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Abstract 

In 1958, Baker posed the question that if f  and g  are two permutable 
transcendental entire functions, must their Julia sets be the same? In order to 
study this problem of permutable transcendental entire functions, by the 
properties of permutable transcendental entire functions, we prove that if f
and g  are permutable transcendental entire functions, then 

( )( ) ( )( )mes J f mes J g= . Moreover, we give some results about the zero 

measure of the Julia sets of the permutable transcendental entire functions 
family. 
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1. Introduction 

Let f  be a transcendental entire function. We write 1f f= , and 1n nf f f −=  , 
2n ≥  for the nth iterates of f . The Fatou set ( )F f  of f  consists of all z in 

the complex plane   that has a neighborhood U such that the family 

{ }| : 1nf U n ≥  is a normal family. The Julia set ( )J f  of f  is defined by 
( ) ( )\J f F f=  . The Julia set ( )J f  can be characterized as the closure of 

the repelling periodic points of f  [1]. The set ( )J f  and ( )F f  are com-
pletely invariant of f . For fundamental results in the iteration theory of ration-
al and entire functions, we refer to the original papers of Fatou [2] [3] [4] [5] 
and Julia [6] and the books of Beardon [7], Carleson and Gamelin [8], Milnor 
[9], Ren [10], Zheng [11], and Qiao [12]. 

Two functions ( )f z  and ( )g z  are called permutable if  
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( )( ) ( )( ) ( ) ( )  i.e. f g z g f z f g z g f z= =   

holds for all values of z. In 1922-23, Julia [13] and Fatou [4] independently 
proved that rational functions f  and g  of degree at least 2 such that f  and 
g  are permutable, then ( ) ( )J f J g= . It is natural to consider the following 
open problem which was first posed in [14] by Baker. 

Problem Let f  and g  be nonlinear entire functions. If f  and g  are 
permutable, is ( ) ( )J f J g= ? 

In [14], Baker proved the following result: 
Theorem A (Baker [14]) Suppose that f  and g  are transcendental entire 

functions such that ( ) ( )g z af z b= + , where a and b are complex numbers. If 
g  permute with f , then ( ) ( )J f J g= . 

Langley [15] showed that if f  and g  are permutable functions of finite 
order with no wandering domains, then ( ) ( )J f J g= . 

Theorem B (Langley [15]) Suppose that f  and g  are permutable tran-
scendental entire functions. If both f  and g  have no wandering domains, then 

( ) ( )J f J g= . 
At the same time, Bergweiler and Hinkkanen [16] introduced the so-called 

fast escaping set  

( ) ( ) ( ){ }: : , , ,−= ∈ ∃ ∈ > > n n LA f z L N f z M R f n L   

and used it to prove a result that includes the following. 
Theorem C (Bergweiler and Hinkkanen [16]) If f  and g  are permutable 

transcendental entire functions such that ( ) ( )A f J f⊂  and ( ) ( )A g J g⊂ , 
then ( ) ( )J f J g= . In particular, this holds if f  and g  have no wandering 
domains. 

For a long time, there have been many results about the problem of permuta-
ble transcendental entire functions, see [17]-[23]. However, until now, the prob-
lem has not been completely solved. In order to study the problem of permuta-
ble transcendental entire functions, by the properties of permutable transcen-
dental entire functions, we prove that if f  and g  are permutable entire func-
tions, then ( )( ) ( )( )mes J f mes J g= . Moreover, we give some results about the 
zero measure of the Julia sets of the permutable transcendental entire functions 
family. 

2. Main Results 

Write mesE  for the plane Lebesgue measure of a set E. Recently, various au-
thors have studied the Lebesgue measure of Julia sets. Results on Julia sets of 
positive Lebesgue measures are treated in [24] [25] [26] [27]. Julia sets of Lebes-
gue measure zero are given in [28]. We consider the Lebesgue measure of the 
permutable transcendental entire functions and give some results about the zero 
measure of the Julia sets of the permutable transcendental entire functions fami-
ly. Firstly we prove the following result. 
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Theorem 1. If f  and g  are permutable transcendental entire functions, 
then  

( )( ) ( )( ).mes J f mes J g=  

Let 1 2, , , Mf f f  be entire functions. Put { }1 2, , , Mf f f=  , and  

( ) { }{ }1 2, , , , | 1, 2, , , 1, 2, , , .M n ij j j j M i nΣ = ∈ =      

For ( )1 2, , , ,n Mj j jσ = ∈Σ  , we define ( ){ }
1

n

n
W zσ

∞

=
 as following 

( ) ( )
1

1 ,jW z f zσ =  

( ) ( )
2 1

2 , j jW z f f zσ =   

,
 

( ) ( )
1 1

,
n n

n
j j jW z f f f zσ −

=    

.  

We also define the inverse of ( ){ }
1

n

n
W zσ

∞

=
 as following:  

( ) ( ) ( ) ( )
1 2

1 1 1 1 , for .
n

n n
j j jW z W z f f f z nσ σ

−− − − −= = ∈    

A point z∈  is said to be a normal point of  . If there exists a neighbor-
hood U of z such that ( ){ }nW zσ  is a normal family on U for each Mσ ∈Σ . The 
set of normal points is called the Fatou set of  , denoted by ( )F  , and its 
complement in  , denoted by ( )J  , is called the Julia set of  . The Fatou 
set ( )F   is open and forward invariant and Julia set ( )J   is closed and 
backward invariant. More information about the random dynamical system can 
be found in [10] [29] [30]. 

In this paper, we study the random dynamics of entire functions family of 
which the orbits of singularity stay away from the Julia set. Let  

{ }1: some branch of   has a singularity at ,   1, 2, , ,i iS z f z i M−= =   

and ( )
1

∞

=

=


j
i i i

j
P f S . If 0 0δ > , put  

( )( ){ }0entire function , , ,   1, 2, , .i i i iC f d P J f i Mδ= > =   

McMullen [31] proved the following theorem. 
Theorem D (McMullen [31]) If if C∈ , then for ( )z J f∈  we have  

( ) ( ) , as .nf z n′ → ∞ →∞  

Let 
0 1M

M
n

i
n i

P W Pσ
σ∈Σ > =

 
=  

 
  

 and  

( )( ){ }0entire function family , , 0 .C d P J C= > >   

We prove the following result. 

Theorem 2. If if C∈ ∈ , ( )
1

M

i
i

z J f
=

∈


, then for any Mσ ∈Σ ,  
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( ) ( )nW zσ
′ → ∞ , as →∞n . 

McMullen [31] gave the following notion. A plane set E is called thin at ∞ , if 
its density is bounded away from 1 in all sufficiently large discs, that is, if there 
exist positive R and ε  such that all complex z and every discs ( ),D z r  of cen-
ter z and radius r R> . 

( )( ) ( )( )
( )( )

,
, , 1 .

,
mes E D z r

dens E D z r
mes D z r

ε
∩

= < −  

In [31], McMullen proved the following result. 
Theorem E (McMullen [31]) If if C∈ , E is a measurable completely inva-

riant subset of ( )J f  such that E is thin at ∞ , then 0mesE = . 
We consider the entire function family in C, and show the following results. 
Theorem 3. If if C∈ ∈ , E is a measurable completely invariant set of 

, 1, 2, ,if i M=  , and ( )
1

M

i
i

E J f
=

⊂


 such that E is thin at ∞ , then 0mesE = . 

For the permutable transcendental entire functions family, we prove the fol-
lowing result.  

Theorem 4. If if C∈ ∈ ,  i j j if f f f=  , for { }, 1, 2, ,i j M∈   and exits 
{ }1,2, ,i M∈   such that ( )( ) 0imes J f = , then ( )( ) 0jmes J f = , for any 
{ }1,2, ,j M∈  . 

Remark. By using theorem 1, we can remove the special condition of the 
transcendental entire functions family in theorem 4. Let   be a permutable 
transcendental entire functions family and exits a { }1,2, ,i M∈   such that  

( )( ) 0imes J f = , then ( )( ) 0jmes J f = , for any { }1,2, ,j M∈  .  

3. Proofs of Theorems 1, 2, 3 and 4 

The following well-known result is needed in the proof of theorems (see [32] 
Lemma 4.1). 

Lemma 1 (Baker [32]) If f  and g  are permutable transcendental entire 
functions, then  

( )( ) ( ).g J f J f⊂  

3.1. Proof of Theorem 1 

Since ,f g  are permutable transcendental entire functions, Lemma 1 imply that 
( )( ) ( )f J g J g⊂ , and hence that ( ) ( )( )1J g f J g−⊂ . By the complete inva-

riance of ( )J g  we have  

( )( ) ( ) ( )( )1 1 .g J g J g f J g− −⊂ ⊂                 (1) 

So  

( )( )( ) ( )( ) ( )( )( )1 1 .mes g J g mes J g mes f J g− −≤ ≤          (2) 

Similarly we have  
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( )( ) ( ) ( ) ( )( )1, ,g J f J f J f g J f−⊂ ⊂  

then 

( )( ) ( ) ( )( )1 1 .f J f J f g J f− −⊂ ⊂                 (3) 

So 

( )( )( ) ( )( ) ( )( )( )1 1mes f J f mes J f mes g J f− −≤ ≤          (4) 

If ( )( ) ( )( )mes J f mes J g< , we have a contradiction with (1) and (2);  
If ( )( ) ( )( )mes J f mes J g> , we have a contradiction with (3) and (4). 
So ( )( ) ( )( )mes J f mes J g= .  

3.2. Proof of Theorem 2 

Since C∈ , hence  

( )( ) 0, 0.id P J C> >  

Since  

( ) ( )
1

,
M

i
i

J f J
=

⊂


  

then  

( )( ) 0, 0.i id P J f C> >  

so if  have uniform expansion, that is, for all { }1,2, ,i M∈  , exist a number 

α  such that ( ) ( ) 1if z α′ > > , where ( )iz J f∈ . Since ( )
1

M

i
i

z J f
=

∈


, for any 

Mσ ∈Σ ,  

( ) ( ) ( )( )
1 2 1

1
,

i i i

n
n n

j j j j
i

W z f f f f zσ α
− −

=

′ ′= >∏    

( ) ( ) , as .nW z nσ
′ → ∞ →∞  

3.3. Proof of Theorem 3 

If ( )iE J f⊂ , for some { }1,2, ,i M∈  , by the theorem E, we have 
( ) 0mes E = . 

If ( )iE J f , for any { }1,2, ,i M∈  , put ( ){ }:i iE z z J f E= ∈ ∩ . If iz E∈ , 
then ( )iz J f∈  and z E∈ . By the completely invariant of ( )iJ f  and E, we 
have ( ) ( )i if z J f∈  and ( )if z E∈ , so that, ( ) ( )i if z J f E∈ ∩ . By the defini-
tion of iE , ( )i if z E∈ , then ( )i i if E E⊂ . On the other hand, by the definition 
of iE  and E, ( )iJ f  are completely invariant sets, then 

( ) ( )( ) ( )( ) ( )1 1 1 ,i i i i i i if E f J f E f J f J f− − −= ∩ ⊂ ⊂  

So ( ) ( )1
i i if E J f− ⊂ . Similarly 

( ) ( )( ) ( )1 1 1 ,i i i i if E f J f E f E E− − −= ∩ ⊂ ⊂  
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So ( )1
i if E E− ⊂ . Thus  

( ) ( )1 .i i i if E J f E E− ⊂ ∩ =  

So ( )1
i i if E E− ⊂ , iE  are all completely invariant sets of if . Since E is thin 

at ∞ , then iE  is thin at ∞ . By theorem E and ( )i iE J f⊂  we have  
( ) 0imes E = . 

Since 

( )
1

,
M

i
i

E J f
=

⊂


 

and  

( ){ }: ,i iE z z J f E= ∈ ∩  

so  

1
,

M

i
i

E E
=

=


 

( ) ( )
1

0.
M

i
i

mes E mes E
=

≤ =∑  

Therefore 

( ) 0.mes E =  

3.4. Proof of Theorem 4  

If ( )jJ f  is not thin at ∞ , then from the definition of E is thin at ∞ , for any 
0R >  and 0ε > , exists z∈  and r R> , such that  

( ) ( )( )
( )( )

,
1 .

,
jmes J f D z r

mes D z r
ε

∩
≥ −  

So that  

( ) ( )( ) ( )( )( )
( ) ( )2 2

, , 1

1 1  , .

jmes J f D z r mes D z r

r R R

ε

π ε π ε

∩ ≥ −

= − > − →∞ →∞
 

Then  

( ) ( )( ),  , ,imes J f D z r R∩ →∞ →∞  

( )( ) , .jmes J f R→∞ →∞  

Since for any { } , 1, 2, ,i j M∈  ,  

,i j j if f f f=   

by Lemma 1,  

( )( ) ( ) ,i j jf J f J f⊂  

hence  

( ) ( )( )1 ,j i jJ f f J f−⊂                     (5) 
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and  

( )( ) ( ) ( )( )1 1
j j j i jf J f J f f J f− −⊂ ⊂                 (6) 

(5) and (6) contradiction with ( )( ) 0imes J f =  and ( )( )jmes J f = ∞ , so 

( )jJ f  is thin at ∞ . By Theorem 3, we have ( )( ) 0jmes J f = . 
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