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Abstract 
Starting with the binomial coefficient and using its infinite product represen-
tation, the infinite product representation of the gamma function and of the 
zeta function are composed of an exponential and of a trigonometric compo-
nent and proved. It is proved, that all these components define imaginary 
roots on the critical line, if written in the form as they are in the functional 
equation of the zeta function. 
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1. Introduction 

The Riemann conjecture states that all complex roots of the zeta function are on 
the critical line, on the line parallel to the imaginary axis at real one half on the 
plane of the complex numbers, see [1]. 

One approach to proving this conjecture is to prove, that all these roots are in 
a narrowing band around the critical line. Otherwise: there are no roots outside 
the critical line, see [2]. The present paper takes the approach, that with Euler’s 
formula all roots of all components of the infinite product representing the zeta 
function are per definition on the critical line. This is because by shifting the 
critical line to the imaginary axis, all these roots are on this axis. 

This approach uses the functional equation of the zeta function, see [1]. Prov-
ing, that all other components of this equation—besides of the zeta function— 
written as infinite products define roots on the critical line, respectively on the 
imaginary axis, if the critical line is shifted to this axis. This proves involves the 
definition of the split trigonometric and split hyperbolic functions, especially of 
the split cosine function. 

Lemma 3.1 in [3] is multiple times referenced in the following. This lemma is 
a generalization of Euler’s formula defining for functions without real roots in 
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finite range like ( ( )cos σ ) imaginary roots on the imaginary axis:  
( ( )e e 2 cosh 0σ σ σ− + = ⋅ = ) defines imaginary roots for ( ( )2 cos i τ⋅ ⋅ ) at odd mul-
tiples of (π/2). 

Lemma 4.1 in [3] is as well referenced in the following. This lemma states, that 
defining complex roots for similar functions shifted to real ( 0σ = ), to the criti-
cal line, the imaginary components of the complex roots keep their values which 
they have on the imaginary axis before the shifting. 

This is because ( ( ) ( )0.5 0.50.5 0.5e e e e e 0σ σσ σ− − − −− − + = + ⋅ =  ) defines the same 
imaginary components on the symmetry axis—which is now the critical line—for 
( ( )0.50.5e e 0ii ττ − + ⋅+ ⋅ + = ), as demonstrated in Annex 4, Figure A8. 

Equation ( )0.50.5e e e 0 − −− + ⋅ = 
 

 may be written as 1e e −= − . In this 
form it is like the components of the functional equation of the zeta function, 
which let assume, that the functional equation defines roots for all its compo-
nents on the critical line. This is in fact the case and is proved subsequently. 

2. The Product Representation of the Gamma Function 

The exponential function may be written as a polynomial in the form of an infi-
nite product by the aid of the binomial coefficients. The binomial coefficients 
normed with their maximum and shifted to the origin give the normal distribu-
tion. It can be proved, that the normal distribution may be written with the fol-
lowing variables and parameters: 

( )
2

1
2,

2
nj n j

n
ζ  = − ⋅ 

 
; ( )

2

2
2,

2
nj n j

n
ζ  = − ⋅ 

 
; 1,2, ,j n=  ; 1,2, ,n = ∞  

(2.1) 

in the following form: 

( ) ( )
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  (2.2) 

The complete proof is not given in the present paper, only the formal identity 
is demonstrated in Annex 1. More details—with step-by-step evolution—are giv-
en in [3]. 

The definition of the gamma function from Gauss is: 

( ) ( )
( ) ( ) ( )
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Written for ( 1
2

 
 
 

, 1 x
2

 +
 
 

, 1 x
2

 −
 
 

) and shortened gives the following qu-

otients, both composed of an exponential part and of a trigonometric part of the 
relative gamma function: 
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( )( ) ( )( )2
2 2

0

1
2 lim 1

1 2 1
2

x n

exp trin j

xn n n
x j

ζ ζ
−

→∞ =

 Γ      = ⋅ − = Γ − ⋅Γ −  − ⋅ +    Γ 
 

∏   (2.5) 

Again, the step-by-step evolution of these equations is given in [3]. 
The product of these above quotients eliminates the exponential components, 

leaving the trigonometric components, which give the known relation for the co-
sines function: 
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     (2.6) 

Comparing (2.2) and (2.4) for (n) growing to infinity the roots converge to 
multiples of (π/2). Euler already stated this. All formula and equations down to 
this point are based on well-known identities formulated by Euler and Gauss. 
They correspond to high school level. Now something new follows: The applica-
tion of Euler’s identities to the split trigonometric functions. 

With (2.6) the trigonometric components of the relative gamma function are 
the split cosine functions. Because of the special properties of this function, it is 
rectified to use special names for them. As demonstrated in Annex 2, they have 
exponential as well as periodic properties, the names ( ( )nec σ ) and ( ( )pec σ ) 
will be used for them: 
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(2.7) 

As shown in Annex 2, the function ( ( )pec σ ) has roots at odd multiples of 
(π/2) on the positive side of the real axis. The function ( ( )nec σ ) has roots at the 
same values at the negative part of the real axis. They are mutually transposed. 
With lemma 3.1 in [3] their sum set equal to zero defines roots for their adjoint 
functions on the adjoint, on the imaginary axis. This in accordance with the re-
lations of Euler. 

The sine function is equal to the cosine function shifted by (π/2): 
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Similarly, to (2.7) the split sine functions are named as ( ( )nes σ ) and  
( ( )pes σ ): 
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With (4.10) in [3] the infinite product polynomials of the exponential func-
tions are: 
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with  
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⋅ +
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⋅
).                    (2.11) 

The relative gamma functions (2.6) may be written with the infinite products 
of the exponential functions above and with the split cosine functions from (2.7) 
as follows: 
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The relative gamma function is compared with its infinite polynomial product 
representation in Annex 3. 

The sum and the difference of the split cosine functions ( ( ),nec nσ ) and  
( ( ),pec nσ ) in (2.7) and the corresponding split sine functions (2.9) result the 
corresponding hyperbolic functions ( ( ),ecch nσ ) and ( ( ),ecsh nσ ). These func-
tions are equal to the cosine and sine hyperbolic functions with ( coshk )-fold ar-
guments. This factor is dependent on the number of the components (n) of the 
infinite products: 

( ) ( ) ( )( ) ( ) ( )1 1cosh e e
2 2

cosh coshk k
p n coshecch n ec n ec n k σ σσ ⋅ − ⋅= + = ⋅ = ⋅ +  (2.13) 

( ) ( ) ( )( ) ( ) ( )1 1sinh e e
2 2

cosh coshk k
p n coshecsh n ec n ec n k σ σσ ⋅ − ⋅= − = ⋅ = ⋅ −  

The dependence of the factor ( coshk ) on the number of the components with-
in the infinite products (n) is analyzed in Annex 2: The factor is evaluated up to 
the number of components equal to ( 82 10n = × ). The effective values of the fac-
tor are approximated by the following formula: 
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The product of the split cosine functions ( ( ),nec nσ ) and ( ( ),pec nσ ) result 
the cosine function ( ( )cos σ ): 

( ) ( ) ( )

2

0 0 0
1 1 1

2 1 2 1 2 1

, , cos

n n n

j j j
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s s s
j j j
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            + ⋅ − = −         ⋅ + ⋅ + ⋅ +            
= ⋅ =

∏ ∏ ∏     (2.15) 

The relations for the exponential function with real roots—written as infinite 
polynomial product—result as adjoint function the trigonometric function the 
cosine function—as infinite polynomial product—with roots exclusively on the 
imaginary axis (see lemma 3.1 in [3]), corresponding to the relation of Euler: 
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( ) ( ) ( )_ _ _ _ _ 1, , 2 ,p p e p n e n eP n P n Q i Cσ σ τ+ = ⋅ ⋅ ; 

( ) ( )e e 2 cosh 2 cos iσ σ σ τ−+ = ⋅ = ⋅ ⋅  

The Euler relation extended to the split cosine function gives: 
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The split cosine functions with roots on the real axis are like both, the expo-
nential functions, and the trigonometric functions: their sum defines a function 
like the cosine hyperbolic function, their product results the cosine function. 
Herewith the sum and difference of the split components of the cosine functions 
with real roots defines roots for their adjoint functions ( ( )ecch i τ⋅ ) and  
( ( )ecsh i τ⋅ ) on the adjoint, on the imaginary axis: 

( ) ( )p nec ecσ σ= −  defines roots for ( ) ( )cos coshecch i k iτ τ⋅ ≈ ⋅ ⋅        (2.18) 

( ) ( )p nec ecσ σ=  defines roots for ( ) ( )sin coshecsh i k iτ τ⋅ ≈ ⋅ ⋅  
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( ) ( ) ( )( )1 0
2 p necsh i ec i ec i

i
τ τ τ⋅ = ⋅ ⋅ − ⋅ =

⋅
 defines roots for  

( ) ( )sinp coshes kσ σ≈ ⋅  
The placement of the roots exclusively on the adjoint axis is independent of 

the number of factors coshk  applied in the infinite products (2,13): they may 
influence only the value of the roots. Because the present paper concerns only 
the placement of the roots, the effect of the factor ( coshk ) may be neglected. 

In Figure A9 the value of the roots of the split cosine functions with complex 
arguments on the critical line approaches with rising number of the components 
(n) within the infinite product polynomials the value given by the cosine hyper-
bolic function with complex arguments: for sufficient identity in the figure, it is 
risen to the tenfold value in comparison with the other figures earlier in Annex 
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4. The value of the roots of the cosine hyperbolic function may be reached by (n) 
growing to infinity. This shift on the critical line does not influence the fact, which 
the roots are on the critical line. 

At the same time the rising number of the components considered in the infi-
nite polynomial products the function value between the roots—with intermit-
tent sign—is rising too. 

Herewith the following lemma is formulated: 
Lemma 2.1: 
The split components of the cosine function shifted on the real axis by (1/2) 

define the roots for the adjoint functions on the critical line, nearing the same 
values, which they have on the imaginary axis before the shifting. 

Proof: With lemma 3.1 in [3] the shifting of the roots of the cosine and of the 
sine functions by (1/2) on the real axis shifts the roots of the adjoint functions to 
the critical line, leaving the value of the imaginary part of the complex roots un-
changed. 

Because the arguments of the adjoint functions of the split components of the 
cosine hyperbolic function are proportional to the arguments of the adjoint func-
tions of the cosine hyperbolic function, the placement of the imaginary compo-
nents of the complex roots on the critical line are not only similar, but are ap-
proaching—with the number of the components of the infinite products (n) 
growing to infinity—their corresponding values, as stated in the lemma and con-
cluding the proof. 

The functional equation of the Riemann-function (see [1]) is written as fol-
lows: 

( ) ( ) ( ) ( )
1

2 21 1 1
2 2

s ss ss s s sξ ζ ζ ξ
−

− −−   = Γ ⋅ ⋅ = Γ ⋅ ⋅ − = −   
   

π π      (2.20) 

The exponential component is written in the following form, defining com-
plex roots on the critical line: 

( ) ( ) ( )ln 1 lne eσ σ⋅ − − π⋅π−
= ; ( ) ( ) ( ) ( ) ( )1 1ln lnln 1 ln2 2e e e eσ σπ ππ π⋅ ⋅− ⋅ − − ⋅
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π
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=  

The corresponding equation of the infinite polynomial products correspond-
ing to lemma 4.1 in [3] is: 
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s s
a k n a k n
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∏ ∏         (2.22) 

The gamma component of the functional equation of the zeta function has with 
(2.4) two parts, the exponential part, and the trigonometric part. Similarly, to 
(2.19) the exponential part—in the form written in the functional equation of 
the zeta function—define with (2.21) roots on the critical line. This allows to 
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formulate the following lemma: 
Lemma 2.2: 
The roots of the split cosine functions on one axis define roots for the adjoint 

functions on the adjoint axis. 
Proof: The second-degree split polynomials () and () are mutually transpose, 

with roots on the real axis and correspond in all aspect to infinite polynomials 
with monotonously rising positive components, defined in Lemma 2.1 in [3]. 
Therefore, the sum and difference of the second-degree split polynomials define 
adjoint polynomials with roots on the adjoint axis, on the imaginary axis (see 
(6.7) in [3]), as stated in the lemma and concluding the proof. 

The trigonometric components of the relative gamma function being the split 
components of the cosine function, with lemma 2.1, in case their roots on the 
real axis are shifted by (/) the roots of their adjoint functions are shifted to the 
critical line and they preserve the placement of their roots on the imaginary axis 
as components of the complex roots on the critical line. 

This corresponds to the shifting to the critical line of the cosine function, 
which is the product of its split components: 
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∏ ∏

∏

           (2.23) 

Herewith both components of the gamma function define—written in the form 
of the functional equation of the zeta function—roots on the critical line, as dem-
onstrated in Annex 4. 

3. Infinite Polynomial Product for the Riemann Zeta  
Function 

The zeta function ( ( )sζ ) written for the series of primes ( ( )nP ) as infinite prod-
uct, composed of an exponential and a trigonometric part is: 
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1 e
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e e
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         (3.1) 

The functional equation of the zeta function (2.20) is: 
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Setting equal the numerator and the denominator of the gamma and of the pi 
functions to each other they define complex roots exclusively on the critical line, 
respectively on the imaginary axis, if shifted there. 

Therefore, this equation states, that the same is valid for the zeta function as 
well: it defines complex roots and/or poles exclusively on the critical line: 

1
2 2
s s−   Γ = Γ   

   
; ( ) ( ) ( )ln 1 lne es s⋅ − − π⋅π−

= ; ( ) ( )1 s sζ ζ− =       (3.3) 

( ) ( ) ( ) ( )1 1exp trig exp trigs s s sζ ζ ζ ζ− ⋅ − = ⋅ ; ( ) ( )1exp exps sζ ζ− = ; 

( ) ( )1trig trigs sζ ζ− =  

Thus, it is valid for both components of the zeta functions as well: 

( )( ) ( ) ( )( )ln 1 ln
e ek ks P s P⋅ − ⋅

=                        (3.4) 

( )( ) ( )( ) ( ) ( )( ) ( ) ( )( )ln ln 1 ln 1 ln
e e e ek k k ks P s P s P s P⋅ − ⋅ − ⋅ − − ⋅

− = −  

In this form the trigonometric part of the zeta function is just a repetition of 
the exponential part: 
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If Equation (3.4) defines complex roots and/or poles exclusively on the critical  

line, then multiplying both sides by ( ( )( )1 ln
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In this form setting equal to zero defines the sine function with roots exclusively  

on the imaginary axis. Therefore, before the shifting—with ( 1
2cσ σ= + )—these  

roots are exclusively on the critical line with roots and/or poles at even multiples 
of (π/2): 
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The fact, that the shifting of the symmetry axis does not change the placement 
of the roots on the imaginary axis, is demonstrated in Annex 4. 

4. Conclusion 

Herewith all sub equations with components of the functional equation define 
roots on the critical line. Thus, the functional equation of the zeta function de-
fines all complex roots on the critical line. 
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Annex 1: The Normal Distribution and the Exponential  
Function 

The normal distribution and the exponential functions are shown in Figure A1 
below for the ranges ( 400n = ), for ( 1, ,j n=  ) and for ( 4, 3.9, , 4σ = − −  ). The 
complex variables are defined in (2.1): 

( )
2

1
2,

2
nj n j

n
ζ  = − ⋅ 

 
; ( )2

2,
2
nj n j

n
ζ  = − ⋅ 

 
          (A1.1) 

The infinite polynomial products for the normal distribution and for the ex-
ponential functions as well as their roots are defined in (2.10) and (2.11): 

( ) ( )2

2

2
,

3
k n

a k n
n

⋅ +
=

⋅
; ( )2lim ,

n
a k n

→∞
= ∞              (A1.2) 
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Figure A1. Normal distribution and exponential function, compared with their infinite 
product representation. 

Annex 2: The Split Trigonometric Components of the  
Gamma Function 

The second-degree split polynomials ( ( ),pec nσ ), ( ( ),nec nσ ) and their prod-
uct, the cosine function are with (2.6) and (2.7): 

( )
1

, 1
2 1

n

p
j

ec n
j
σσ

=

 
= − ⋅ − 
∏ ; ( )

1
, 1

2 1

n

n
j

ec n
j
σσ

=

 
= + ⋅ − 
∏     (A2.1) 

( ) ( ) ( ), , , cos
2p nec n ec n ec nσ σ σ σ = ⋅ = ⋅ 

 

π  

The absolute value of the split components of the cosines function are 
shown in Figure A2 below with the parameter ( 50000n = ), for the range 
( 10, 9.8, ,10σ = − −  ), as well as their product. The split component ( ( ),pec nσ ) 
of the cosine function has only positive real roots at odd multiples of (π/2) and  
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Figure A2. The split periodic components of the gamma polynomial with all real roots. 
 
its absolute value is decreases, the other split component with only negative real 
roots. The split components are mutually transpose. Both components are equal 
to unity at zero: ( ( )0, 1nec n = , ( )0, 1pec n = ). 

The detail of the split cosine function in the range ( 0,0.1, , 4σσ =  ) is shown 
in Figure A3 below. The function changes its sign at odd multiples of (π/2), 
therefore it has roots at these points. 

This figure shows that the function ( ( ),pec nσσ ) changes the sign at ( 1σ = ) 
and at ( 3σ = ). Therefore, the function has roots everywhere, where the function 
cosine has roots on the positive part of the real axis. 

Similarly, the function ( ( ),nec nσσ ) has roots everywhere, where the cosine 
function has roots on the negative part of the real axis. 

With (2.19) the sum and the difference of these functions define the first-degree 
split functions, which formally correspond to the cosine hyperbolic and sine 
hyperbolic functions: 

( ) ( ) ( )( )1, , ,
2 p necch n ec n ec nσ σ σ= + ; ( ) ( ) ( )( )1, , ,

2 p necsh n ec n ec nσ σ σ= −   

(A2.2) 

The factor ( ( )coshk n ) defined in (2.14) is evaluated for the range up to the 
number of components ( 82 10limn = × ) once and the results are written to files, 
because the evaluation is quite time consuming. These files are read: 

( )READPRN "prod _ lim.prn"limn = ; ( )_ READPRN "factor _ cosh .prn"kosh effk =  

The number of the evaluated effective values of the factors is:  
( ( ) 81 2 10limlength n − = × ). 

The approximating function (2.12) is evaluated for the same numbers of the 
factors and the results are compared with the effective values in the range  
( ( )1, , 1limj length n= − ) in Figure A4 below. The evaluation of the effective val-
ues above the limit of ( limn ) is very time-consuming. The approximation formula 
given below is valid in the observed range. 

( ) ( )_
3 ln
4j jcosh appr limk n = +   

; ( ) 3 ln
4coshk n n = +            (A2.3) 

With the parameter ( 40000n = ) and for the range ( 1, 0.9, ,1σ = − −  ) they 
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are shown for real arguments in Figure A5 below. In fact, they are proportional 
to the cosine hyperbolic and sine hyperbolic functions, with the factor of pro-
portionality of the arguments ( ( ) 6.048koshk k n= = ) corresponding to the applied 
number of components of the infinite products ( 40000n = ). 

In the range ( 0.5, 0.48, ,0.5σ = − −  …; … 0.5, 0.48, ,0.5τ = − −  ) he split sine 
hyperbolic and the split cosine hyperbolic function sin central positions are shown in 
Figure A6 below. 

 

 
Figure A3. A section of the roots of the split cosine function. 
 

 
Figure A4. The factor between the split cosine hyperbolic and the hyperbolic functions. 
 

 
Figure A5. The sum and difference of the split cosine function for real arguments. 
 

 Figure A6. Split cosine and split sine hyperbolic functions and their adjoint function. 
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Annex 3: The Relative Gamma Function 

With (2.12) the approximation of the gamma function by infinite products for 
reel arguments, as a polynomial is: 

( ) ( )
( )_

0 02

ln
, 1 1

2 , 2 1

m m

rel appr
k k

x m xx m
a k m j= =

 ⋅  
Γ = − ⋅ +    ⋅ ⋅ +  

∏ ∏           (A3.1) 

In the range ( 1, ,150j =  ) for real arguments ( ( )
50

10j
jx −

= ) and for the  

number of quotients considered ( 5000m = ) the relative gamma function and its 
approximation as infinite product are compared in Figure A7 below. Since the 
evaluation is quite time consuming, the results are written to a file. They are read 
in case of the evaluation of the present paper: 

( ) ( )_ ,j j
gamma rel appr x m

F  
 

= Γ ; ( )WRITEPRN "GAMMA _ appr.PRN" gammaF=  (A3.2) 

( )READPRN "GAMMA _ appr.PRN"gammaF = ; 

( )1, , 1gammakk length F= − : ( )
50

10kk
kkx −

=
 

 

 
Figure A7. The relative gamma function expressed as infinite product. 
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Annex 4: Hyperbolic and Trigonometric Functions Shifted to 
the Critical Line 

In the range ( 3, 2.8, ,3σ = − −  , 3, 2.8, ,3τ = − −  ) the sine hyperbolic and the 
cosine hyperbolic functions in central position are in Figure A6 and in shifted 
position in Figure A8 below. 

The split sine hyperbolic and the split cosine hyperbolic functions are shown 
in shifted position in Figure A9 below, in the range  
( 0.5, 0.48, ,1.5σ = − − 

, 0.5, 0.48, ,1.5τ = − − 
), with the parameter (n = 400000), 

and the factor of proportionality of the arguments ( ( ) 7.2coshk k n= = ): 
 

 
Figure A8. The cosine and the sine hyperbolic functions shifted to the critical line. 
 

 
Figure A9. Split cosine and split sine hyperbolic functions shifted to the critical line. 
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