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where “[ ]” denotes taking integer. r=1,2,3,4,5,6; s, =5,,5,, PRI

81,8, 8}, 8, =0,1,2,3,--. As i22, 2<s, <i—-1 (x=12,-,j,h).
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1. Introduction

In the long history of mathematics, it has always been believed that the dis-
tribution of prime numbers is irregular, which is sometimes more or less in po-
sitive integers. So is there really no law in the distribution of prime numbers
[1]?

For any given positive integer 12, how many primes are there less than n? Until
the 18th century, it was still not known [2]. This is one of the important and in-
teresting essential problems, mathematicians have been puzzled since the Euclid
era in 300 BC. It has been explored continuously, some mathematicians have only
found some approximate formulas.

In the late eighteenth century, some mathematicians examined tables of prime
numbers created by using hand calculations. With these values, they looked for
functions that estimated 7(n). In 1798, French mathematician Adrien-Marie Le-
gendre used tables of primes up to 400,031, computed by Jurij Vega, to note that
n(11) could be approximated by the function:

n

SO N P
(M) = o —Los3e6 ©

The great German mathematician Karl Friedrich Gauss conjectured that 7(n)
increases at the same rate as the functions:

ﬁ(n)—m and Ll n) J‘n dt

(where Lxld—tt represents the area under the curve y = 1/lnn and above the
n

t-axis from ¢= 2 to £= x. Li is an abbreviation of logarithmic integral) [3].
Despite their efforts to explore, mathematicians finally failed to find an accurate
formula for the calculation of prime numbers. However, Legendre, a famous math-
ematician at the time, wrongly asserted rational expression of 77(1) did not exist!
The discovery of the positive integer spectrum finally solves this problem. It is
a powerful tool to solute prime problems, which reflects the inner law of the dis-

tribution of prime numbers, the 7(n) formula was derived from that.
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For given 100, 000, 000, 000, 000, 000, 000, someone has calculated out the
number of primes less than that is 2,220,819,602,560,918,840 by using the com-
puter. If you program the same problem according to our given n(n1) formula, it
would save much time.

It is a great discovery to use continuous quantity to express discrete quantity,
this determines the extraordinary theoretical significance of the formula. By
using the 7(n) formula, we can verify some proven theorems and conjectures,
such as prime theorem, Bertrand conjecture. We might prove some unproved
conjectures, such as Brocard conjecture, Crame conjecture, Jeboff conjecture
(prime interval A conjecture) and Oberman conjecture (prime interval B con-
jecture), which can also clarify many other problems about prime distribution
that was not understood before. For example, whether there is at least one

n(n+1
prime number between the successive triangle numbers % . It will become

a basic tool for anyone to study and solve the problems of the prime number and
prime distribution. It may also be an important tool to solve Goldbach conjec-
ture and twin prime conjecture.

At present, many scholars are studying the distribution law and number cal-
culation of prime numbers [4]-[9]. Everyone uses different principles and tools,
and the applicable situations of the formula may be different [10] [11]. In com-
parison, the 7(n) formula we given is the most convenient computing formula
that only depends on n without any other conditions.

In this paper, we take the positive integer spectrum as the basic tool and de-
duce the formula based on the properties.

The positive integer number spectrum is the special arrangement with infinite

rows and six columns by all positive integers put in order of natural numbers.

The positive integer number spectrum

1st column 2nd column 3rd column 4th column 5th column 6th column

1st row 1 2 3 4 5 6
2nd row 7 8 9 10 11 12
3rd row 13 14 15 16 17 18
4th row 19 20 21 22 23 24
5th row 25 26 27 28 29 30
6th row 31 32 33 34 35 36

n-throw 6(n—-1)+16(n—-1)+26(n-1)+36(n—-1)+46(n-1)+56(n—-1)+6

The expression of the row, column and elements of the positive integer num-
ber spectrum.

The positive integer number expresses that any number X can be only expressed
into the type of 6(n—1)+r, (neZ", n=1; r=1234,56), nis row ordinal
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number, ris a column ordinal number.

2. Main Conclusions

The whole process contains 3 parts. Part 1 is the positive integer number spec-
trum and its properties. Part 2 is the formula 7(n). Part 3 is the examples of the
n(n) formula application.

Part 1

In this part we introduce the positive integer number spectrum and its some

properties firstly in the following.

2.1. The Positive Integer Number Spectrum and Its Some
Properties
2.1.1. The Positive Integer Number Spectrum
1) Definition: The positive number spectrum is the special arrangement with in-

finite rows and six columns in all positive integers put in order of integer num-

bers.
Integer number spectrum
Ist column 2nd column 3rd column 4th column 5th column 6th column
1st row 1 2 3 4 5 6
2nd row 7 8 9 10 11 12
3rd row 13 14 15 16 17 18
4th row 19 20 21 22 23 24
5th row 25 26 27 28 29 30
6th row 31 32 33 34 35 36

n-throw 6(n—-1)+16(n-1)+26(n-1)+36(n—-1)+46(n—-1)+56(n—-1)+6

2) The expression of columns, line and elements of the positive integer number
spectrum

The positive integer number spectrum indicates that any number X can be only
expressed into the type of 6(n—1)+r ,(neZ*, n#1; r=12,3,4,5,6), nisrow
ordinal number, ris column ordinal number.

A number of the r~th (r =1,2,3,4,5,6 ) is denoted with (,, the set of all num-
bers of the r~th column is denoted with Q,.

2.1.2. Multiplication Law and Some Properties of the Positive Integer
Number Spectrum

1) Multiplication law of the positive integer number spectrum
We can easily prove the positive integer number spectrum satisfying the fol-
lowing laws according to it’s formula of general term 6(n—1)+r.

Multiplication law:

- %e€Q, ¢-9,€Q,, 0,°0;€Q;, 0,9, €Q,, 405 €Qs, -G €Qp
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G % €Qs G 0eQs 0,70, €Qy5 0,05 €Q,5 U0 € Qs

G0y €Qsr 30y €Qss G505 € Q5 G3-Gs €Q

d,°0,€Q,> 0,°05€Q,, 0,05 €Qg

0505 €Qs G506 € Qs

0 05 € Qs

2) Some properties of the positive integer number spectrum

Property 1: Any composition of the first column can be written into

0,0 or Os-0s-

Proof: Denoting the composition of the first column with #,, then:

Hy=0-q or H =0s-0;.

Because the composition 6(M—1)+1 can and only can be discomposed into
[6(n-1)+1][6(s-1)+1] (n<s<m)or [6(n-1)+5][6(s-1)+5]
(n<s<m); thereby it can not be discomposed into [G(n -1)+ a][6(s -1)+ b]
(a,b=2,3,4,6).

Therefore, H; =0,-¢, or H, =0 0.

Property 2: Any composition of the fifth column can be written into p,p;.

Proof: Denoting the composition of the first column is A, then H, =0, -0 .

Because the composition 6(m —1)+5 can and only can be discomposed into
[6(n-1)+1][6(s—1)+5] (n<s<m);thereby it can not be discomposed into
[6(n—1)+a}[6(s—1)+b] (a,b=2,3,4,6).

Therefore, H,=q,-0,.

Part 2

In this part we introduce the 7(n) formula.

2.2. The m(n) Formula and Its Computing Theorem and Proof
2.2.1. The Principle of Deducing (n) and the Computing Theorem of the
1(n) Formula

1) The principle of deducing (n)

7(n) is equal to the sum of the number of primes of the first column and the
number of primes of the fifth column and 2.

The number of primes of the first column is denoted with m,, the number of
primes of the fifth column is denoted with ms. m, is equal to the number of the
first column which is less than n abstracting the number of composite number
and abstracting 1. m; is equal to the number of the fifth column which is less
than n abstract the number of composite number.

2) The computing theorem of the n(n) formula

Number of primes no more than any given positive integer n is the sum of three
parts, which are prime numbers of first column and fifth column, and the num-

ber 2 of number prime 2 and 3.

2.2.2. The n(n) Formula and Its Conditions

1) ;z(n)zz[”T_l}{rT*l}z (2<n<25);
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2) 7(n)= 2[%}+{%1}+2

n

-R
[logs n]-1 i 5% .7% ... (pk =1 % 6k +1 n
e ( é (6k+1)

i=1 2sy=i

5% . 7% ... (6k n1 . (6k+1)™ R
NGERCETRCI | P

where “[ ]” denotes taking integer.

r=123456; s, =8,,S,8;,Sh5 S5 S Sy =0,12,3, -

As 122, 2<s,<i-1 (x=12,--,j,h).

2) The conditions of the 7(n) formula

As iis determined, & takes nand n -R>6.

5% .7%...(6k —1)7 - (6k +1)"
The regulations of R,R’ in the following:

The base number of the power of the denominator of the fraction
n

5%.7%..(6k—1)" -(6k +1)"
numbers 5,7, "'.(6k —1).(6k +1) , setting the minimum of the part or the whole

obtained numbers is p.

are possible to take a part or all of the following

As pis the number of the fifth column, R=P -6, R'=P—4;
As pis the number of the first column, R=P-6, R'=P-2.

2.2.3. The Reasoning Process of the (n) Formula
1) As 2 < n< 25, the expression of 7(n) formula is:

ﬂ(n)=z[“T‘1}+{rT+1}+z.

2) As n 2 25, the expression of 7(n) formula makes up of three parts:

z(n)= 2[”7_1}+[r?+1}+2

n
-R
[logs n]-1 i 5% .7% ... (6k -1 % 6k +1 i
My ( )6 (6k+1)
i=1 2sy=i
n . g _R'
| 5T (k1) (8K +1)”
6

The first one is 2[(n—1)/6]+[(r +1)/6:| , we set its value to Z, the number
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of first column is 72, the number of fifth column is 7, then Z =n, +n, 1.

The second one is the later expression of sum, setting the value of that is A,
H is equal to the number of the compositions of first column and the fifth
column.

Set n=6(k—1)+r, where kis the row, ris column.

2 =2[(n-1)/6]+[(r +1)/6]
=2[(6(k-1)+r-1)/6]+[(r+1)/6]
= 2[(k-1)+(r-1)/6] +[(r +1)/6]
=2(k-1)+2[(r-1)/6]+[(r+1)/6]

1)As r=12,34

{r—‘l}o, {r—-l—l}zo,then z=2(k-1).
6 6

Because the row is &, the numbers of the first column number is & in all, ex-
ceptl, the plus is k& — 1, therefore the numbers of the first column number and
the fifth column number which is less or equal to n except 1 is equal to
(k-1)+(k—-1)=2(k —1), so the value of Zis right.

2)As r=5,6

[(r-1)/6]=0, [(r+1)/6]=1,then Z=2(k-1)+1=2k-1.

Because the row is 4, the numbers of the first column number is & in all, ex-
cept 1, the plus is & — 1, the numbers of the fifth column number is & — 1 in all,
therefore the numbers of the first column number and the fifth column number
which is less or equal to 11 except 1 is equal to (k —1)+k = 2k -1, so the value of
Zis right.

Let us deduce the value of A'in the following.

The expansion of His:

LU L O L I L
H=_|5 |5 |7 |7 _
6 6 6 6
[ n n n n
—t _— - -1
4| 5T 4| 7 4| 9x11 4| 2x11 e
6 6 6 6
[ n n n n
4| Ix11 4| Ix11 4| 1x13 4| 111 4.
6 6 6 6
+.
AN 1 [ L ;NN (L
_| 5x5x7 | bx5x7 | 5x5x11 _| bx5x11 _
6 6 6 6
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n n n n

—+1 - +1| | ——-1
4| Dx5x5x7 4| Sx5x5x7 4| Bx5x5x11 4| 9x5x5x11 4.
6 6 6 6
4.
" +1 n__
p(caylossnt | 527 (qy[estle)| 527 ],
6 6
sjn s +R
+(_1)(['095n]*1) ~(6k-1)" -(6k +1)
sjn 5 +R’
L R G A LS N
6
1)Asi=1,(set peh),
n n
(p=6)| | ~~(P—4)
P P expresses the number of compositions of the

6 6

first column and fifth column that is less than or equal to n and contain p and
more than or equal to p~.
n
Let {—} =t, the tnumbers that are 1, 2, 3,4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
p
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, ..., include these numbers 5, 11, 17,
23, ..., the method of calculating the numbers is, every six numbers is cut into a
segment from former to later with starting g, the last number or numbers from 1

n n
M—(I@—l)+5 ——(p-6)
to g as a last segment, then there are 5 =| P 5 seg-

ment in all.
Therefore, the first number of every segment is the number of the fifth col-
umn, so the numbers of the composition of the fifth column which contain

0,,0,,0;,--,0, and isless than or equal to z2and is more than or equal to g7 is:

%—(p—ﬁ)
6
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We can calculate the number of compositions of the first column and the fifth
column, which is less or equal to n and more than or equal to p* and contain the
factor pis:

n n
—|—-(p+1)+5 ——(p-4
{ p} ( ) P ( )

= in all.
6 6

Because of composition:
p-t'(t'e{1,2,-,t}) factor t' > p, so the composition p-t'> p?.
Because for the factor # We can prove the following conclusion with same
n n
——(p-6 ——(p-2
"~(p=6)| | "~(p-2)

method that 5 + 5 expresses the number of compositions

of the first column and fifth column that is less than or equal to n and contain p
and more than or equal to p?, where p is the number of the first column, and
p=l.
2)As i=2,
(P Py Py Py} € {5,7,11,13,..., (6k ~1), (6K +1)}
and:
PL< P, << P;<Py-

Set p, is the number of the fifth column number, then:
n n
S . p%...p%.ph ~(P-6) S . p%2 .. p%.ph
Pt p, pJ - P PP, pJ - P
6 6

~(p.—4)

expresses the number of compositions that is less than or equal to n and contain
Pi, Pyyos Pjs P, and more than or equal to prtt. psz ... p?" - pr, where p, is the

number of the first column.
n
Set . S
PP Py Py
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, ..., include these num-

bers 5, 11, 17, 23, ..., the method of calculating the numbers is: every six num-

} =t, the t numbers thatare 1, 2, 3,4, 5,6, 7, 8, 9, 10,

bers is cut into a segment from former to later with starting g, the last number or

numbers from 1 to gas a last segment, then there are:
n

t-(p-1)+5]_| p-py -p Py
6 6

—(p1—6)

segments in all.
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Therefore, the first number of every segment is the number of the fifth col-
umn, so the numbers of the composition of the fifth column which contain

¢;,4,.03,°,q, » and is less than or equal to n and is more than or equal to
Py py s
n
S .p% ... p%i.ph ~(p.-6)
PPy Py Py

6

We can prove the following conclusion with the same method as that:
n n
w0 g MY
] ]
6 6

Express the number of compositions that is less than or equal to n and contain
Pi, Pyy-os Pjs P, and more than or equal to prtt. p ... p?j - pir s where p; is the
number of the first column.

In the following we prove: the composition of the first column and the fifth
column p2™.p3.. p?i -pyr which is less or equal to 1 is unique, that is to

calculate one time, where
{ Py Py Py Py} ©15,7,11,13, -, (6k 1), (Bk +1)}

and

Pp <Py << Pj<Pys 8,8, S8, € N .

Because of 1<i< [Iog5 n]—l, and as ZSX =i (x=12,-,j,h), any compo-
sition of the first column and fifth column p* - p32 ... p3’ - p" which satisfy the
condition ) S, =i and which is less than or equal to 11 calculated,

S8, 5:8, € N

And because p; < p, <--<Pp;<p,.as it satisfy D's, =i and the values of
8,5, 5,8, are determined, the composition p*-p3 ...p;' - p is unique.

We prove the maximum of iis [logsn]-1.

Because n>5%-7%...(6k—1)" -(6k +1)" >5%.5% ...5% .5 =5>%,

Therefore the maximum of 7is [Iog5 n] -1.

We prove the code of every term is (—1)i in the following:

Because the composition with three factors can be regarded as the product of
two factors, at the same cause, the composition with 7 factors can be regarded as
the product of 7 — 1 factors. Therefore, we should take the composite of three fac-
tors into account when calculating a composite number containing two factors,
and we should plus the number of composition with three factors. At the same
cause, we should take the number of compositions with 7 factors into account when

calculating the number of compositions with 7 — 1 factors, and we should plus the
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number of composition with 7 factors.
Therefore, as /is an odd, the code is negative, as /is an even, the code is posi-

tive, we can write them into the union form (-1)', so the code of every terms is
(-1

2.2.4. The Last Conclusion

2[“—_1}[11}2 (2<n<25);
6 6
6 6
n R
ogsn-1 = 5.7 ..(6k -1)" - (6k +1)”
A=t > ()3 )
i=1 sy =i
5% .7% ..(6k nlsj TR
4| ST (Bk 1) Bk +1) (n>25).
6
that is:
1) ﬂ(n)=2[n—_1}+[r—+l}+2 (2<n<25);
6 6
n-1 r+1
=2 — [+ —|+2
2) z(n) [ 5 }[ 5 }
n -R
logsn}t = 5% .7%...(6k —1)7 - (6k +1)"
. NES By (e
i=1 >sy=i
5%.7% ...(6k nlsj T
L| ST {8k =1) (B +) (n>25).
6
where “[ ]” denotes taking integer.
r=12,34,56;
S, =515, 8,83
$1,85,8;,8, =0,1,2,3,--
As i>2, 2<s,<i-1 (x=12,-,j,h).
As 7is determined, ktake nand:
n ~R>6

5%.7%..(6k —1)7 -(6k +1)"

The regulations of R,R’ in the following:
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The base number of the power of the denominator of the fraction

n
5%.7%..(6k -1)7 -(6k +1)"
numbers 5,7, ---,(6k —1),(6k +1) , setting the minimum of the part or whole ob-

are possible take a part or all of the following

tained numbers is p.
As pis the number of the fifth column, R=P-6, R'=P—4;
As pis the number of the first column, R=P-6, R'=P-2.
Part 3
In this part we introduce some examples of the 7(n) formula application.

2.3. Examples of Applying the m(n) Formula Calculation
2.3.1. Example No. 1
7(100) = 2[(100-1)/6]+2+[(4+1)/6]
-[(100/5+1)/6 ][ (100/5-1)/6]
-[(100/7-1)/6]-[(100/7-5)/6
=34-9
=25
2.3.2. Example No. 2
7(200) =2[(200-1)/6]+2+[(2+1)/6]
~[(200/5+1)/6]—[(200/5-1)/6]
~[(200/7-1)/6]-[(200/7-5)/6 ]
~[(200/11-5)/6 ][ (200/11-7)/6
~[(200/13-7)/6 ][ (200/13-11)/6 |
+[(200/5x7+1)/6 | +[(200/5x 7-1)/6 ]
=68-23+1
=46
2.3.3. Example No. 3
7(400) =2[(400-1)/6]+2+[(4+1)/6]
~[(400/5+1)/6 [ (400/5-1)/6 |
~[(400/7-1)/6]-[(400/7-5)/6]
~[(400/11-5)/6]-[ (400/11-7)/6 |
~[(400/13-7)/6 ][ (400/13-11)/6 |
~[(400/17-11)/6]-[(400/17-13)/6
-[(400/19-13)/6]-[(400/19-17)/6]
[(400/5x7+1)/6]+[(400/5x7-1)/6 |
+[(400/5x11+1)/6 ] +[ (400/5x11-1)/6 |
=134-62+6
=78

+
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2.3.4. Example No.4
7(1000) = 2[ (1000-1)/6 |+ 2+[ (4+1)/6 |

~[(1000/5+1)/6]~[ (1000/5-1)/6 |

~[(1000/7-1)/6]-[(1000/7-5)/6 |
~[(1000/11-5)/6 ][ (1000/11-7)/6
~[(1000/13-7)/6 |-[ (1000/13-11)/6 |
~[(1000/17-11)/6 | [ (1000/17 -13) /6 |
~[(1000/19-13)/6 |-[ (1000/19-17)/6 |
-[(1000/23-17)/6 ][ (1000/23-19)/6 |

[
[
[
[
[
-[(1000/25-19)/6 ][ (1000/25-23)/6 |
[
[
[
[
[

—~

—~

~[(1000/29 - 23)/6 ] [ (1000/29 - 25)/6 |

—~

(

(

(

(

(
-[(1000/31-25)/6 ][ (1000/31-29)/6 ]
+[(1000/5x 7+1)/6 | +[ (1000/5x 7 -1)/6 |
+[(1000/5x11+1)/6 ]+[ (1000/5x11-1)/6 |
+[(1000/5x13+1)/6 | +[ (1000/5x13-1) /6 |
+[(1000/5x17 +1)/6 | +[ (1000/5x17 ~1)/6 |
+[ (1000/5x19+1)/6 | +[ (1000/5x19-1)/6 |
+[ (1000/5% 23+1)/6 |+[ (1000/5x 23-1)/6 |
+[ (1000/5% 25+1) /6] +[ (1000/5x 25-1)/6 |
+[(1000/5% 29 +1)/6 ] +[ (1000/5x 29-1)/6 |
+[ (1000/5x31+1)/6 | +[ (1000/5x31-1)/6 |
+[ (1000/5x35+1)/6 | +[ (1000/5x 35-1)/6 ]
+[ (1000/5% 37 +1)/6 ] +[ (1000/5x 37 -1)/6 |
+[ (1000/7x11-1)/6]+[ (1000/7x11-5)/6 |
+[ (1000/7x13-1)/6 ]+ (1000/7x13-5)/6 |
+[ (1000/7x17-1)/6 | +[ (1000/7x17 -5)/6 |
+[ (1000/7x19-1)/6 ]+[ (1000/7x19-5)/6 |
—~[(1000/5x5x7+1)/6 ][ (1000/5x5x7-1)/6 |

=334-200+35-1
=168

2.3.5. Example No. 5
7(5000) = 2[ (5000-1)/6 | +2+[(2+1)/6]
~[(5000/5+1)/6 |-[ (5000/5-1)/6 |
~[(5000/7-1)/6]~[ (5000/7-5)/6]
~[(5000/11-5)/6 |-[ (5000/11-7)/6 |
~[(5000/13-7)/6]-[(5000/13-11)/6 |
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~[(5000/17-11)/6 | [ (5000/17 -13) /6 |
-[(5000/19-13)/6 |-[ (5000/19-17)/6 ]
~[(5000/23-17)/6 |-[ (5000/23-19)/6 |
~[(5000/25-19)/6 |-[ (5000/25-23)/6 |
~[(5000/29-23)/6 |-[ (5000/29-25)/6 |
~[(5000/31-25)/6 ][ (5000/31-29)/6 |
~[(5000/35-29)/6 ][ (5000/35-31)/6 |
~[(5000/37 -31)/6 ][ (5000/37 —35)/6 |
~[(5000/41-35)/6 ][ (5000/41-37)/6 |
~[(5000/43-37)/6 |-[ (5000/43-41)/6 |
~[(5000/47 - 41)/6 ][ (5000/47 —43) /6 |
~[(5000/49-43)/6 | [ (5000/49-47)/6 |
~[(5000/53-47)/6 | [ (5000/53—49)/6 |
—[(5000/55—49)/6 | [ (5000/55-53)/6 |
~[(5000/59-53)/6 | [ (5000/59 - 55)/6 |
~[(5000/61-55)/6 | [ (5000/61-59)/6 |
~[(5000/65-59)/6 | [ (5000/65-61)/6 |
~[(5000/67 - 61)/6 ][ (5000/67 —65)/6 |
+[(5000/5% 7+1)/6 | +[ (5000/5x 7 -1)/6 |
+[(5000/5x11+1)/6 |+[ (5000/5x11-1)/6 |
+[(5000/5x13+1)/6 | +[ (5000/5x13-1)/6 |
+[ (5000/5x17 +1)/6 | +[ (5000/5x17 1) /6 |
+[(5000/5x19+1)/6 | +[ (5000/5x19—1)/6 |
+[(5000/5x23+1)/6 | +[ (5000/5x 23-1)/6 |
+[ (5000/5x25+1)/6 ]+ (5000/5x 25—1)/6 |
+[(5000/5x 29+1)/6 | +[ (5000/5x 29-1)/6 |
+[(5000/5x31+1)/6 | +[ (5000/5x31-1)/6 |
+[(5000/5x35+1)/6 |+ [ (5000/5x35-1)/6 |
+[(5000/5x 37 +1)/6 | +[ (5000/5x 37 -1)/6 |
+[(5000/5x 41+1)/6]+[ (5000/5x41-1)/6 |
+[(5000/5x 43+1)/6 |+ (5000/5x 43—1)/6 |
(
(
(
(

-~ ~—

- —~—

(
+[ (5000/5x 47 +1)/6 | +[ (5000/5x 47 1) /6 |
+[ (5000/5x 49 +1)/6 |+[ (5000/5x 491
(
(

/6]
/6]
/6]

+[ (5000/5x53+1)/6 ] +[ (5000/5x 531
+[ (5000/5x55+1)/6 | +[ (5000/5x55 -1

S~ ~—
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+[(5000/5x59+1)/6 |+ (5000/5x59-1)/6 |
+[(5000/5x 61+1)/6 | +[ (5000/5x 61-1)/6 |
+[(5000/5x65+1)/6 | +[ (5000/5x 65—1)/6 |
5000/5x 67 +1)/6 | +[ (5000/5x 67 -1)/6 |
5000/5x 71+1)/6 | +[ (5000/5x 71-1)/6 |

[(
[(
[(
ul
+[(
+[(5000/5x73+1)/6 | +[ (5000/5x 73-1)/6
+[(5000/5x77+1)/6 | +[ (5000/5x 77 -1)/6 |
+[(5000/5x77+1)/6 | +[ (5000/5x 77 ~1)/6 |
+[(5000/5x79+1)/6 | +[ (5000/5x79-1)/6 |
+[ (5000/5x83+1)/6 | +[ (5000/5x83-1)/6 |
+[(5000/5x85+1)/6 | +[ (5000/5x85-1)/6 |
+[(5000/5x91+1)/6 | +[ (5000/5x91-1)/6 |
+[(5000/5x95+1)/6 ] +[ (5000/5x 95-1)/6 |
+[(5000/5% 97 +1)/6 | +[ (5000/5x 97 1) /6 |
+[(5000/5x101+1)/6 ] +[ (5000/5x101-1)/6 |
+[(5000/5x103+1)/6 ] +[ (5000/5x103-1)/6 |
+[ (5000/5x107 +1)/6 | +[ (5000/5x107 1) /6 |
+[(5000/5x109+1)/6 ] +[ (5000/5x109-1)/6 |
+[ (5000/5x103+1)/6 ]+ [ (5000/5x103-1)/6 |
(
+[ (5000/5x109+1)/6 ] +[ (5000/5x109-1)/6 ]
+[ (5000/5x113+1)/6 ]+ [ (5000/5x113-1)/6 |
+[ (5000/5x115+1)/6 | +[ (5000/5x115-1)/6 |
+[(5000/5x119+1)/6 ] +[ (5000/5x119-1)/6 |
+[(5000/5x121+1)/6 | +[ (5000/5x121-1)/6 |
+[(5000/5x125+1)/6 | +[ (5000/5x125—1)/6 |
+[(5000/5x127 +1)/6 ] +[ (5000/5x127 1) /6 |
+[(5000/5x131+1)/6 | +[ (5000/5x131-1)/6 |
+[(5000/5x133+1)/6 ] +[ (5000/5x133-1)/6 |
(
(
(
(
(
(

(
(
(
(
+[ (5000/5x107 +1)/6 | +[ (5000/5x107 1) /6 |
(
(
(
(

+[(5000/5x137 +1)/6 | +[ (5000/5x137 1) /6 |

+[ (5000/5x145+1)/6 | +[ (5000/5x145-1)/6 |
+[ (5000/5x149+1)/6 | +[ (5000/5x149-1)/6 |
+[ (5000/5x151+1)/6 | +[ (5000/5x151-1)/6 |

(
[ (
+[(5000/5x139+1)/6 ] +[ (5000/5x139-1)/6 |
+[(5000/5x143+1)/6 ] +[ (5000/5x143-1)/6 |
[ (
[ (
I
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+[(5000/5x155+1)/6 | +[ (5000/5x155—1)/6 ]
+[(5000/5x157 +1)/6 ] +[ (5000/5x157 1) /6 |
+[(5000/5x161+1)/6 | +[ (5000/5x161-1)/6 |
+[(5000/5x163+1)/6 | +[ (5000/5x163-1)/6 |
+[(5000/5x167 +1)/6 ] +[ (5000/5x167 1) /6 |
+[(5000/5x169 +1)/6 ] +[ (5000/5x169-1)/6 |
+[(5000/5x173+1)/6 ] +[ (5000/5x173-1)/6 |
+[(5000/5x175+1)/6 | +[ (5000/5x175-1)/6 ]
+[(5000/5x179+1)/6]+[ (5000/5x179-1)/6 |
+[(5000/5x181+1)/6 | +[(5000/5x181-1)/6 |
+[(5000/5x185+1)/6 | +[ (5000/5x185-1)/6 |
+[(5000/5x187 +1)/6 ] +[ (5000/5x187 1) /6 |
+[(5000/5x191+1)/6 | +[ (5000/5x191-1)/6 |
+[(5000/5x193+1)/6 | +[ (5000/5x193-1)/6 |
+[(5000/5x197 +1)/6 ] +[ (5000/5x197 1) /6 |
+[(5000/5x199 +1)/6 ] +[ (5000/5x199-1) /6 |
+[(5000/7x11-1)/6 |+ [ (5000/7x11-5)/6 |
+[(5000/7x13-1)/6 ] +[ (5000/7x13-5)/6 |
+[(5000/7x17-1)/6 | +[ (5000/7x17-5)/6 |
+[(5000/7x19-1)/6 |+ (5000/7x19-5)/6 |
+[(5000/7x 23-1)/6 | +[ (5000/7x 23—5)/6 |
+[(5000/7x 25-1)/6 | +[ (5000/7x 25-5)/6 |
+[(5000/7x 29-1)/6 |+[ (5000/7 % 29-5)/6 |
+[(5000/7x31-1)/6 ] +[ (5000/7x31-5)/6 |
+[(5000/7x35-1)/6 | +[ (5000/7x35-5)/6 |
+[(5000/7x37-1)/6 | +[ (5000/7x37-5)/6 |
( (
(
( [
( ]
(
(
(
(
(

+[ (5000/7 x 41-1)/6 ] +[ (5000/7x41-5)/6 |

[
[
[
[
+[(5000/7x43-1)/6 ]+
+[(5000/7x47-1)
+[(5000/7x49-1)

+[(5000/7x53-1)/6 ]+

L(
]
I+l
1+[(5000/7x43-5)/6
/6]+[(5000/7x47-5)/6 ]
/6]+[(5000/7x49-5)/6 |
[(5000/7x53-5)/6 |
+[(5000/7x55-1)/6 ]+ (5000/7x55-5)/6 |
+[(5000/7x59-1)/6 | +[ (5000/7x59-5)/6]
+[(5000/7x61-1)/6 |+[ (5000/7x61-5)/6 |
[(

+[(5000/7x65-1)/6 ] +[ (5000/7x65-5)/6 |
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+[(5000/7x67-1)/6 | +[ (5000/7x 67 ~5)/6
+[(5000/7x71-1)/6]+[ (5000/7x 71-5)/6 |
+[(5000/7x73—1)/6 | +[(5000/7x 73-5)/6 |
+[(5000/7x77-1)/6 | +[ (5000/7x 77 -5)/6 |
+[(5000/7x79-1)/6 | +[ (5000/7x 79-5)/6 |
+[(5000/7x83-1)/6 | +[ (5000/7x83-5)/6 |
+[(5000/7x85-1)/6 ] +[ (5000/7x85-5)/6 |
+[ (5000/7x89-1)/6 ] +[ (5000/7x89-5)/6 |
+[(5000/7x91-1)/6 | +[ (5000/7x91-5)/6 |
+[ (5000/7x95-1)/6]+[ (5000/7x95-5)/6 |
5000/7x 97 -1)/6 | +[ (5000/7x97 -5)/6 |
+[(5000/7x101-1)/6 | +[ (5000/7x101-5)/6 |
+[(5000/11x13-5)/6 | +[ (5000/11x13-7)/6 |

[
[
[
[
[
[
+[(5000/11x17-5)/6 |+[ (5000/11x17-7) /6]
[
[
[
[
[
+

+

+[(5000/11x19-5)/6 | +[ (5000/11x19-7)/6]
5000/11x 23-5)/6 ] +[ (5000/11x 23— 7)/6 |
+[(5000/11x 25-5)/6 | +[ (5000/11x 25-7) /6 |

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(5000/11x 29-5)/6 | +[ (5000/11x 29-7)/6 |
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

+

+
+[(5000/11x31-5)/6 | +[ (5000/11x31-7)/6 |
5000/11x35-5)/6 ] +[ (5000/11x35-7)/6 |
+[(5000/11x37 ~5)/6 ] +[ (5000/11x 37 - 7) /6 |
+[(5000/11x 41-5)/6 ]+ [ (5000/11x 41-7)/6]
+[(5000/13x17-7)/6 ] +[ (5000/13x17 ~11) /6 |
+[(5000/13x19-7)/6 ] +[ (5000/13x19-11)/6 |
+[(5000/13x 23-7)/6 ] +[ (5000/13x 23-11)/6 |
+[(5000/13x 25-7)/6 | +[ (5000/13x 25-11)/6 |
+[(5000/13x29-7) /6 | +[ (5000/13x 29-11)/6 |
~[(5000/5x5x7+1)/6 ][ (5000/5x5x 7 ~1)/6 |
~[(5000/5x5x11+1)/6]~[ (5000/5x5x11-1)/6 |
~[(5000/5x5x13+1)/6 |-[ (5000/5x5x13-1)/6 |
~[(5000/5x5x17+1)/6 | [ (5000/5x5x17 1) /6 |
~[(5000/5x5x19+1)/6 |-[ (5000/5x5x19-1)/6 |
—[(5000/5x5x23+1)/6 |-[ (5000/5x5x 23-1)/6 |
~[(5000/5x5x 25+1)/6 | [ (5000/5x 5x 25-1) /6 |
~[(5000/5x5x 29 +1)/6 ][ (5000/5x5x 29-1)/6 |
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~[(5000/5x5x31+1)/6 |-[ (5000/5x5x31-1)/6 |
~[(5000/5x5x35+1)/6 | [ (5000/5x5x35-1)/6]
~[(5000/5x5x37+1)/6 | [ (5000/5x5x 37 ~1)/6 |
~[(5000/5x5x 41+1)/6 | ~[ (5000/5x5x 41-1)/6 |
~[(5000/5x7x7+1)/6]—[(5000/5x7x7~1)/6 |
~[(5000/5% 7x11+1)/6 ][ (5000/5x 7x11-1)/6 |
[(5000/5x7x13+1)/6 ][ (5000/5x7x13-1)/6 |
[(5000/5x7x17+1)/6 ][ (5000/5% 7x17 1) /6 ]
~[(5000/5% 7x19+1)/6 ][ (5000/5x 7x19-1) /6]
~[(5000/5x 7x 23+1)/6 ][ (5000/5x 7x 23-1)/6 |
~[(5000/5x7x25+1)/6 |-[(5000/5x 7% 25-1)/6 |
~[(5000/5x11x11+1)/6 | [ (5000/5x11x11-1)/6]
~[(5000/5x11x13+1)/6 | ~[ (5000/5x11x13-1) /6]
~[(5000/5x11x17 +1)/6 | -[ (5000/5x11x17 ~1) /6 |
~[(5000/5x11x19+1)/6 ][ (5000/5x11x19-1)/6 |
~[(5000/5x13x13+1)/6 ][ (5000/5x13x13-1)/6 |
~[(5000/7x7x11+1)/6 |-[ (5000/7x7x11-1)/6 |
—~[(5000/7x7x13+1)/6 | -[ (5000/7x 7x13-1)/6]
~[(5000/5x5x5x7+1)/6 |~[ (5000/5x5x5x7~1)/6]
~[(5000/5x5x5x11+1)/6 | -[ (5000/5x5x5x11-1)/6 |

~[(5000/5x5x7x7+1)/6 | ~[ (5000/5x5x7x7~-1)/6 |
=1668-1441+495-54+1
=699

~—_~~ o~ ~
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