue of (t4), we have a=6 . Hence 1) holds.

Proving 2). Let ¢ > 0. By (t5), there exists 7> 6 suchthat ¢-7n> 6. For
a, >0 and b, »> 6, there are natural numbers N, and N, such that
a,<n,Vn>N, and b <&-7Vn>N,. Put N=max{N,N,}. We have:
a,+b, «n+s-n=¢,vn>N.Hence, a,+b, — 6. Thatis2) holds.

Proving 3). Arguing by contradiction, assume lim(b, —a,)# 6. Then there
ni} such that (bni -a, ) <« & does
not hold for all ieN.From a, =a, by (gl), we have b, —a, <b, —a. This
implies that b, —a< ¢ does not hold for all ieN. (In fact, if for some

exists a 0> 6 and a subsequence {bni -8
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ieN, b, -a<d , then, from (t2) and b, -a, =<b, -a, we have
b, —a, <&, which contradicts that (bni —ani)<< 6 does not hold.) Hence
limb, #a. The contradiction shows 3) holds. [J

""Definition 2.11. Gis called regular if every decreasing sequence {a,} of G,
is convergent. That is, if a sequence {a,} of G, satisfies a, <a,, for all
neN,thenexistsa aeG, suchthat a, convergesto a.

Remark 2.12. 1) Let AcG,,A# and aeG,. a is called the infimum
of Aif and only if a isalower bound of 4, and ¢ <a for each lower bound ¢
of A, denoted by iInfA. 2) It is obvious that there is at most one infimum for
each subset of G, . In fact, forany AcG,,let a and b be two infimums of
A. Then both a=<b and b=<a hold. Hence a=Db. This shows that A4 has at
most one infimum. 3) In particular, G is regular if for each non-empty subset A
of G,, infA exists and there exists a sequence {a,} of A such that a, con-
verges to infA. Actually, let {a } be a decreasing sequence of G, . Then, in the
case, inf{a } exists and there exists a subsequence {ani} of {a,} such that
{ani } converges to inf{a,}. Since {ani } converges to inf{a,}, Ve>0,
there is a natural number 7such that ¢>a, —inf{a,} =6 forall i>1I. For
{a,} decreasing, this leads to &> a —inf{a,} =6 for all n>n, . That is,
{a,} convergesto inf{a,}.Hence Gis regular.

Definition 2.13. Let X be a non-empty set. Suppose the mapping
d:XxX —>G satisfies

(d1) d(x,y)=8 forall x,yeX and d(x,y)=6 ifandonlyif x=y,

(d2) d(x,y)=d(y,x) forall x,yeX,

(d3) d(x,y)=d(x,z)+d(z,y) foral x,y,zeX.

Then d is called a metric (on X) valued in partially ordered group G, and
(X,d) is called a metric space valued in partially ordered group G, when Gis a
partially ordered group; a metric of group and a metric space of group for sim-
plicity, respectively. (Then d is called a metric valued in partially ordered mod-
ule G, and (X,d) is called a metric space valued in partially ordered module
G, when Gis a partially ordered module.)

In the rest of this section, we always assume that (X , d) is either of a metric
space valued in partially ordered group G and a metric space valued in partially
ordered module G.

Definition 2.14. For given (X,d),let xe X and {x,} beasequence in X.

1) We call that {x,} converges to x if and only if d(x,,x)— &, denoted
by limx, =x or X, = X.

2)n_>{wxn} is a Cauchy sequence if and only if d(x,,X,)—> 6, thatis, V&>,
there is a natural number Nsuch that d(x,,x,)< & forall nm>=N.

3) (X,d) iscomplete if and only if every Cauchy sequence is convergent.

4) (X,d) isregular if and only if Gis regular.

Remark 2.15. The relation between the regular space and the complete space
is an interesting question for further research.

Definition 2.16. Given (X,d), let T:X —>(2x —@) be a multi-valued
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mapping and ¢:XxX — G, be a mapping with ¢(x,y)<d(x,y) for all
d(X,y)> 0. Tis called a multi-valued ( ¢ -)weak contraction on (X,d) if, for
all different X,y e X, Vx'eTx, there exists YTy such that

d(x,¥)=e(xY). (2.1)

T'is called a global multi-valued (¢ -)weak contraction on (X,d) if, for all
different X,y e X , we have

d(X,y) = e(xy) VX eTx, vy eTy. (2.2)

The weak contraction 7'is called to satisfy C-condition (convergence condition)
if d(X,,Y,)—@(X,¥,)—> 6, then d(x,,y,)—>6,where X and y, aretwo
sequences of X.

Remark 2.17. 1) It is obvious that a global multi-valued weak contraction is a
multi-valued weak contraction. 2) The weak contraction 7 is called to satisfy

C'-condition if d(X,,X,)—@(X,,X,)—>@(n=m), thatis, V&> 0, thereisa N

n’“*m
such that d(x,,x,)—¢(X,,X,)<¢& for all nm>N and nzm, then
d(x,,X,)— 6. 3) If Tsatisfies C-condition, then it also satisfies C'-condition. In

fact, for the set {(n, m) ‘nmeN,n# m} is countable, it can be rewritten as the
sequence {(Xi',yi')} . Assume d(X,,X,)=@(X,, X,)>O(n=m). Let £>6.

n’'m
Then there exists a natural number N such that d(x,,X,)—@(X,,X,)<¢

whenever n,m>N and n#m. Because the set {(n,m):n,ms N} is finite,
there is a natural number 7 such that if i>1 and (X,y/)=(X, X,), then

n,m>N . This implies Vi>1, we have d(x,y/)—¢(X,y/)<¢e . Hence
d(x,y/)—e(X.,y/)—> 6. For T satisfies C-condition, we have d(x/,y/)—> 6.
Further, due to d(x/,y/)—> 6, V&> 0, there is a natural number |’ such

that d(x,y/)< & whenever i>1'.Sincetheset {i:i<1'} isfinite, thereisa

n*m
then i>1'. That is, ¥n,m>N’, n#m, we have d(x,,X,)<¢. Note that

n!'m
d(X,,X,)=60 when n=m.Thisleadsto d(x,,X,)—>6.
Definition 2.18. A map T: X — (ZX —@) on (X,d) is said to have ap-
proximate endpoint property if there exist a sequence {x

{a,} of G, with a, — & such that

natural number N’ such that if n,m>N’, n#m and (x,X,)=(X.y/),

.} of Xand a sequence

n?’n

d(x,,x)=<a, VX, eTx,, (2.3)

forall neN.

Remark 2.19. When (X,d) is the usual complete metric space, it can be
easily verified that 7" has the approximate endpoint property in Theorem 1.1
and 7 has the approximate endpoint property defined in Definition 2.18 are
equivalent. (In fact, if 7 has the approximate endpoint property in Theorem
L1, that is, infsupd (x,y) =0, then there is a sequence {X,} of X such that
sup d(x,,y) —0"Let a, =supd (X,,y). Then d(x,,x)<a,, VX, eTx, and
éenTX”—> 0. This shows that 7'Has"the approximate endpoint property defined in

Definition 2.18. On the other hand, if 7"has the approximate endpoint property
defined in Definition 2.18, that is, there exist a sequence {X,} of X and a se-
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quence {a,} of R, with a —0 such that d(x,,x})<a,, Vx, eTx,, then
sup d (Xn, y) <a, for all neN. This implies that infsupd (X, y) =0, namely,

yeTx, xeX yeTx
T has the approximate endpoint property in Theorem 1.1. Hence we have the
equivalence stated above.)

Lemma 2.20. Let T be a multi-valued weak contraction on (X,d). Then we
have the following two conclusions. 1) T has approximate endpoint property if T
has endpoints. 2) T has one endpoint at most. (i.e. |End (T )| <1. Here |End (T )|
denotes the cardinal number of End (T).)

Proof. 1) is obvious. In fact, let x be an endpoint of 7. Put X, =X and
a,=0 forall neN. Then a, -6 and (2.3) holds for all neN. Hence T
has the approximate endpoint property. To prove 2), assume |End (T )| >1.
Then, there exist X,yeEnd(T) such that x=y. From (2.1), we have
d(x,y) = ¢(x,y). Note that ¢(x,y)<d(x,y) forany d(x,y)> 8. This im-
plies d (x, y) =6 . Hence, from (d1), we have X =Y. This contradicts x=y.
So |End (T )| <1, thatis, 2) holds. [J

3. Main Results

In this section, we always assume that (X,d) is a metric space valued in par-
tially ordered group G.

Now we are ready to prove our main results. We first present the following
Theorem 3.1, which extends Theorem 1.1 (Theorem 2.1 of Amini-Harandi [1])
to the case of the metric space of group.

Theorem 3.1. Let T be a multi-valued weak contraction on complete (X , d)
and satisty C-condition. Then T has a unique endpoint if and only if it has the
approximate endpoint property.

Proof. The necessity is clear from the 1) of Lemma 2.20. Next we prove the
sufficiency.

Since 7 has the approximate endpoint property, there exist sequences {X,}
of Xand {a,} of G, satisfying (2.3) and a, — @. If there exists a subsequence
{xni} such that x, being the same point x of X for all ieN, then we can
easily know that X is an endpoint of 7 from (2.3). (In fact, for any given
x'eTx, we have d(x,x)=a, for all ieN. Since a, >0, we have
a, - O(i—> ). So we have #=<d(x,x)<¢ for all £>6. This implies
d (x, x’) =6 from (t4), thatis, x=x'. Hence X is an endpoint of 7%) Other-
wise, without loss of generality, we can assume X, # X, whenever N#m and
continue to prove as follows.

For any different n,meN,let X; €TX, . Then
d (X, Xy ) 2 d (X, %) +d (X, X, )- (3.1)

n!*m
Since X, # X, , according to (2.1), there exists X, € TX,, such that
d(x, %) 2 o(X,, %, ).

Using this and (3.1), we further obtain
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d(x,,x,)=

X

(X0, X, )+d (X, %, ) +d (X, X, )
(X0, X )+ @(X, X0 ) +d (X, X )

By (2.3), we have d(x,,x;)=<a, and d(X,,X,)=a,.From (3.2), this leads
to

(3.2)

x|

d
d

IA

(n' m) (n’ m)

PRI e

For X, #X,, we have d(x )=6. So, d(X,,X,)—@(X,, m)>¢9 On the

other hand, noting that a, — @, following the proof on the 2) of Lemma 2.10, we

n’ ITI

can easily know that a,+a, — 6. Thus we can obtain d (X, X, )—¢ (X, X,) =
O(x, #X,) from (3.3). This implies d(x,,X,)—>6 for 7T satisfies the

C-condition, which leads to ¢ satisfies the C'-condition, see the 2) and 3) of

n? I'ﬂ

Remark 2.17. Hence, {X,} is a Cauchy sequence. Since (X,d) is complete,
thereisa Xe X suchthat X, — X.

We show x isan endpoint of 7’below.

Since X, # X, whenever Nn#m, without loss of generality, we can assume
X, #X forany neN.Let X' €TX.Then,forall neN,we have

d(x’,x)jd(x’,xn)+d(xn,x). (3.4)

For X, #X,by (2.1), there exists X, €TX, such that
d(x,%,) = o(xx,)<d(xXx,). (3.5)

In terms of (3.4), (3.5) and (2.3), we obtain
d(x’,x)=d(x,X,)+d(X,,x,)+d(x,,x)

n?n

2p(xx,)+a, +d(xx,)
<d(xx,)+a, +d(xx,).

Since d (X, Xn) —6 and a, >0, by the 2) of Lemma 2.10, we obtain
d(x,%,)+d(xx,)+a, > 6. So, d(x,x")<e¢ for all £>6. Note also that
d(x,x')=6 . From (t4), we have d(x,x')=6 . Hence x=x'. That is,
x € End (T) .

Finally, the uniqueness is directly obtained from the 2) of Lemma 2.20. The
proof completes. [l

Remark 3.2. Here we make a simple explanation for Theorem 3.1 extending
Theorem 1.1. Firstly, it is obvious that for the usual order < of the real field R,
R is a <-partially ordered group with analytic topological structure >. Further,
due that (X,d) in Theorem 1.1 is a complete metric space, it is a complete
metric space of the group R with analytic topological structure >. That is,
(X,d) satisfies the requirement of Theorem 3.1. Secondly, for the w(t) in
Theorem 1.1, let ¢(X,Y) :w(d (% y)) , then ¢@(x,y) is a mapping from
XxX to R, and ¢(x,y)<d(xy) forall d(x,y)>86. For the mapping 7
in Theorem 1.1 and the ¢ defined above, we have H (Tx,Ty)<¢(x,y) for all
different X,y e X , that s,
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max{sup d(x,Ty),supd(Tx, y’)} <p(xy).
x'eTx y'eTy

This leads to supd(X,Ty)<¢(x,y)=d(X,Ty)<¢(x,y),Vx' €Tx. Thus,

x'eTx
for Ty is closed and bounded, Vx'eTx, there is a yeTy such that
d(X',¥)<@(x,y). This shows that 7'is a multi-valued weak contraction on the
space (X,d). Thirdly, if d(x,,y,)—¢(X,,¥,)— 0, then d(x,,y,)—0, that
is, T'satisfies the C-condition. In fact, if d(X,,y,) doesnot converge to 0, then
there exista & >0 and a subsequence {d (Xni Y, )} such that

d (%, Yn )—y/(d (% Vi, )) > &

for all ieN. [ We show the fact is true as follows. Let d, =d(x,,y,) and
d, do not converge to 0. If {d,} is unbounded, without loss of generality, we

can assume that {d,} increases and convergesto +o . For
liminf (t-w(1)= tIirﬂc[inf {(s—p(s)):s> t}} >0
and
inf {(dk —y(d)):k> n} > inf {(s—w(s)) S > dn} ,
we have
liminf (d, -y (d,)) = lim [ inf {(d, =y (d,)):k >n}]
> li_r)?o[inf {(s -y(s)):s>d, }] = tﬂmo[inf {(s ~y(s)):s> t}} >0.
Hence there exist a ¢>0 and a subsequence {dni } such that
d, —l//(dni)>§ for all ieN, that is, the fact is true. If {d,} is bounded,
without loss of generality, we assume that {d, } increases and converges to a
point t'>0 . Then, for ¥ is us.c. at t', ie Iimsup(//(t)Sl//(t') , and
tot’
t//(t') <t', we have

liminf (t—y (t)) =t'—limsupy (t) >t -y (t')>0.

tot’ tot’

Note that {d,} increasesand

lim [inf {(t—y(1)): 0<[t—t| < At} | = liminf (t-y (1))

We have
liminf (d, =y (d, )) = lim[inf {(d, —y/(d,)):k >n}]
> lim | inf {(t=y (1)) :d, <t<t}|= lim[inf {(t-y (1)):0<t-t < At}]
> lim [inf {(t-y (1)): 0 <[t—t] < At} | =liminf (t-y (1)) >0.

Hence the fact is also true. | That is, d(xni,yni)—go(xni,yni)>5 for all

i € N. This contradicts d(x,,y,)—¢(X,.Y,) converges to 0. Hence 7 satisfies
the C-condition. Finally, for the 7" has the approximate endpoint property of
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Theorem 1.1, from Remark 2.19, it has the approximate endpoint property (de-
fined in Definition 2.18). Hence we can directly obtain Theorem 1.1 from Theo-
rem 3.1.

Next we further present the following Theorem 3.3, which shows, in the set-
ting that (X,d) is complete and regular, if the global multi-valued weak con-
traction satisfies C-condition, then it has the approximate endpoint property, so
has a unique endpoint from Theorem 3.1.

Theorem 3.3. Let (X,d) be complete and regular, T be a global mul-
ti-valued weak contraction on (X,d) and satisfy C-condition. Then T has a
unique endpoint.

Proof. We first prove the existence of endpoints.

Arguing by contradiction, assume 7 has no endpoint. Then for any xe X ,
there is at least one y e Tx such that y = x. Hence there must be a sequence
{y,} of Xsuchthat y,, €Ty, and y,,,#Y, forall neN.Note T'is a glob-
al multi-valued weak contraction. In terms of Y,,; €TY,, Y, #V,> (2.2) and

p(x,y)<d(xy) for d(xy)>6,wehave
d(Voir Yoiz) 2@ (Yar Your) < d (Yo Your) (3.6)

for all ne N. Hence the sequence {d (Yar Yot )} is decreasing. So, for G'is reg-
ular, there exists a€G, such that d(y,,y,,)—a. Hence, from (3.6), we
have a =< o(Y,, Yo )< d(Yy, Y. ) - Further, according to the 3) of Lemma 2.10,
we obtain d(Y,, Yy )= @(Va: Vo) = 6. For T satisfies C-condition, this leads
to d(Y,, Y1) — 6. And by (3.6) we further have ¢(y,,Y,,;)—> 6. Now let
X, = Yoy and a =¢(Y,,Y,,,) Then we have d(x,,x))=a, Vx, eTx, and
a, — 0. That is, T has the approximate endpoint property. Thus, by Theorem
3.1, T has endpoints. This contradicts our assumption. Hence the existence of
endpoints is true.

Finally, the uniqueness follows directly from the 2) of Lemma 2.20. This ends
the proof. [

For the single-valued weak contraction can be regarded as a kind of specific
global multi-valued weak contraction, from Theorem 3.3, we can immediately
derive the Corollary 3.4 below, which generalizes Lemma 2.4 and Corollary 2.5
of [1].

Corollary 3.4. Let (X,d) be complete and regular, f be a single-valued
weak contraction on (X,d) and satisty C-condition. Then T has a unique fixed
point.

Remark 3.5. The multi-valued weak contraction cannot have the approximate
endpoint property, even in the usual metric space, for instance, see the Example
2.3 of [1].

4. Endpoint Theory for the Metric Space of Module

Note that a metric space of module is a special metric space of group. As appli-

cations of the results proved above, this section discusses the endpoint theory for
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the metric space of module. We always assume (X,d) is a metric space of
module Gin this section.

By regarding a(x,y)d(X,y) as @(X,y), we can easily derive the next
Theorem 4.1 from Theorem 3.1 and Theorem 3.3.

Theorem 4.1. Let (X,d) be complete, T:X — (2X —@) be a mul-
ti-valued mapping. Let also a: X xX —[0,1)(={reR:0<r<1}) be a map-
ping, which satisfles. for any two sequences {X,} and {y,} of X with
[1—a(xn, A )]d (X0, Yn) > @, there is an a €[0,1) such that a(X,,y,)<a
for all neN, as well as (l—a) has multiplicative inverse (1—05)7l and
(1- oz)f1 > 0. Then we have the following two conclusions.

1) Suppose for all different X,y e X , VX' eTx, there exists YeTy such
that d(X',¥) =2 a(x y)d(x,y). Then T has a unique endpoint if and only if T
has the approximate endpoint property.

2) Let (X,d) be regular. Suppose for all different X,ye X , we have
d(x,y)=2a(xy)d(xy), VX' eTx,Vy eTy. Then T has a unique endpoint.

Proof. Let ¢(x,y)=a(X,y)d(x,y). Then ¢:XxX =G, is a mapping.
Since a(X,y)<1, by (m2), see the 3) of remark 2.2, we have ¢ (X, y)=a(x,y)
d(x,y)<d(x,y) for all d(x,y)>6 . We prove the statement that if
d (X, Y )—@(X, Yy) = 6, then d(x,,y,)—>6 below.

Let {x,} and {y,} betwo sequences of X. Then

d (%, ¥2) =0 (% Yo ) =[1- (%, ¥,) Jd (%, ¥n)
So,if d(x,,Y,)—@(X,,y,)—> 6, then
[1-a (%, ¥,)]d (X, Y,) > 6. (4.1)

Hence there exists an « €[0,1) such that «(x,,y,)<a,VneN. By (gl),
this further leads to (1—a)$[1—a(xn,yn)]. Since also d(x,,y,)=86, by

(m2)', we have
(1-a)d (%, ¥,) = [1-a (%, ¥0)]d (%, Y, ), Vn e N. (4.2)

In terms of (4.1) and (4.2), we obtain (1-«a)d(x,,y,)—> 6. For a<1, we
have 1-a>0.Let ¢ 6. By (t6), we have (1-a)e&>> 6. Hence, there exists
a natural N such that (1-a)d(x,,y,)<(l-a)e for all n>N . For
(1—0:)71 >0, from (t6), we obtain also d(x,,y,)< & forall n>N . This im-
plies d(x,,y,)—>0.

For conclusion 1), by ¢(x,y)=a(x,y)d(x,y)<d(x,y) foral d(xy)>o
and the statement proved above, it is obvious that 7'is a multi-valued weak con-
traction on the space (X,d) and satisfies C-condition. Hence we can imme-
diately know that the conclusion is true from Theorem 3.1. For conclusion 2), T'
is clearly a global multi-valued weak contraction and satisfies C-condition. Note
that (X,d) is regular. We can immediately know that the conclusion is true
from Theorem 3.3. This completes the proof. [

Replacing, in Theorem 4.1, a(X,y) by a, we directly obtain the following
Corollary 4.2.
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Corollary 4.2. Let (X,d) be complete, T:X — (ZX —@) be a mul-
ti-valued mapping. Let also o €[0,1) with (1—0{)_1 and (1—0:)_1 >0. 1)
Suppose T satisties for all difterent X,y € X , VX' eTx, there exists §eTy
such that d(x',y) =< ad(x,y). Then T has a unique endpoint if and only if T
has the approximate endpoint property. 2) Let (X,d) be regular. Suppose T
satisfies for all different x,ye X , d(X,y')=Zad(X,y) VX eTx,Vy' eTy .
Then T has a unique endpoint.

Proof. Let a(x,y)=c« . And then applying Theorem 4.1, we obtain the Co-
rollary instantly. [J

Finally, in the 2) of Corollary 4.2, replacing also multi-valued mapping by sin-
gle-valued mapping, we obtain Corollary 4.3 below.

Corollary 4.3. Let (X,d) be complete and regular, T:X — X be a sin-
gle-valued mapping, o <[0,1) with (1—0{)71 and (1—05)7l >0. Suppose T
satisfies for all different x,y e X, d(Tx,Ty)=<ad(X,y). Then T has a unique
fixed point.

Remark 4.4. In particular, when (X,d) is the usual complete metric space,

Corollary 4.3 is just the famous Banach fixed point theorem.
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