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Abstract 
Fisher-Tippet-Gnedenko classical theory shows that the normalized maxi-
mum of n iid random variables with distribution F belonging to a very wide 
class of functions, converges in law to an extremal distribution H, that is de-
termined by the tail of F. Extensions of this theory from the iid case to statio-
nary and weak dependent sequences are well known from the work of Lead-
better, Lindgreen and Rootzén. In this paper, we present a very simple class of 
random processes that runs from iid sequences to non-stationary and strong-
ly dependent processes, and we study the asymptotic behavior of its norma-
lized maximum. More interesting, we show that when the process is strongly 
dependent, the asymptotic distribution is no longer an extremal one, but a 
mixture of extremal distributions. We present very simple theoretical and si-
mulated examples of this result. This provides a simple framework to asymp-
totic approximations of extremes values not covered by classical extremal 
theory and its well-known extensions. 
 

Keywords 
Extreme Events, Strongly Dependent Data, Fisher-Tippet-Gnedenko Theory 

 

1. Introduction 

The statistical analysis of extreme values has a wide and vast domain of applica-
tions on many disciplines. Extreme wind speeds are a key input for design in 
Structural Engineering. Maximum levels of traffic are crucial for design and op-
eration in Telecommunications Networks. Maximum tides are essential for any 
policy concerning coast resources management. Extreme events on chemical, 
physical or biological conditions may affect dramatically very sensitive ecosys-
tems, etc. [1]-[8]. 
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The classical Fisher-Tippet-Gnedenko theory determines the asymptotic be-
havior of the maximum of a sample of size n of an iid sequence of random va-
riables, showing that, for n tending to infinity, the distribution limit may be de-
generated, and in any other case, it must be an extremal distribution [9] [10]. 

Since three decades ago, we know that classical theory applies to a stationary 
and weakly dependent sequence of random variables, thanks to the work of 
Leadbetter, Lindgreen and Rootzén [11]-[17]. 

However, in many real examples, a very big collection of maximal registers of 
a large series of measurements, does not fit to any extremal distribution. This is 
often associated to phenomena where the observed system may assume different 
states that produce drastical changes and that may introduce strong dependence 
on data. Think, for instance, of the classical series of data of the Nile River with its 
very ancient regimen of annual floods, and other large series of hydrological data, 
in particular those related to the impact of climate change [18] [19] [20]. 

At a theoretical level, we will apply in the extremal context a method that has 
been used for different purposes for non-stationary and strongly dependent data, 
where a random covariable indicates the state of the system, and the global be-
havior may be represented by a mixture of models. For instance, that is the case 
of Compound-Poisson approximation of High-Level Exceedances of time series 
[21], asymptotic of averages [22], and Nadaraya-Watson regression for func-
tional data [23]. 

In this paper, we will consider data that depend of two independent compo-
nents: on one hand, a categorical covariable process that describes the state of 
the system, that may be neither stationary nor weakly dependent, and that only 
satisfies that the mean frequency of each state has a (possibly random) limit, 
and, on the other hand, an iid noise. We will assume that for a given state j on 
the covariable, the maximal asymptotic distribution is non-degenerated and de-
pends on j. In the main result of the paper, we will show that if the covariable 
process is stationary and weak-dependent, the maximal asymptotic distribution 
of our data is still an extremal distribution, consistently with Leadbetter, Lindgreen 
and Rootzén results. But we will also show that if this covariable process has a 
strong dependence structure, then this maximal asymptotic distribution is no 
longer an extremal one, but a mixture of extremal distributions. 

The paper is organized as follows: we begin in Section 2 with a very brief sum-
mary of classical Fisher-Tippet-Gnedenko theory, in particular the characteriza-
tion of the Maximal Domains of Attraction of extremal distributions and an ele-
mentary Lemma that we will use later. We then present in Section 3 our model, its 
hypotheses, some examples and the main result. In Section 4, we will fit some si-
mulated strongly dependent data to a mixture of extremal distributions, showing 
that they do not fit extremal distributions. In particular, we will show the impact 
on return times of misfitting data to a single extremal distribution. Finally in Sec-
tion 5, we present the conclusions and some further work in progress. 

Therefore, what we provide here is a statistical method that is a step towards a 
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proper extremal values analysis for: 1) data that are suspected to be strongly de-
pendent; 2) data of unknown dependence structure whose extremes do not fit to 
classical extremal distributions. 

2. Brief Review of Classical Extreme Values Theory 

The classical Fisher-Tippet-Gnedenko theory states that a distribution F belongs 
to the Maximal Domain of Attraction of an extremal distribution (Weibull, 
Gumbel, Fréchet) H if there exists an iid sequence 1, , ,nX X   of random va-
riables with distribution F such that for some deterministic sequences nd  and 

0nc > , we have that 

( )1max , , n n w

n
n

X X d
H

c
−

→


                  (1) 

Recall that 

( ){ } ( ) ( ){ }1sup : 1 , inf :FM t R F t F p x R F x p−= ∈ < = ∈ ≥  ( )0,1p∀ ∈ . 

Then the three Maximal Domains of Attraction (MDA) are fully described as 
follows. 

1) Fréchet of order α: F belongs to the ( )MDA αΦ , where ( ) { }expx x α
α

−Φ = −  

0x∀ >  and 0α >  is called the order parameter, if and only if, FM = +∞  and 

for x tending to infinity, ( ) ( )
1

L x
F x

xα
− =  for some slowly varying function L. 

In that case, in (1), the deterministic sequences are 0nd = , 1
nc n α= . 

2) Weibull of order α: F belongs to the ( )MDA αΨ , where  

( ) ( ){ }expx x α
αΨ = − −  0x∀ < , if and only if FM < ∞  and for x tending to 

FM − , ( ) ( ) 11 F
F

F x M x L
M x

α  
− = −  − 

 with L a slowly varying function. In 

this case n Fd M=  and 
1

nc n α
−

= . 

3) Gumbel: F belongs to the ( )MDA Λ , where ( ) { }exp e xx −Λ = −  x R∀ ∈ , 
if and only if there exist an Fa M<  (which may be finite or infinite), some 
c o>  and a positive function h, with density h′ , such that ( )lim 0

Fx M
h x−→
′ =   

and, for x tending to FM − , ( )1 F x−  is equivalent to c 
( )
1exp d

x

a
t

h t
  − 
  
∫ , and 

( )1 1 1nd F n−= − , ( )n nc h d= . 

3. Main Result 

We will use the following elementary result, whose proof follows from simple 
analytical computations based on the characterizations of the involved sequences 
given in the previous section [24]. 

Lemma 1: If we denote by ( )nc αΦ , ( )nc αΨ , ( )nd αΨ , ( )nc Λ , ( )nd Λ , 
the deterministic sequences corresponding to each MDA, we then have: 

https://doi.org/10.4236/apm.2022.128036


C. Crisci, G. Perera 
 

 

DOI: 10.4236/apm.2022.128036 482 Advances in Pure Mathematics 
 

i) If 1 2α α<  
( )
( )

2

1

n

n

c

c
α

α

Φ

Φ
 n  0, and 0α∀ >  

( )
( )1

n

n

c

c
α

α

Ψ

Φ
 n  0, ( )

( )
n

n

c
c α

Λ
Φ

 n  0. 

ii) 0α∀ > , 
( )
( )

n

n

c
c

αΨ

Λ
 n  0. 

iii) If 1 2α α< , 
( )
( )

1

2

n

n

c

c
α

α

Φ

Φ
 n  0. 

We will assume that the process Y satisfies: 
(H1) For any state 1, ,j k=  , there exists a (possibly random) 0jb >  such 

that 

{ }
1

1lim 1
N

n i j
i

jY b
n→∞ =

=

=∑  a.s. 

If ( ) { }:iI t Y i tσ= ≥ , and ( ) ( )1t
I I t∞

>
∞ =


, then, since for any j, jb  is 
( )I ∞ -measurable, if ( )I ∞  is trivial, 1, , kb b  are deterministic, but, if 
( )I ∞  is not trivial, for some j jb  may be non-deterministic, corresponding to 

strong dependence on the process Y. Let us show this in a very simple case. 
Example 1: 
Let U be a random variable such that ( )1P U p= = , ( )2 1P U p= = − . Let 

1, , nσ σ , ...an iid sequence of random variables on { }1,2  independent of U 
such that ( )( )1 1iP σ δ= = , ( )( )1 2 1iP σ δ= = − , ( )( )2 1iP σ η= = ,  

( )( )2 2 1iP σ η= = − , with ( )1iσ , ( )2iσ  independent for any i, 0 1δ< < , 
0 1η< < . 

Set ( )i iY Uσ= . 

Thus, { }1

1 1 1 1n
ii Y U

n =
= =∑  has the same distribution as  

( ){ }1

1 1 1 1n
iin

σ
=

=∑  . .a s

n
→  ( )( )1 1iP σ δ= =  (by the Strong Law of Large 

Numbers). 

On the other hand ( ){ }1

1 1 1 1 2n
ii Y U

n =
= =∑  has the same distribution as 

( ){ }1

1 1 2 1n
iin

σ
=

=∑  . .a s

n
→  ( )( )2 1iP σ η= = . 

Therefore if we assume that δ η≠ , we have that 1

if 1
if 2

U
b

U
δ
η

=
=  =

 

Hence, 1b  is not-deterministic and ( )I ∞  is not trivial. Similar treatment 
applies to 2b . 

Indeed, for the sake of simplicity, we will assume: 
(H2) for any j, jb  may only assume a finite number of values. 
Our data will be of the form: 

( ),i i iX f Yε=                          (2) 

where f is unknown, and we will assume: 
(H3) The three following conditions are fulfilled. 
(i) 1, , ,nε ε   iid 
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(ii) 1, , ,nY Y   satisfies (H1) and (H2) 
(iii) The processes 1, , ,nε ε   and 1, , ,nY Y   are independent. 
Finally, we will assume that the state of the system is observable, and it affects 

the extremal behavior of our data. For instance, X may be a measure of tide ex-
ceedence of a baseline on a given coast, which depends on the type of wind af-
fecting the area, that may be classified into a finite number of categories. Given 
the category of wind, the extreme tides behave in a significant different manner. 
Then, Y determines the type of wind on the coast, that may be observed from 
aerodynamical registers. In addition, X also depends on a series of random ef-
fects that may be considered as a white noise. 

More precisely, we shall assume: 
(H4) There exist an integer ,1f f k< <  and an integer ,1g g< , f g k+ <  

such that 
a) For 1, ,j f=   the iid process ( ) ( )1, , , , ,nf j f jε ε   belongs to 

( )MDA
jαΦ , where 10 fα α< < <  

b) For 1, ,j f f g= + +  the iid process ( ) ( )1, , , , ,nf j f jε ε   belongs 
to ( )MDA Λ  

c) For 1, ,j f g k= + +  , the iid process ( ) ( )1, , , , ,nf j f jε ε   belongs 
to ( )MDA

jαΨ , with 10 f g kα α+ +< < <  
Then we have our main result 
Theorem 1: 
Under (H3) there exists a random variable Z such that 

( )
1

1
1

max , , n w

n

X X
Z

n α →


 

In addition 

a) If ( )I ∞  is trivial, then the distribution of Z is ( )
1 11

1
z

xF x
bα α

 
= Φ  

 
. 

b) If ( )I ∞  is not trivial and 1b  assumes the values 1, , rv v  with probabil-

ities 1, , rp p , then the distribution of Z is ( )
1 111

r
z ii

i

xF x p
vα α=

 
= Φ  

 
∑  (Mix-

ture of Fréchet distributions). 
Proof: 
Let us consider a fixed real x and set { }1, ,S k ∞=   the space of sequences 

taking values in 1, ,k  

Consider ( ) ( )
1

1
1 1 11

max , ,
, , / , ,n

n n n n

X X
g j j P x Y j Y j

n α

 
= ≤ = =  

 



   for 

any 1, , nj j  in 1, , k . 

Therefore, 

( ) ( ) ( )
1

1
1 11

max , ,
, , d , , ,n

n n nS

X X
P x g j j PY j j

n α

 
≤ =  

 
∫



         (3) 

Re-ordering the maximum according to the state j taken by each iY , we get 
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( )
{ } { }{ }

{ } { }{ }

1

1

1 1
1 1

1 1
1 11

max 1 1 , , 1 1
, , max , ,

max 1 , , 1
/ , ,

n n
n n

n n
n n

X Y X Y
g j j P

n

X Y k X Y k
x Y j Y j

n

α

α

  = ==  
= =  ≤ = =  



 





     (4) 

Among the blocks of maximum values taken with Y fixed on a given state, the 
MDA is different, and taking into account Lemma 1, and (H4), all the blocks in 
(4) after the first, tends in probability to zero, and therefore, the limit as n tends 
to infinity of (4) is the same as the limit, for n tending to infinity of 

( ) ( ){ }1

1

1
1 1

max ,1 , , ,1
/ , ,

N
n n

f f
P x Y j Y j

nα

ε ε 
 ≤ = =
 
 



         (5) 

where { }1 11 1n
iiN Y

=
= =∑  (a random variable). 

Then, the limit as n tends to infinity, of (3) is the same as the limit, for n 
tending to infinity of 

( ) ( ){ }
( )1 1

1 1 1 1

max ,1 , , ,1
/ , , d , , ,

i N Y
n n nS

f f
P x Y j Y j P j j

nα

ε ε 
 ≤ = =
 
 

∫


    (6) 

Using that 1, , nε ε  are iid, and taking into account (5) and (6), the limit of 
(3) for n tending to infinity, is the same as 

( ) ( ){ }
( )1

1

1
1 1 11

max ,1 , , ,1
lim / , , d , , ,

N Y
n n nSn

f f
P x Y j Y j P j j

n α

ε ε 
 ≤ = =
 
 

∫


   (7) 

Since { } . .1
11

1 1 1n a s
ii n

N Y b
n n =

= = →∑ , and by Dominated Convergence Theo-

rem, the limit in (7) equals 

( ) ( ){ }
( )

( )1 1
1

1 1 1
10

max ,1 , , ,1
lim d b

n

f f un
P u x P u

un
α

α

ε 
 ≤
 
 

∫


         (8) 

By Fisher-Tippet-Gnedenko theorem and (H4) 

( ) ( ){ }
( ) 11

1
1

max ,1 , , ,1 w

n

f f un

un
αα

ε
→Φ



 ( )0,1u∀ ∈           (9) 

and therefore, if ( )I ∞  is trivial, 1b  is deterministic and (8) equals to 

( )11
1P b Xα Γ ≤ , with 

1
~ αΓ Φ  and part a) of Theorem 1 follows. 

On the other hand, if 1b  is random, using (H2), part b) of Theorem 1 follows 
◊  

Remark 1: 
It is clear that (H2) may be removed, leading in (b) to an integral with respect 

to the distribution of 1b  instead of a sum. 
Remark 2: 
It is easy to obtain a similar result with Gumbel or Gumbel mixtures, if we 

modify (H4) removing part a) (taking 0f = ), and with Weibull or Weibull 
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mixtures if we remove parts a) and b) (taking 0f g= = ). 
Example 2: 
Following the ideas of Example 1, consider ( ) ( )1 , 2σ σ  independent, such 

that ( )( )1 1P σ δ= = , ( )( )1 2 1P σ δ= = − , ( )( )2 1P σ η= = ,  
( )( )2 2 1P σ η= = − , 0 1δ< < , 0 1η< <  and δ η≠ . 

Taking ( ) ( )( ) ( ) ( )( )1 11 , 2 , , 1 , 2 ,n nσ σ σ σ   a sequence of independent 
copies of ( ) ( )( )1 , 2σ σ  it turns out that if U is a fixed random variable such 
that ( )1P U p= = , ( )2 1P U p= = − , 0 1p< < , then if ( )i iY Uσ= , we have 
that 1, , ,nY Y   fulfills (H1),(H2) with 1 2,b b  random variables such that 

1

if 1
if 2

U
b

U
δ
η

=
=  =  

and 

2

1 if 1
1 if 2

U
b

U
δ
η

− =
=  − =  

Thus, if we assume 1 20 α α< <  and consider two independent sequences 
( ) ( ) ( )1 1 1

1 , , , , ~nV V iid F  , ( ) ( ) ( )2 2 2
1 ,..., , , ~nV V iid F , ( ) ( )MDA

i

iF α∈ Φ , 
1,2i =  and we set: 

a) If ( ) ( )11,i i iU X Vσ = =  
b) If ( ) ( )22,i i iU X Vσ = =  

then, by Example 1 and part b) of Theorem 1, 
( )

1

1
1

max , , n w

n

X X
MF

n α →


, with 

( ) ( )
( )1 11 11 11
1

x xMF x p pα αα αδ δ

    = Φ + − Φ     − 
 0x∀ > , a mixture of Fréchet 

distributions of order 1α . 

Figure 1 shows the difference between a Fréchet model with 1 1α =  (F1) and 
a mixture with the same 1α  (MF1), 0.25p =  and 0.20δ =  

It is clear that the tail of MF1 even for moderate values like 5, is smaller than 
the tail of F1, which means that the F1 leads to wrong pessimistic predictions for 
high levels. Indeed in Table 1, we present return times of MF1 and F1 for a se-
ries of levels, where the wrong pessimist results of F1 are very clear. 

 

 
Figure 1. Fréchet model with 1 1α =  (F1) and a mixture with the same 1α  (MF1), 

0.25p =  and 0.20δ = . 
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Table 1. Return times for Fréchet and Mixture models. 

Level F1 MF1 

50 50.50 77.50 

100 100.50 154.43 

500 500.50 769.81 

1000 1000.50 1539.04 

10000 10000.50 15385.20 

4. Application to Simulated Data 

We will now simulate data leading to the mixture model of the preceding exam-
ple, and see if data fits only to the mixture model. 

If we consider a distribution function of the form: 

( )( )

( )
11

1
F x

x
α

α= −
+

 0x∀ >                  (10) 

then ( )( )

( )
( )1 11

1
F x L x

xx
α

α α− = =
+

, with ( )
1

xL x
x

α
 =  + 

 which is a slowly 

varying function and therefore ( ) ( )MDAF α
α∈ Φ . 

Its inverse function is 

( ) ( )
( )

1
1

1 1
1

F y
y

α
α

− = −
−

 ( )0,1y∀ ∈                (11) 

Consider ( ) ( )( )1 , 2σ σ  a random variable such that ( ) ( )1 , 2σ σ  are inde-

pendent and ( )( )1 1P σ δ= = , ( )( )1 2 1P σ δ= = − , ( )( )2 1P σ η= = , 

( )( )2 2 1P σ η= = − , with 0 1δ< < , 0 1η< < , δ η≠ . 

We shall take 0.20δ =  and 0.80η = . 
Consider 600n = , 200N =  and ( ) ( )( ), ,1 , 2i j i jσ σ  (with 1 i N≤ ≤  and 

1 j n≤ ≤ ) a matrix of independent copies of ( ) ( )( )1 , 2σ σ . As seen in Example 
1, if for each ,i j  we define ( ), ,i j i j jY Uσ= , where 1, , NU U  iid such that 
( )1jP U p= = , ( )2 1jP U p= = −  (we will take 0.25p = ), then, for each fixed 

i, ,1 ,, ,i i nY Y  is a sample of a process that fulfills (H1) and (H2). 
We consider now two independent iid matrices ( )1

,i jε  (with 1 i N≤ ≤  and 
1 j n≤ ≤ ) and ( )2

,i jε  (with 1 i N≤ ≤  and 1 j n≤ ≤ ) such that ( ) ( )1 1
, ~i j Fε  (the 

distribution of (10) for 1α = ), ( ) ( )2 2
, ~i j Fε  (the distribution of (10) for 2α = ), 

and we finally set for each 1, ,i N=  , 
( )

( )

1
, ,

, 2
, ,

if 1

if 2
i j i j

i j

i j i j

Y
X

Y

ε

ε

 == 
=  

Hence, for each i, ,1 ,, ,i i nX X  is a sample where Theorem 1 applies, and 

therefore, 
{ },1 ,

,

max , ,i i n
n i

X X
M

n
=



 must be close to the distribution  
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( ) 1 11 0.25 0.75
0.2 0.8
x xMF x    = Φ + Φ   

   
. 

We will now compute the empirical cumulative distribution function (ecdf) of 

1, , NM M  and see if it fits better to MF1 or to a simple Fréchet model (F1). 
First, in Figure 2, we will display both models (MF1 and F1) and ecdf graphi-

cally, and afterwards, we will perform a Kolmogorov-Smirnov goodness of fit 
test (K-S test) to 1, , NM M  with respect to MF1 and F1. 

It can be seen that the ecdf is closer to the theoretical MF1 function. The K-S 
test support this result since H0 is retained with respect to MF1 (K-S test statistic 
= 0.088, critical value = 0.096 for a significance level of 0.05 and n = 200), while 
it is rejected with respect to F1 (K-S test statistic = 0.177). 

 

 
Figure 2. Theoretical cumulative distribution function of MF1 and F1, and ecdf of 1, , NM M . 

5. Discussion & Conclusions 

Our main interest is to provide theoretical results that guide practitioners trying 
to perform extremal analysis for data with complex dependence structure. 

This paper shows that when the maximum of a large sample does not fit to an 
extremal distribution, it may be due to a strong-dependent structure that may be 
solved by fitting data to a mixture of extremal distributions. 

Indeed, here we deal with the case when data depends on a covariable Y that 
may be strongly dependent, but which is observable. This is a reasonable as-
sumption in many cases. 

For future research, we also have to consider situations where Y may be hid-
den, and in a work in progress we are improving methods for estimation and fit-
ting of a mixture of extremal distributions in such cases. 

On the other hand, the very simple model used here to represent strong-
ly-dependent samples, may also be applied to other techniques used in statistical 
analysis of extreme values. In a work in progress, strongly dependent structures 
are considered for Peaks Over a Manifold (POM), an approach that includes 
classical Peaks Over Threshold (POT) technique as a particular case [25]. 
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