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Abstract 
Bayesian empirical likelihood is a semiparametric method that combines pa-
rametric priors and nonparametric likelihoods, that is, replacing the parame-
tric likelihood function in Bayes theorem with a nonparametric empirical li-
kelihood function, which can be used without assuming the distribution of 
the data. It can effectively avoid the problems caused by the wrong setting of 
the model. In the variable selection based on Bayesian empirical likelihood, 
the penalty term is introduced into the model in the form of parameter prior. 
In this paper, we propose a novel variable selection method, L1/2 regularization 
based on Bayesian empirical likelihood. The L1/2 penalty is introduced into the 
model through a scale mixture of uniform representation of generalized Gaus-
sian prior, and the posterior distribution is then sampled using MCMC me-
thod. Simulations demonstrate that the proposed method can have better pre-
dictive ability when the error violates the zero-mean normality assumption of 
the standard parameter model, and can perform variable selection. 
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1. Introduction 

Empirical likelihood is a nonparametric method first proposed by Owen [1] [2] 
[3], which is an estimation method inspired by maximum likelihood, but does 
not require assumptions about the distribution of the data. Thus, we can avoid 
potential problems of model misspecification. Because of the robustness of em-
pirical likelihood, and the fact that it inherits many desirable properties of para-
metric likelihood, empirical likelihood has been extended to linear models, cor-
relation models, variance models [3], general estimating equations [4], genera-
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lized linear models [5] and longitudinal data analysis [6] [7], etc. 
On the one hand, the Bayesian method based on empirical likelihood has the 

advantages of Bayesian inference, and on the other hand, it avoids the risk of 
incorrect model assumptions, and has received extensive attention from scholars 
and has developed rapidly. Bayesian empirical likelihood was first proposed by 
Lazar [8]. It is a semiparametric method that combines parametric priors and 
nonparametric likelihoods. It not only pays attention to the use of overall infor-
mation and sample information, but also pays attention to the collection of prior 
information. After processing, it forms a prior distribution and participates in 
statistical inference. Lazar [8] replaced the likelihood function in Bayes theorem 
with an empirical likelihood function, and used Monte Carlo simulation to prove 
the validity of the obtained posterior distribution. Zhong and Ghosh [9] studied 
some higher-order properties of Bayesian empirical likelihood. Li, Zhao and Dong 
[10] applied Bayesian empirical likelihood to linear regression models with cen-
sored data. Bedoui and Lazar [11] proposed the Bayesian empirical likelihood 
for lasso regression and ridge regression. Moon and Bedoui [12] proposed an 
empirical-likelihood-based Bayesian elastic network model that combines the 
interpretability and robustness of Bayesian empirical likelihood methods, which 
can be used for variable selection. In addition, Bayesian empirical likelihood is 
also extended to quantile structural equation modeling [13], quantile regression 
[14], etc. 

Variable selection under the Bayesian framework, that is, introducing penalty 
terms into the model in the form of parameter priors. For example, Park and 
Casella [15] used conditional Laplace prior for complete Bayesian analysis and 
proposed Bayesian lasso. In addition, Li and Lin [16] proposed Bayesian elastic 
net using an informative prior. Mallick and Yi [17] proposed a new Bayesian 
lasso method based on uniform scale mixing of Laplace density. The variable se-
lection based on Bayesian empirical likelihood is to replace the parametric like-
lihood function in Bayes theorem with a nonparametric likelihood function, 
which can be studied without making assumptions about the distribution of the 
data, avoiding problems caused by misspecified models. 

This paper is divided into six sections. The first section introduces the re-
search status of empirical likelihood and Bayesian empirical likelihood, and how 
to select variables based on Bayesian empirical likelihood. Section 2 derives the 
empirical likelihood function for linear models. Section 3 introduces the basics 
of Bayesian empirical likelihood. The fourth section is the focus of this paper, 
where 1 2L  regularization based on Bayesian empirical likelihood is proposed, 
and the penalty term is added to the model in the form of a generalized Gaussian 
prior. Section 5 verifies the effectiveness of the proposed method when the error 
violates the normality assumption of zero mean of the standard parameter mod-
el by simulation. The sixth section is the conclusion of this paper. 

2. Empirical Likelihood Inference for Linear Models 

Suppose we observe a set of data ( ) ( )1 1, ,n ny yx x , if the relationship between 
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ix  and iy  is linear, it can be represented by the following mathematical mod-
el: 

0 1 1 2 2 , 1, 2, , ,i i i q iq iy x x x i nβ β β β ε= + + + + + =            (1) 

where ( )T
1 2, , ,i i i iqx x x=x 

 is the predictor variable, iy  is the response varia-
ble, 0β  is the unknown intercept, jβ  is the unknown slope of the explanatory 
variable ijx , and iε  is the error. In the standard parametric model, we gener-
ally assume that the errors are independent and obey a normal distribution with 
a mean of zero and a constant variance. But in the empirical likelihood, we relax 
the distributional assumption of the error, and the error distribution does not 
necessarily satisfy the normality assumption of zero mean. Next, without loss of 
generality, assuming that both the predictor and response variables are standar-
dized, then the intercept term 0β  is equal to zero. 

Let 

11 1 1 1 1 1

1

, , , ,

T
q

T
n nq n q n n

x x y

x x y

β ε

β ε

        
        = = = = =        

               

x
X y

x



      



β ε  

where X  is the design matrix of n q× , β  is the vector of 1q× , y  is the 
vector of 1n× , ε  is the vector of 1n× . Then the above multiple linear re-
gression model can be expressed as: 

T , 1, 2, , .i i iy i nε= + =x β                     (2) 

Also, in linear models, regression coefficients are generally estimated by mi-
nimizing the residual sum of squares 

2

2−y Xβ . Using the matrix notation de-
fined above and assuming TX X  is invertible, the canonical equation is ob-
tained 

T T .=X X X yβ  

That is, the regression coefficient satisfies the following estimation equation: 

( )( )T 0.E − =X y Xβ  

Defining auxiliary variables ( ) ( )T
i i i iZ y= −x xβ β , the profile empirical like-

lihood ratio of the regression parameters β  can be obtained as follows: 

( ) ( )
1 11

max | 0, 1, .
i

n n n

i i i i i
i ii

R n Z
ω

ω ω ω ω
= ==

 = ≥ = = 
 

∑ ∑∏ 0β β        (3) 

Then apply the Lagrange multiplier method to solve the iω  that satisfies the 
formula (3). If you want to find the iω  that maximizes 1

n
ii nω

=∏ , it is equiva-
lent to finding the iω  that maximizes 1logn

ii nω
=∑ . Let 

( )T T

1 1 1
log 1 ,

n n n

i i i i i i
i i i

G n n yω ω γ ω
= = =

 = − − − − 
 

∑ ∑ ∑x xη β        (4) 

where ( )T
1 2, , , qη η η= η  and γ  are Lagrange multipliers. Let the partial de-

rivative of G with respect to iω , η  and γ  be zero, and the following equa-
tions can be obtained: 
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①
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          (5) 

By multiplying both sides of Equation ① in formula (5) by iω  at the same 
time and summing it up, we can get 

1
0 .

n

i
i i

G nω γ
ω=

∂
= = +

∂∑  

That is, nγ = − . Then substitute nγ = −  into Equation ① in formula (5) to 
get 

( )T T

1 1 .
1i

i i in y
ω = ⋅

+ −x xη β
 

Then the profile empirical likelihood function of the regression coefficient β  
can be written, which is given by ( ) ( ){ }expEL ELL l=β β , where 

( ) ( ){ }T T

1 1
log log log 1 .

n n

EL i i i i
i i

l n n yω
= =

= = − − + −∑ ∑ x xβ η β       (6) 

Substitute the expression of iω  into the ② in formula (5), and the Lagrange 
multiplier ( )=η η β  can be solved by the following equation:  

( )
( )

T

T T
1

.
1

n i i i

i i i i

y

y=

−
=

+ −
∑

x x

x x
0

β

η β
                    (7) 

Next, it is proved that under some regular conditions, if β̂  makes the profile 
logarithmic likelihood function ( )ELl β  maximum, then β̂  converges to the 
true value 0β  according to the probability. 

Theorem (Consistency) Under some regular conditions, if 

( ) ( ){ }T T

1

ˆ arg max arg min log 1 ,
n

EL i i i
i

l y
=

= = + −∑ x xβ β η β  

then 0
ˆ P→β β . 

Proof: Let ( ) ( ){ }T T

1
log 1

n

i i i
i

R y
=

= + −∑ x xβ η β , and denote 1 3
0 n−= + uβ β  for 

{ }1 3
0 n−∈ − ≤β β β β  where 1=u . Owen [2] proved that when

  
1 3

0 n−− ≤β β , there is 

( ) ( ) ( ) ( ) ( )

( ) ( )

1
T 1 3

1 1

1 3

1 1
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n n

i i i
i i

Z Z Z o n
n n

O n a s

−
−

= =

−

   = +      

=

∑ ∑η β β β β
 

Then perform Taylor expansion on ( )R β , we get: 
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where 0c ε− > , c is the smallest eigenvalue of  
( )( ) ( ) ( )( ) ( )( )

1T T
0 0 0 0i i i iE Z E Z Z E Z

−
 ∂ ∂ ∂ ∂ β β β β β β . Similarly, it can also 

be shown that 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

T 1
T

0 0 0 0 0
1 1 1

1 1 1 1
2

log log  . . .

n n n

i i i i
i i i

nR Z Z Z Z o
n n n

O n a s

−

= = =

     = +          
=

∑ ∑ ∑β β β β β
 

Since ( )R β  is continuous with respect to β , and β  is in the sphere  
0−β β , so ( )R β  has a minimum value in the sphere, that is 0

ˆ P→β β . 

3. Bayesian Empirical Likelihood 

Penalized linear regression and Bayesian linear regression are closely related, 
and their estimates can be interpreted as Bayesian posterior estimates of para-
meters under certain priors. For linear models: 

.= +y Xβ ε                            (8) 

Under the assumption that the noise obeys the Gaussian distribution of the 
regularization framework, from the perspective of probability, the regularized 
least squares method corresponds to the maximum a posteriori estimate, namely 

( ) ( ) ( )Data Data .P P P∝β β β  

Then the maximum a posteriori estimate of the parameter β  is 

( ) ( ) ( )ˆ arg max Data arg max Data ,P P P= =
β β

β β β β  

where ( )P β  is the prior distribution of the parameter β . When the parame-
ter β  obeys the Laplace distribution, the L1 regularization is derived; when the 
parameter β  obeys the Gaussian distribution, the L2 regularization is derived. 
From the above, it can be seen that lasso regression and ridge regression are 
closely related to Bayesian linear models when different priors are placed on the 
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parameters. 
The Bayesian empirical likelihood is as follows: Let ( )1, , q=X x x  be an 

independent multivariate random variable subject to an unknown distribution 
Fβ , whose unknown distribution F ∈β β  depends on the parameter 

 ( )T
1, , Q

qβ β= ∈Ω∈ β . Assuming that both the predictor and response va-
riables are standardized, then the intercept term is zero. Let the prior of β  be 
( )π β , and when the data distribution is unknown, replace the parameter like-

lihood function in Bayes theorem with the empirical likelihood function, then 
the posterior empirical likelihood density is 

( ) ( ) ( )
( ) ( )

( ) ( )| , .
d

EL
EL

EL

L
L

L
π

π π
π

Ω

= ∝
∫

X y
β β

β β β
β β β

            (9) 

Combining the empirical likelihood inference of multiple linear regression in 
section 2, we can obtain the posterior inference of the Bayesian empirical like-
lihood of linear regression as 

( ) ( ){ } ( ){ }T T

1
| , exp log 1 .

n

i i i
i

yπ π
=

 ∝ − + −  
∑X y x xβ β η β        (10) 

4. L1/2 Regularization Inference Based on Bayesian  
Empirical Likelihood 

4.1. Hierarchical Model 

Linear regression L1/2 regularization penalizes the magnitude of the regression 
coefficients by imposing an L1/2 penalty, that is, it minimizes the penalized resi-
dual sum of squares as follows: 

2 1 2

2 1 2

1min .
2

λ − + 
 

y X
β

β β                    (11) 

Without loss of generality, we assume that the data is normalized and the in-
tercept term is 0. In formula (11), y  is the 1n×  vector, β  is the 1q×  vec-
tor, X  is the n q×  design matrix, 

1 21 2
11 2

q
jj β

=
= ∑β , and the tuning para-

meter λ  controls the degree of penalty. The larger the value of λ , the larger 
the shrinkage of the regression parameters. 

By observing the form of the penalty term in (11), we find that the regression 
parameter jβ  in the L1/2 regularization has the form of an independent and 
identical zero-mean generalized Gaussian prior. The density function expression 
of the zero-mean generalized Gaussian distribution is: 

( ) ( )
exp ,

2 1

p

p

xpf x
pσ σ

 
 = −
 Γ  

 

where ( )Γ ⋅  is the gamma function, σ  is the scale parameter, and 0p >  is 
the shape parameter that controls the decay rate of the tail of the distribution. 
There are two special cases in GGD: when 1p = , corresponding to the Laplace 
distribution, and when 2p = , corresponding to the normal distribution.  

Combining the above connections, on the basis of Park and Casella [15], we 
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consider adding a generalized Gaussian prior to the regression parameters jβ  
with mean of 0, shape parameter of 1 2p = , and scale parameter of 2 2σ λ− . 
The expression is as follows: 

( )
( )

( )
2 1 2

2 2

21
exp .

2 2 1

q

j
j=

 = − 
 Γ +

∏ λπ σ λ β σ
σ

β         (12) 

Although most of the existing literatures express the generalized Gaussian 
distribution as a scale mixture of normal distributions, this representation is not 
suitable for the Bayesian bridge model of ( )0 1qL q< <  penalty. Therefore, oth-
er representations need to be explored. In this paper, the generalized Gaussian 
distribution is expressed as a mixture of uniform distribution and gamma dis-
tribution, which is: 

( )
( )

( )
( )

2 2 2 2

2 1 2
2

2

2 1
2 1 1

2 2

exp
2 2 1

1 e d .
2 12

u
u x u

x

u u
u

λ
σ σ

λ λ σ
σ

λ

σ

+
+ − −

− < <

 − 
 Γ +

= ⋅
Γ +∫

 

Then, without assuming the distribution form of the data, the empirical like-
lihood function is used to replace the parameter likelihood function, and the 
Bayesian hierarchical model can be expressed as: 

( ) ( )

( )
( )

( )

T T

1

2 2 2 2 2

1

1

2 2 2

~ exp log 1 ,

, ~ Uniform , ,

~ Gamma 2 1, ,

~ d .

n

EL i i i
i

q

j j
j

q

j

L y

u uσ σ σ

λ λ

σ π σ σ

=

=

=

  − + −   

−

+

∑

∏

∏

x x

u

u

β η β

β
           (13) 

In the above hierarchical model, we choose ( ) ( )2 ,IG a bπ σ = . Assuming that 
the priors of different parameters are independent, then the joint posterior den-
sity can be expressed as: 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2, , , , , d .ELLπ σ λ π σ π λ π λ π σ σ∝u y X u uβ β β    (14) 

Given y , X , u , λ  and 2σ , the full conditional distribution of β  is: 

( ) ( ) ( )

( ) { }
2 2

T T 2 2

1 1

, , , , ,

exp log 1 .

EL

qn

i i i j j
i j

L

y I u
= =

∝

  ∝ − + − <   
∑ ∏

y X u u

x x

π λ σ π σ

β σ

β β β

η β
(15) 

From the expression of the full conditional distribution of β , we know that 
its full conditional distribution has no closed form. 

Similarly, given the conditions of y , X , β , λ  and 2σ , the full condi-
tional distribution of u  is: 

( ) ( ) ( )
1 2

2 2

21
, , , , , e .j

q
ju

j
j

I u−

=

    ∝ ∝ >     
∏u y X u u λ β

π λ σ π σ π λ
σ

β β  (16) 
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Analogously, given the conditions of y , X , β , u  and λ , the full condi-
tional distribution of 2σ  is: 

( ) ( ) ( )
( )

2 2 2 2

21 2 1
2

2 2 4

, , , , , d

1 exp max .
q a

j

j
j

b I
u

π σ λ π σ π σ σ

β
σ

σ σ

− + +

∝

     ∝ − >    
      

y X u uβ β

   (17) 

In the expression of the prior distribution, we find that tuning parameter λ  
is introduced into the model in the form of hyperparameters that play a role in 
controlling the accuracy of the prior distribution. The larger the value of λ , the 
more concentrated the prior distribution is at mean 0; the smaller the value of 
λ , the more scattered the prior distribution is at mean 0. In this paper, we spe-
cify a gamma prior Gamma(c, d) for the penalty parameter λ . 

In model (13), when the latent variable ju  is marginalized and the genera-
lized Gaussian prior is directly used, the full conditional distribution of λ  giv-
en y , X , β , u  and 2σ  is: 

( ) ( ) 1 22 12

1
, , , , exp .

q
c q

j
j

dπ λ σ λ λ β+ −

=

   ∝ − +  
   

∑y X uβ       (18) 

4.2. The Framework of the Algorithm 

Regarding u , 2σ  and λ  in the Bayesian hierarchical model, this paper uses 
the Gibbs algorithm to sample. 

1) The full conditional distribution of ju  is the left-truncated exponential 

distribution ( ) ( )1 2
2exp j jI u > 

 
λ β σ , and two-step sampling is considered. 

First generate *
ju  from the exponential distribution ( )exp λ , and then let 

 
( )1 2

* 2
j j ju u β σ= + . 

2) The full conditional distribution of 2σ  is the left-truncated inverse gam-
ma distribution, and two-step sampling is considered. First generate 2*σ  from 
the right-truncated gamma distribution  

( )( ) ( )( ){ }2* 2 4Gamma 1 2 , max 1 j jj
q a b I uσ β− + < , then let 2 2*1σ σ= . 

3) The full conditional distribution of λ  is the gamma distribution, and λ  
is generated directly from the gamma distribution  

( )1 2

1Gamma 2 , q
jjc q d β

=
+ +∑ . 

Regarding the regression parameter β , since its full conditional distribution 
has no closed form, this paper considers sampling using the tailored M-H algo-
rithm adopted by Chib [18] and Bedoui [11]. Among them, the candidate gener-
ation density in the M-H algorithm is a multivariate t distribution, its location 
parameter is the mode of the logarithmic empirical likelihood function for the 
linear model, and the dispersion matrix is the inverse of the negative Hessian 
matrix of the logarithmic empirical likelihood function evaluated at this mode.  
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5. Simulation 

In this section, simulation experiments are performed to verify the effectiveness 
of L1/2 regularization based on Bayesian empirical likelihood (BEL). We generate 
data from the following multiple linear regression models: 

,= +y Xβ ε  

where y  is the 1n×  response variable, X  is a 8n×  design matrix, ε  is the 
1n×  error vector and n  is the sample size. The data for the design matrix X  

comes from a multivariate Gaussian distribution with a mean of zero and a co-
variance matrix of { }0.2 , , 1, 2, ,8i j i j−= ∈ Σ . The regression coefficients  

( )T3,1.5,0,0, 2,0,0,0=β  are a 8 1×  regression vector.  
In standard parametric models, it is generally assumed that the errors follow a 

normal distribution with zero mean. However, in empirical likelihood, there is 
no need to make assumptions about the error distribution, which can avoid 
making false assumptions about the error distribution and make the model more 
robust. 

We assume the error violates the zero-mean normality assumption of the stan-
dard parametric model, iε  is independent and identically distributed from a 
normal distribution with mean −3 and variance 32. Under this model, we gener-
ate training datasets with three different sample sizes ( n  = 50, 100, 200). And 
produce a test set of the same size. Furthermore, the Bayesian empirical likelih-
ood-based L1/2 regularization method (BEL) proposed in this paper is compared 
with the Bayesian bridge regression model for scale mixture of normal based on 
generalized Gaussian density (BBR.N) proposed by Polson [19], the Bayesian 
bridge regression model for scale mixtures of triangular based on generalized 
Gaussian density (BBR.T) proposed by Polson [19], and Bayesian lasso model 
(BLASSO) proposed by Park and Casella [15]. Among them, the exponent of the 
regularization term of BBR.N and BBR.T is selected as 0.5α = , corresponds to 
the L1/2 penalty using the parametric likelihood function. 

For the hyperparameters in the hierarchical model, we choose a = 10, b = 0.1, 
c = 2 and d = 2 to conduct numerical simulations. And generate 50 sets of train-
ing data sets, that is, repeat the experiment 50 times, fit the model on the train-
ing data set, iterate 15,000 times for each experiment, discard the first 5000 times, 
and calculate the mean of the regression coefficients of the last 10,000 times as 
the estimated value. Then calculate its performance on the test dataset. 

The evaluation indicators are the mean square error (MSE) and the mean ab-
solute deviation (MAE) on the test set, and the calculation expressions are as 
follows:  

( )2

1

1 ˆMSE
n

i i
i

y y
n =

= −∑                     (19) 

1

1 ˆMAE
n

i i
i

y y
n =

= −∑                     (20) 

In order to exclude the influence of possible extreme values, this paper uses 
the median of these 50 data to evaluate the performance of the four methods, 
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namely the median of mean square error (MMSE) and the median of mean ab-
solute deviation (MMAE). 

Table 1 shows the values of the median of mean squared error and the me-
dian of mean absolute error of the four methods at three different sample sizes. 
As can be seen from Table 1, when the error distribution violates the normality 
assumption of zero mean of standard parametric model, especially when the 
sample size is small ( n  = 50, 100), the BEL method outperforms the other three 
methods. And with the increase of sample size, the values of MMSE and MMAE 
of the four methods all showed a downward trend. 

Figure 1 shows the boxplots of the values of MSE computed on the test set for 
the four evaluation methods at three different sample sizes. It can also be seen 
from the figure that when the sample size is small ( n  = 50, 100), the BEL me-
thod is significantly better than the other three methods. And when the sample 
size is 200, the BEL method is slightly better than the other three methods. In 
general, it can be seen that the BEL method performs better in small samples 
when the error violates the zero-mean normality assumption. 

 

 
Figure 1. Boxplots of the values of MSE for the four methods. 

 
Table 1. Values of MMSE and MMAE for the four methods. 

  MMSE(MMAE) 
Error distribution sample size BEL BBR.N BBR.T BLASSO 

( )23,3N −  

50n =  19.69 
(3.57) 

20.68 
(3.68) 

20.66 
(3.70) 

20.21 
(3.73) 

100n =  18.62 
(3.56) 

19.04 
(3.58) 

19.04 
(3.59) 

18.84 
(3.58) 

200n =  18.09 
(3.50) 

18.21 
(3.51) 

18.27 
(3.52) 

18.20 
(3.51) 

https://doi.org/10.4236/apm.2022.125029


Y. Wang, W. Z. Ye 
 

 

DOI: 10.4236/apm.2022.125029  402 Advances in Pure Mathematics 
 

Figure 2 shows the boxplots of 50 MAEs calculated on the test set by the four 
evaluation methods by repeating 50 experiments under each sample size of si-
mulation experiment. When the number of observations is 50, 100, the MMAE 
of the BEL method significantly smaller than the other three methods. When the 
number of observations is 200, the MMAE of the BEL method is slightly smaller 
than the other three methods. 

Table 2 shows the number of times each component of the regression coeffi-
cients is excluded using the scaled neighborhood criterion proposed by Li and 
Lin [16] on 50 training datasets with three different sample sizes. It can be seen 
from Table 2 that the four methods can better play the role of identifying im-
portant variables and unimportant variables, that is, they can play the role of va-
riable selection. When the number of observations is 50 and 100, the BEL me-
thod can more accurately identify non-zero variables. 

 

 
Figure 2. Boxplots of the values of MAE for the four methods. 

 
Table 2. The number of times the regression component was removed based on 50 repe-
titions of the simulation. 

size Method 1β  2β  3β  4β  5β  6β  7β  8β  

50n =  

BEL 0 0 36 32 0 31 31 33 

BBR.N 0 4 38 35 0 37 37 36 

BBR.T 0 4 38 34 0 35 38 36 

BLASSO 0 3 40 35 0 36 45 41 

100n =  

BEL 0 0 34 37 0 34 32 35 

BBR.N 0 2 40 38 0 37 33 38 

BBR.T 0 2 38 38 0 37 36 37 

BLASSO 0 1 43 41 0 40 38 39 
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Continued 

200n =  

BEL 0 0 34 34 0 32 38 33 

BBR.N 0 0 40 32 0 34 31 36 

BBR.T 0 0 39 34 0 32 30 37 

BLASSO 0 0 39 39 0 40 41 36 

6. Conclusions 

This paper proposes a new method for variable selection, which is L1/2 regulari-
zation based on Bayesian empirical likelihood. This method introduces the L1/2 
penalty into the model in the form of generalized Gaussian prior. Replace the 
parametric likelihood function in Bayes theorem with a nonparametric likelih-
ood function, and derive the posterior distribution through the Bayesian hierar-
chical model, then use MCMC method to sample from the posterior distribution. 
Simulations demonstrate that the proposed method BEL outperforms BBR.N, 
BBR.T and BLASSO when the errors violate the zero-mean normality assump-
tion for standard parametric models. Especially when the sample size is small, 
the prediction accuracy of the BEL method is better. In addition, the proposed 
method can perform variable selection well. 

Subsequent research may consider Bayesian empirical likelihood inference com-
bining L1/2 penalty and L2 penalty, which is a flexible penalty method. Consider 
adding a spike-and-slab prior to the parameters, the expression is as follows:  

( ) ( ) ( ) ( ){ }2 2
1 1 2 2

1
1 ; , ; , .

q

j j j j
j

π δ ψ β λ σ δ ϕ β λ σ
=

= − +∏β δ        (21) 

where 

( ) ( ) ( )1 2
2 2 2 2

1 1 1 1 1 1; , 2 2 1 exp ,j jψ β λ σ λ σ λ β σ  = Γ + × −     
 

( ) { }2 2 2 2
2 2 2 2 2 2; , 2 exp 2 ,j jϕ β λ σ λ σ λ βπ σ= × −  

and { }0,1jδ ∈ . When 1jδ = , it indicates that the jth predictor is more impor-
tant and should be kept. When 0jδ = , it indicates that the jth predictor is not 
important and should be removed from the model. Compared with applying a 
single prior distribution to the parameters, this mixed prior can well combine the 
advantages of variable selection and sparse recovery. 
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