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(ORORY o s

Abstract

The aim of this work is to study the existence of periodic solutions of in-
tegro-differential equations

d

a[x(t)—L(xt)]z A[x(t)—L(xt)}rG(xt)+J:twa(t—s)x(s)ds+ f(t),
(0<t<2m) with the periodic condition X(O) = X(2n), where ael'(R,).

Our approach is based on the M-boundedness of linear operators B,  -mul-

tipliers and some results in Besov space.
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1. Introduction

The aim of this paper is to study the existence and solutions for some neutral
functional integro-differential equations with delay by using methods of maximal
regularity in spaces of vector-valued functions and Besov space. Motivated by the
fact that neutral functional integro-differential equations with finite delay arise in
many areas of applied mathematics, this type of equation has received much at-
tention in recent years. In particular, the problem of the existence of periodic solu-
tions has been considered by several authors. We refer the readers to papers [1] [2]
[3] and the references listed therein for information on this subject. One of the
most important tools to prove maximal regularity is the theory of Fourier multi-
pliers. They play an important role in the analysis of parabolic problems. In re-
cent years, it has become apparent that one needs not only the classical theorems
but also vector-valued extensions with operator-valued multiplier functions or sym-
bols. These extensions allow treating certain problems for evolution equations with

partial differential operators in an elegant and efficient manner in analogy to or-
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dinary differential equations. For some recent papers on the subjet, we refer to Liza-
ma et al. [4], Hino [5], Hale [6] and Pazy [7].

We characterize the existence of periodic solutions for the following integro-di-
fferential equations in vector-valued spaces and Besov. In the case of vector-valued
space, our results involve UMD spaces, the concept of R-boundedness and a con-
dition on the resolvent operator. We remark that many of the most powerful
modern theorems are valid in UMD spaces, ie., Banach space in which martin-
gale is unconditional differences. The probabilistic definition of UMD spaces
turns out to be equivalent to the L°-boundedness of the Hilbert transform, a
transformation, which is, in a sense, the typical representative example of a mul-
tiplier operator. On the other hand, the notion of R-boundedness has played an im-
portant role in the functional analytic approach to partial differential equa-
tions.

In the case of, Besov space, our results involve only boundedness of the resol-
vent.

In this work, we study the existence of periodic solutions for the following
integro-differential equations:

d
a[x(t)—L(xt)]:A[x(t)—L(xt):|+G(xt)+£wa(t—s)x(s)ds+f(t) (1)
where A:D(A)c X — X isalinear closed operator on Banach space (X,
and fel?(T,X) forall p>1.For r, =2nN (some NeN) Land G are
in B ( LP ([—an ,0], X ); X ) is the space of all bounded linear operators and X, is

an element of L° ([—rh ,0], X ) which is defined as follows:
X () =x(t+8) for @ e[-r,,,0].

For example:
2

%(W(t, X)-w(t-1, x)) = %(W(t, X)—w(t-1, x))+w(t —g, xj+ g(t,x)
Put y(1()=w(tx), Lig)=p(-). G(r)=o(-5 ], T((=0(tx)

2
and Ap=9¢".
Then we have:

d

SYO-L(5) = A0 L(3)+6(5)+ £ (1

In [8], the author investigated the existence of solutions of the following frac-

tional integrodifferential equation:
(x()-L(x)) = A(x()-L(x))+G(x)
STt ([ b(s-6)x()de)ds+ 1 (1)

" r(l-a)

2

In [9], S. Koumla, Kh. Ezzinbi and R. Bahloul., study the existence of mild so-
lutions for some partial functional integrodifferential equations with finite delay
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in a Fréchet space for equation:
u'(t) = Au(t)+ [. B(t—s)u(s)ds+ f (t,u,)+h(t,u,)

In [10], Ezzinbi et al. gave necessary and sufficient conditions for the existence
of periodic solutions of Equation (1) for a=0.

This work is organized as follows: after preliminaries in the second section,
we are able to characterize in Section 3 the existence and uniqueness of the strong
solution of the Equation (1) in Besov space, we obtain that the following asser-
tion are equivalent If sup, |lik (ikD, — AD, -G, — Sl(ik))f1 <o and
sup, ||(ikD, — AD, =G, —é(ik))il“ <oo then for every f eB; (T, X) there ex-

ist a unique strong B, ;-solution of (1). In section 4, we give the conclusion.

2. Preliminaries

In this section we introduce some of the concepts to be used thereafter. We also
review the classical results that provide material for a better understanding of the
paper. We study the notion of M-boundedness. We present the notion of multi-
pliers. Fourier multiplier theorems are of crucial importance in the study of
maximal regularity of evolution equations. Let X be a Banach Space. Firstly, we
denote By T the group defined as the quotient R/2nZ . There is an identifica-
tion between functions on T and 2r-periodic functions on R. We consider
the interval [0, 27‘c) as a model for T.

Given 1< p<w, we denote by L°(T;X) the space of 2r-periodic locally

p-integrable functions from R into X, with the norm:

111, = (I o o)

For f eL”(T;X), we denote by f(k) , keZ the k-th Fourier coefficient
of fthat is defined by:

f (k) =2—1ch02“e*‘k‘f (t)dt forkeZ and teR.

For 1< p <, the periodic vector-valued space is defined by
HP(T;X)={ueL’(T,X):3ve L’ (T, X),0(k)=iki(k)forallk e Z} ~(3)

Lemma 2.1 [7]:
Let G:LP (']I‘, X ) — X be a bounded linear operateur. Then:

—

G(u)(k)=G(et(k))=G,(k) forall k e Z

Next we give some preliminaries. Given ae L' (]R*) and U:[0,2n] > X (ex-
tended by periodicity to R ), we define:

F(t)=] a(t-s)u(s)ds.

Let &(1)= J:C e ™a(t)dt be the Laplace transform of a. An easy computation

shows that:
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F(k)=a(ik)d(k), forallk e Z (4)
3. Periodic Strong Solutions in Besov Spaces
3.1. Preliminary

In this section, we consider the periodic solutions of Equation (1) in periodic

Besov spaces B} | (T; X). Firstly, we briefly recall the definition of periodic Besov
spaces. Let S (R) be the Schwartz space of all rapidly decreasing smooth func-

tions on R. Let D(T) be the space of all infinitely differentiable functions
on T equipped with the locally convex topology given by the seminorms
||f||n =SUp,_p f(m (X)‘ for neN.Let D'(T;X)= E(D(T), X). In order to de-

fine Besov spaces, we consider the dyadic-like subsets of R:

lo={teR:|t| <2}, 1, ={teR,2*" <[] <2}
for keN. Let ¢(R) be the set of all systems ¢ =(d, )

supp(gy )= I, foreach keN, Y 4 (x)=1.
Let 1<p,q<eo, seR and (¢i )j>o e #(R) the X-valued periodic Besov spa-

c S(R) satisfying

keN

ce is defined by:

g \Ya
<op,
P

For more information about the standard definitions and properties, see [7].
Proposition 3.1 1) B} ((0,2n); X ) is a Banach space;
2) Let s>0.Then feB;7((0,2n);X) in and only if fis differentiale and

f'eB;,((0,2m); X)

By o (T;X)=4feD(T;X):|f

— siq
Bhg (Z 2

>0

kéemi (k) fA(k)

Definition 3.1 For 1< p <o, a sequence {Mk}kd c B(X,Y) isa B, -mul-
tiplier if for each f e B;’q (']I‘, X ) , there exists Ue B;q (T,Y) such that
G(k)=M,f (k) forall keZ.

Remark 3.1 1) When s>0,then B (T,X)cL’(T,X).

2) when Ue Bffql (T, X) is a strong B;‘q -solution of (1), then ue H? (']I‘, X ) R
therefore u is twicely differentiable a.e. and U (0) =u (2n) .

Definition 3.2 We say that {M,} _ < B(X,Y) is M-bounded if:

kez
SL:p||Mk||<oo, Sl:p||k(|\/|k+l—Mk)”<oo 5)
Stip”kz(Mm—ZMk My )| <o (6)

We recall the following operator-valued Fourier multiplier theorem on Besov
spaces.

Theorem 3.1 [7]

Let X, Y be Banach spaces and let {Mk }kgz c B(X ,Y) be a M-bounded sequ-

ence. Thenfor 1< p,g<o, seR, {Mk} isan B;vq -multiplier:

kez
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3.2. Main Result
For convenience, we introduce the following notations:
B, =KA(L.. — L), R =k(a(i(k+1))-a(ik)),Q, =k(L.; L),
R, =k(G1—Gy). 1, =k?(C, —=2C, ., +C, 1), I, =kZ (L 2L, + L 4).
In order to give our result, the following hypotheses are fundamental.
sup||a”1(ik)|| =a<owo,sup|B,[=b <,
k keZ
sup|[F||= f <oo,sup||R | = p <,
keZ keZ
sup||Q,|| = a < oo,sup|R, | = < o0,
keZ keZ
sup|[l, || =i <oo,sup|J, | = j <.
keZ kez
Definition 3.3: Let 1< p,q<o and s> 0. We say that a function
xeB;, (T' X) is a strong B; ,-solution of (1) if (X(t)— L(xt)) eD(A),

Dx, € BS+1 (T X) and Equation (1) holds for all teT.

We prove the following result.
Theorem 3.2: Let A be a linear closed operator. Suppose that

(ikD, — AD, -G, —4a(ik)) isinvertible for all k e Z.If

<o and

sup, [ik (ikD, — AD, ~G, —4(ik)) "

(ikD, - AD, -G, —a(ik))’l“ <@ then {ik (ikD, - AD, -G, —a(ik))’l}

sup, -
isan B, -multiplier for 1< p,q <o and s>0.
Proof. Let S, =ikN,, N, =(C,—AD,)", T,=GN,, F =a(ik)N, and
C, =ikD, -G, -a(ik).
For convenience, we introduce the following result:
C, —C,,, =[ikD, -G, —~a(ik)]-[i(k+1)D,, =Gy, ~&(i(k +1))]
=ikl —ikL, —G, —a(ik)—(ik +i)(1 - |<+1)+Gk+1+a( (k+ ))
= =il +il; +ik (L — L) +(Gyy — G )+ (a(i(k+1)) - a(ik))
Then we have:
K(Cy, —Cyy) =ikl +ikL, , +ik (k(L,; — L)) +k(Gy,, —Gy)
+k(a(i(k+1))-4(ik))
=—ikl +ikL,,, +ikQ, + R, + P,
Now, we are going to show that:
sup, [k (Ny, =Ny )| <=,
sup, [k (S.1 =S, )| < =, )

sup, [k (T =T, )| <0

and:
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sup, [k* (Ny; —2N, + N )| <0,
sup, [k (S, =28, + S, )| <=, (8)
sup, ||k2 (T — 2T + Ty )|| <o

T, || =a,. We have:

S¢|=a, and sup,.,

N, " =a;, SUPy4
sup [k (Ny,s =N, )|

keZ
k |:(Ck+1 —AD, )71 _(Ck —AD, )71}
= Skgg "ka+1 [C, —AD, —Cy,y + AD; N, "
= Sklig "ka+1 [(Ck ~Ce) = AL — L ):| N, "
= Sklejg "ka+1 [k(ck ~Ce) —KA(Ls — Ly )} N, "

= sup||N,, [kl +ikL, ; +ikQ + R +P, —B [N, |
keZ

Put sup,_,

=Sup
keZ

< Skugn[_Nku + Niabea + Nea Q]S + N RN, "
+Sku5"Nk+1pk Ny = Ny; BNy "
< (a1 +a1(2r2n)]/p ||L||+a1q)a2 +a’r+a’p+a’h.
We obtain:
iug"k(NM -N, )| < (9)
On the other hand, we have:
SUp"k (Se1— Sk )"
keZ

= sup|[k [i (k+1)(Cys — AD,.,) ' —ik(C, - AD, )’l}

KeZ
= Skg;)”kau [i (k +1)(Ck - A(I -L ))_ ik(Ck+1 - A(I - Lk+l)):| N, “
= Skgg“kNm [ik(ck —Cp) i (Ck —A(I-L)) - ikA(L, - Ly )] N, “

= igg"Nka [k(ck _Ck+1)] kN, +1kN, ;= Ny KA(L; - Ly )ika”

- skgguNM[k(ck ~Cyz) JikN, +ikN, ; =N, ByikN, |

k+l Nk+1BkSk

L
k+1

< SUP||Ny ,; [—iKI + KL, +ikQ, + R, +R]S,||+sup
keZ keZ

k
<sUp——Sy 4 [_I + Lk+1+Qk]Sk + Nk+1[Rk + Pk]sk
keZ k+l
k
+5kl£ _k+1sk+1_Nk+18kSk

<al (1+(2r27[)]/p ||L||+q)+a1a2 (r+p)+a, +baa,.

Then:
SUPy ez ”k (Sir — S )” <™
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Finally we have:

Skgg "k (T =T )" = Skgg "k [GyiNi.s =G N, ]”
= Skl:g"k (Gk+1 -G, ) Nt +Gkk(Nk+1 =N, )”

+5up[[Gk (N, =N )|
keZ

< Sup”k (G —Gi)Nia
kez

<sup[|R Ny, | +sup|G, [[sup [k (N, = N )|
keZ keZ keZ
<ra, +[G](2n,. )" sup e Ny~ Ny )

Then by (9) we have:

SUP,.z [|K (Tk+1 =Ty )" <®©

and:

supk (., ~F,)|
=sup k| &(i(k+1))N,,, —a(ik)N ]“
k+1

(i(k+1))+ ((i(k+1))—é(ik))Nk“

|4

=suplk(Nea )2

=supk (Ny =N (i (k+1)) + PN, |
( )

-N,

35up||k Ny — N, ||a+fa1
keZ

Then by (9) we have:
sy, [k (Fiy = F )| <o
proving (7). To verify (8), put b, =C, —aAD,,
sUPycz [K* (Nis = 2N, + Ny )|

k* |:(Ck+1 - ADk+1)71 -2(C, — AD, )71 + Nk—1:|

=SUp,.;

= sUPys [Nial N + N,y I Ny + (B =B ) (B s +B 3 ) KON N
50Dy [Pt (Bt =B ) KN N, |

Niale Ny + Ny 1IN, = (b, =b ) (b, +B ;) S, .S,

by 1 (B —b ) S 1Sy

=SUPycz,

+SUP, .z

we conclude that,

sup[[k? Ny, = 2N, + N )| <o (10)
keZ

So, (N, )keZ is M-bounded and therefore, by Theorem 3.1is an B; , -multiplier.

Furthermore:

SUPy.z, ”k3 (Nies 2N + N )”

= SUPycz ||Nk+1|kka +aNy; I kN, =k (b, =B ) (Bey +by) S Sy ”
bk—lk (bk+1 - bk ) Sk—lsk "
=SUPycz ||_Nk+1|ksk —aN 13, S =k (b =By ) (bes +b, 1) S sS, "
bk—lk (bk+1 - bk )Sk—lsk "

+ SupkeZ

+SUPycz
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Then:

sup|k® (N.y = 2N, + Ny ;)| <0 (11)
keZ

On the other hand, we have:
sUPcs [k (S =28, + S, )
= sup,.; [K* [i(k+1) N, ; —2ikN, +i(k=1)N,_, ]|
= sUp, .5 [ik® [Ny = 2Ny + Ny J+iK* (N =N )|
Then by (10) and (11), we have:
SUP,, [k (i =28, + S )| < =@
Finally we have:
1‘5""2 (T = 2T + T )|
:SKEQH"Z [GeaNia —2G N, +G (N, ]|
ss&)"kz (Gt (Nis =2Ny + N, ;) =2(Gy, ~ G )N, |
+50p|(G, ~Gyea )N |
sigg“Gm[kz (Nea=2N, +N, ) ]-2(Ga =G RN, |

#5Up(Gy 4Gyt )KN,
keZ

< SkLE'E‘ G [kz (Nk+1 —2N, + Nk—l):| -2k (Gk+1 -G, )Sk “

k
k (Gk—l - Gk+1)_s

+sup e

keZ

k
Gk+1[k2(Nk+l —2N, + Nk—l):|_2RkSk +R, msk—l

=sup
keZ
<(2r,, )" "G"SkLEJZp"kZ (Neow —2N, +N, )| +3ra,
Then by (10) we have:
SUPy 7 "k2 (Tk+1 - 2T, +Tk—1)|| <o
and:
Skgg”kz (Fea—2F +Fy )"
=sup[*[a(k +1) N, —2a(k)N, +a(k-1)N, ]|
keZ
Sﬁgg\\kz[a‘(k #1)(Ni 2N, + Ny ) -2(a(k+2)-a(k))N, ]|
+skl£Hk2[(é(k ~1)-a(k+1)N,4 |

Ssl(l:g“é(k #1)(K? (N 2Ny + N )+ 2ik (a(k+1) - a(K)) S, |

kLk(a(k-l)—é(k +1))S,;

+sup
keZ
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< asup"kz (Nk+1 —2N, + Nk-l)"

kez

+2$kL€J§||k(é(k +1)-4(k))|a, +ig§||k(a(k ~1)-a(k+1))a,

Then by hypotheses and (10) we have

sUp,, [K* (Foy = 2F + ey )| <0
So, (T,),., and (F),_, are M-bounded and therefore, by Theorem 3.1 are an
B, , -multiplier.

Theorem 3.3 Let 1< p,q<o and s>0. Let X be a Banach space. Suppose
that (ik— AD, —G, —da(ik)) isinvertible forall k eZ.
If sup, Hik (ikD, — AD, -G, - a(ik))’l“ <o and

sup, [(ikD, — AD, -G, —é(ik))fl“ <oo then for every feB (T,X) there ex-
ist a unique strong B, , -solution of (1).

Proof. Define S, =ikN,, N, =(ikD, - AD, —G, ~4(ik)) ", F =a(ik)N,
and T, =GN, for k eZ. Since by (7) and (8), (S, )keZ (N, )keZ (R )keZ and
(T, )keZ are M-bounded, we have by Theorem 3.1 that
(S )y ' (N, (Fo),, and (T,),_, arean B -multipliers. Since
D, S, —ADN, T, —&(ik)N, =1 (because ( (ikD,—AD -G, -F )N, =1 ),
we deduce AD N, isalsoan B -multiplicateur.

Nowlet f e Bqu (T, X ) . Then there exist U,V,W,Q,X € B;‘q (']I‘, X ) , such that

G(k)=N,f(k), 9(k)=D,S,f(k), W(k)=T,f(k), &(k)=Ff(k) and
G(k)=ADN, f (k) for all keZ. So, We have (ii(k)-Li(k))eD(A) and
A(G(k)-LG(k))=G(k) forall keZ,wededuce that (u(t)-L(u))eD(A).
On the other hand 3v e Bz,q (']T, X) such that
i(k)=D,S, f (k) =ikD,N, f (k) = ikD,(i (k) . By Lemma 2.2 we obtain
(Du, )’ =v(t) ae. Since Du, e B?ql (']I‘, X).

Wehave (Du,) (k)=ikD,d(k), (A(u()-L(u)))" (k)=AD,(k),

Gu (k)=G,G(k) and
J';a(t—s)u(s)ds(k) =4(ik)G(k) forall keZ, It follows from the identity
ikD,N, — AD,N, -G, N, —a(ik)N, =1
that:
(u(®)-L(u)) = Au(t)- L(u))+G(u)+[ a(t-s)u(s)ds+ f (t)

For the uniqueness we suppose two solutions U, and u,,then u=u,—u, is
strong L° -solution of equation (1) corresponding to the function f =0, taking
Fourier transform, we get (ikD, — AD, —G, —4(ik))i(k) =0, which implies that
U(k)=0 forall keZ and u(t)=0.Then u, =u,.
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On the other hand, we have ue HP (T;X) and by Remark 3.1 we deduce
Mx(0) = Mx(2r) . The proof completed.

4. Conclusion

We are obtained necessary and sufficient conditions to guarantee the existence
and uniqueness of periodic solutions to the equation

%[x(t)— L(%)]=A[x(t)- L(xt)J+G(xt)+£wa(t—s)x(s)ds+ f(t) in terms
of either the R-boundedness of the modified resolvent operator determined by
the equation. Our results are obtained in the vector-valued space and Besov

space.
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