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Abstract 
We provide the derivation of a new formula for the approximation of an 
integral Markov process arising in the approximation of stochastic differen-
tial equations. This formula extends an existing formula derived in [1]. We 
have shown numerically that the leading order approximation of the differen-
tial equation with noise by solving an associated averaged problem and esti-
mating the difference between them and the result is illustrated through some 
examples. 
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1. Introduction 

Nonlinear ordinary and partial differential equations arise in various fields of 
sciences, particularly fluid mechanics, solid state physics, plasma physics, nonli-
near optics, and mathematical biology. Powerful numerical methods and its im-
plementation can be obtained in [2]-[7]. However, nonlinear differential equa-
tions (DE) with parametric noise play a significant role in a range of application 
areas, including engineering, physics, mechanics, epidemiology, and neuros-
cience. It is important to mention that noisy systems can be modeled in several 
ways: for example, Langevin’s equation describes a linear physical system to 
which white noise is added, and the linear theory for it has been extended to 
nonlinear stochastic differential equations with additive white noise [8]. Another 
approach is to derive models, such as Markov chains, for the systems state va-
riables as being random, and then use the method of probability for analysis, see 
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[9]. Third approach was derived by averaging nonlinear oscillatory systems. In 
this approach, parameters in the system are allowed to be random processes, and 
the method based on averaging and ergodic theory provides useful predictions 
from the model [10]. Indeed, solutions of differential or dynamical systems are 
functions, say of time. If they are in addition random, we must describe both 
randomness and time dependence simultaneously. Thus we refer to the system 
as either a random process, or a stochastic process. A complete understanding of 
DE theory with perturbed noise requires familiarity with advanced probability 
and stochastic processes (see [8] [11]). 

In this paper, our approach to modeling randomness in differential or dy-
namical system is through allowing parameters b in a system to be a random 
process. For example, in the case of differential equation we write  
( ) ( ) ( )( )( ), , ,x t f t x t b y tω= , indicating that the parameters can change with 

some random process ( )y t . The resulting solutions ( ),x t b  will also be a ran-
dom process. This approach will be based on assuming noise process faster time 
scale than the system time scale. This work has been dedicated to the question in 
particular when y is a discrete-space Markov process. Most recent contributions 
have aimed in general at relaxing the assumptions on y [1] [12]. This result is 
known as Functional Central Limit Theorem [13] [14] [15]. 

In Section 2 we reviewed and discussed limit of variance for discrete-space 
Markov Chain [1]. In Section 3, a new equivalent expression for a limit of a va-
riance is given for circulant n-state markov chain. In Section 3, stochastic ap-
proximation and numerical simulation were discussed. It is observed that com-
puter simulations of this type of stochastic ordinary differential equation with 
standard methods have some issues needed to be explored so that the reader will 
be benefitted while solving these type problems numerically. 

2. Discrete-Space Markov Chains 

We consider the case where { }1, , nY y y=  , and let  

( )
( )

( )

1 1 1
, , and .

1n n

y y
y y e

y y

ϕ
ϕ

ϕ

    
    = = =    
        

    

The transition probability ( ), ,P t y dy′∆  can be represented by an n n×  
matrix P such that ( ), , ,i j i jP P t y y= ∆ , denotes the probability that ( ) jy t y∆ = , 
if ( )0 iy y=  (P depends on t∆  but this dependence is omitted from the nota-
tion for simplicity). The matrix P satisfies the following properties.   
• P is nonnegative (its entries are probabilities).  
• P is stochastic i.e., Pe e=  (one of the jy  must be the outcome of a transi-

tion from iy ).  
Then 1 1λ = , is an eigenvalue of P and ( )1 1P Pρ

∞
≤ ≤ = , shows that all 

other eigenvalues have modulus at most 1. We shall assume that   
• P is irreducible, i.e., any state jy  can be eventually be reached in a finite 

number of steps with a nonzero probability (this is the case if 0P > ). This 
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implies that ( )1 1 Pλ ρ= = , has multiplicity one (e.g., see [16]).  
• P is aperiodic (or acyclic, e.g., not a permutation). This implies that 1jλ <  

for 2, ,j n=   (e.g., see [9]; the chain is then called regular).  
The above conditions guarantee the existence of a unique vector 0v >  such 

that  
T 1,v e =                            (2.1) 

and Tlim N
N P ev→∞ = . The vector v  is the unique positive left eigenvector 

associated to 1 1λ = , satisfying (2.1). It is natural to consider the (spectral) de-
composition  

T ,P ev S= +                         (2.2) 

where  
T T0 , 0,v S Se= =                      (2.3) 

and ( ) 1Pρ < . From Chapman-Kolmogorov equation and the homogeneity 
property (see, [1]) we have  

( ) ( ) ( ) 2
, , ,

1 1
2 , , , , , , ,

n n

i j i k k j i k k j i j
k k

P t y y P t y y P t y y P P P
= =

∆ = ∆ ∆ = =∑ ∑  

and by induction  

( ) ( ) ( )T T
, , ,

, , ,N N
i j i j ji j i j

P N t y y P ev S ev v∆ = = + ≈ =  

as N →∞ , independently of i (i.e., iy ). Thus  

( ) ,tv yρ∆=                         (2.4) 

defines the limit distribution. An explicit expression of the coefficients of v  in 
terms of the coefficients of P can be found in [[17], p. 21]. 

The relation of the expected value yields  

( ) ( )( ) ( ) ( )

( ) ( )

( )( )

0
1

,1

, ,

,

j

n

j j iy y
j

n
N

ji jj

N

j

E y N t y P N t y y

P y

P y

ϕ ϕ

ϕ

ϕ

=
=

=

 ∆ = ∆ 

=

=

∑

∑           (2.5) 

i.e.,  

( ) ( )( )
( ) ( )( )

( ) ( )( )
( )

10

0

0

.

n

y y

N
y y

y y

E y N t

E y N t P y

E y N t

ϕ

ϕ ϕ

ϕ

=

=

=

  ∆  
   ∆ = =   

 ∆   

  

Then the zero average condition on ϕ  becomes  

( ) ( ) ( ) ( ) ( ) ( ) ( )T T

1
0 d .

n

j jY
j

y y y y y y v yϕ ρ ϕ ρ ρ ϕ ϕ
=

= = = =∑∫    (2.6) 

The relation (2.6) implies ( ) ( )Pϕ ϕ=y y . Therefore  
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( ) ( ) ( )( ),1
0

1

t
y y

N
y t E y N tϕ ϕ

∞
∆

=
=

 = ∆ ∆ ∑  

( )
1

N

N
t P yϕ

∞

=

= ∆ ∑                         (2.7) 

( )
1

N

N
t S yϕ

∞

=

= ∆ ∑                         (2.8) 

( ) ( )1 ,t I S S yϕ−= ∆ −                     (2.9) 

where ( ),11 t yϕ
ε

∆  can be interpreted as the expected value of the random 

variable ( ),11 t yϕ
ε

∆  obtained after one transition probability applied to the 

random variable y (for more detail, see [1]). Note that (2.7) implies  

( ) ( ) ( ),1 ,1 .t ty P y tP yϕ ϕ ϕ∆ ∆− = ∆   

Because of (2.3) we also have  

( )T ,1 0,tv yϕ∆ =                      (2.10) 

With ( )diagV v=  we obtain  

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 ,1 2

1 1

T T1

T 1

2

2

,

n n
t

t j j j jjj j
y y y t y y

t y V I S S y t y V y

t y V I S I S y

σ ϕ ρ ϕ ϕ ρ

ϕ ϕ ϕ ϕ

ϕ ϕ

∆
∆

= =

−

−

= + ∆

= ∆ − + ∆

= ∆ − +

∑ ∑

    (2.11) 

as t →∞ . The expression (2.11) represents the limit of a variance and thus ex-
pected to be nonnegative. 

Two-State Markov Chain 

Let 2n =  and  

( ) , ,
a a

P P t I tQ Q
b b
− 

= ∆ = + ∆ =  − 
            (2.12) 

with 0 , 1a b< < , 1 1 20 min ,t
a b a b

 < ∆ < ≤  + 
. Then (2.2) holds with  

( )

1

1
and .

b
v

aa b
t a b a a

S
b ba b

 
=  +  

− ∆ + − 
=  −+  

 

As a result 1 b
V

aa b
 

=  +  
 and  

( ) ( )
( )

( )( ) ( )( )
( )( ) ( )( )

2 2
1

3 2 2

2 2 11

2 1 2

b a t b a ab t a b
tV I S I S

a b ab t a b a b t a b

−
 + ∆ − − − ∆ +
 ∆ − + =  + − − ∆ + + ∆ −  

 (2.13) 
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is (symmetric) positive definite for any choice 0 , 1a b< <  and 20 t
a b

< ∆ <
+

. 

A simplified expression for (2.11) is obtained using (2.6), i.e.,  

( ) ( )1

1
.y yb

a
ϕ ϕ

 
 =
 −
  

 

We obtain  

( )( )
( ) ( )( )22

1

2b t a b
y

a a bεσ ϕ
− ∆ +

=
+

                     (2.14) 

( )( )
( )

( ) ( )( )2
1 23

2
.

ab t a b
y y

a b
ϕ ϕ

−∆ +
= −

+
 

3. Circulant n-State Markov Chain 

If P is doubly stochastic (i.e., P and PT are stochastic) and irreducible aperiodic 
then 

1 ,v e
n

=  

i.e., the limit distribution is uniform and  

1 .D I
n

=                          (3.16) 

Stochastic Toeplitz, hence circulant, matrices constitute an example of doubly 
stochastic matrices. Let  

1 2

2

2 1

,

n

n

n

a a a
a

P
a

a a a

 
 
 =
 
 
 



  

  



 

with 0ia ≥  and 1 1n
jj a

=
=∑ . A sufficient condition for P to be irreducible and 

aperiodic is for two consecutive ja  to be nonzero (i.e., positive, see e.g. [[18], p. 
5]). The symbol of P is the polynomial  

( ) 1

1
.

n
j

j
j

p z a z −

=

= ∑  

Since  

( )

1 1

1 1

,

n n

z z
P p z

z z− −

   
   
   =   
   
      

 

 

for 1nz = , P admits the spectral decomposition  
1 ,HP V V V V−= Λ = Λ  

with  
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1 1

1 1
1 1

1 1 1
11 1 ,

1

n

n n
n

z z
V e V

n n
z z

−

− −
−

 
    = =     
 
 







   



            (3.17) 

( )

( )

1

1

1
1

,

n

p z

p z −

 
    Λ = =    Λ   
  





             (3.18) 

where 
2

1e
i j

jn
jz z

π

= = . Multiplication of a vector by the matrix HV  performs a  

(normalized) discrete Fast Fourier Transform (FFT), while multiplication by V 
results in the inverse (normalized) discrete FFT. 

We write T T1 1HP ee V V ee P
n n

= + Λ = +    , with HP V V= Λ    . Since  

( ) 1kp z <  for 1, , 1k n= −  the matrix I −Λ  is nonsingular. The matrix  
HVV   represents the (orthogonal) projection onto { } { }Span Spanv e⊥ ⊥= .  

Hence ( )T 0v yϕ =  implies ( ) ( )Hy VV yϕ ϕ=   . Then  

( ) ( ) ( ) ( )
( ) ( )
( )( ) ( ) ( )

( ) ( ) ( ) ( )

1

1
.

H H

H

H

H

I P y I V V VV y

V I V y

V I I I V y

I P V I I V y

ϕ ϕ

ϕ

ϕ

ϕ

−

−

+ = + Λ

= + Λ

= −Λ −Λ +Λ

= − −Λ + Λ

     

  

    

    

        (3.19) 

Now  

( )( )
( )
( )

( )

( )
( )

1

1 2

1

1

1 1

1

,

nH
k kk

n
n j

j k
j

k

y
y

V y z z
n

y

y z
n

z

ϕ
ϕ

ϕ

ϕ

ϕ

−

−

=

 
 

   =     
 
 

=

= Φ

∑







 

for 1, , 1k n= −  ( ( )yϕ  is real), with  

( ) ( ) 1

1

1 .
n

j
j

j
z y z

n
ϕ −

=

Φ = ∑                  (3.20) 

From (3.19) and (3.16) we obtain  

( )( ) ( ) ( ) ( )( )12 HH H
t

t V y I I V y
n

σ ϕ ϕ
−

∆
∆

= −Λ + Λ     

( )
( ) ( )

1 2

1

1
1

n
k

k
k k

p zt z
n p z

−

=

+∆
= Φ

−∑                        (3.21) 

( )
( ) ( )

1 2

1

1
1

n
k

k
k k

p zt z
n p z

−

=

 +∆
= ℜ Φ  − 

∑                     (3.22) 
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( )
( )

( )
2

1 2

2
1

1
,

1

n
k

k
k k

p zt z
n p z

−

=

−∆
= Φ

−
∑                      (3.23) 

since 2
tσ∆  is real and ( ) ( )k kp z p z= , for 1, , 1k n= − . The condition 

( ) 1kp z <  for 1, , 1k n= −  clearly shows that (3.23) is nonnegative. 

3.1. Example: Uniform Distribution 

If 1
ja

n
= , 1, ,j n=  , (i.e., T1P ee

n
= ) we obtain  

( ) 1

1

11 1 0
1

nn
j k

k k
j k

z
p z z

n n z
−

=

−
= = =

−∑  

for 1, , 1k n= − . Parseval’s identity yields  

( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )

1 1 1 22 2

1 0 0

2T T

1
.

n n n
H

k k kk k k
n

H
j

j

z z V y

y VV y y y y

ϕ

ϕ ϕ ϕ ϕ ϕ

− − −

= = =

=

Φ = Φ =

= = =

∑ ∑ ∑

∑
 

Then (3.23) reduces to  

( ) ( ) ( ) ( )
1 222 2

1 1
d , as .

n n

t k j tY
k j

t tz y t y y n
n n

σ ϕ ϕ ρ
−

∆ ∆
= =

∆ ∆
= Φ = ≈ ∆ →∞∑ ∑ ∫  

3.2. Example: Big World Transition Probability 

Assume now that the probability i jy y→ , j i≠ , is independent of j but dis-
tinct from the probability i iy y→ , i.e.,  

1 21 , ,
1n

a ta a t a a
n
∆

= − ∆ = = =
−

  

with 0 1a t< < ∆ . Then  

( ) ( )11 1
1 1 1

n
na t a t z zp z a t z z a t

n n z
−∆ ∆ −

= − ∆ + + + = − ∆ +
− − −

  

for 1z ≠ . In particular  

( ) 1
1 1 ,

11 1
k

k
k

za t na tp z a t
n z n

−∆ ∆
= − ∆ + = −

− − −
 

for 1, , 1k n= − . Therefore, by Parseval again,  

( )

( ) ( )

( ) ( )

22

1

2

2

2 11

1
2 d as

2 d as 0.

n

t j
j

tY

tY

na t
n y

na n
n

ta y y n
a

y y t
a

σ ϕ

ϕ ρ

ϕ ρ

∆
=

∆

∆

∆
−

−=

−
− ∆

≈ →∞

≈ ∆ →

∑

∫

∫

          (3.24) 

3.3. Example: Small World Transition Probability 

A case of particular interest in the study of the transmission of a signal around a 
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cyclic biological chain corresponds to  

1 2 31 , , 0,na a t a a t a a= − ∆ = ∆ = = =  

with 0 1a t< < ∆ . The quantity 2a  represents the transition probability of a 
state jy  to the next state 1jy + . Then ( ) 1p z a t az t= − ∆ + ∆ , and  

( )
( )

( ) ( )
( ) ( )

2
2 2

2 2 2

1 e 1 1 1 ,
1 e

iy

iy

p a t a t a t a t
a ta t a t a tp

− − − ∆ + ∆ − ∆ − ∆
= =

∆∆ − ∆ + ∆−
 

for 0 2y< < π . Therefore  

( ) 22

1

1 1 n

t j
j

a t y
a n

σ ϕ∆
=

− ∆
= ∑                     (3.25) 

( ) ( )21 d astY

a t y y n
a

ϕ ρ∆
− ∆

≈ →∞∫  

( ) ( )21 d , as 0.tY
y y t

a
ϕ ρ∆≈ ∆ →∫           (3.26) 

For 2n = , (3.25) reduces to ( ) ( )2 2
1 21

2
y yta

a
ϕ ϕ+−∆ . Note that (3.26) is half  

of (3.24), as could be expected from a less dispersive signal. 
In the following section our approach to modeling randomness in dynamical 

systems is through allowing parameters in a system to be a random process. This 
approach will determine when solution of this type of stochastic problem do or 
do not persist when the system is perturbed. 

4. Mathematical Derivation for Numerical Approximation of  
Stochastic Differential Equations (SDE) 

For the simplicity, consider  

( ) ( )( )
( )

( ) 0

, , , ,

,

0 ,

x t f t x t y

y y t

x x

ω

ε

 =
 =
 =



                      (27) 

The average system is defined by the differential equation  

( ) ( )( )
( ) 0

, , ,

0 ,

x t f t x t

x x

ω =


=



                       (28) 

We want to compute the deviation of the perturbed system to be average one. 
We consider x x x= − , then  

( ) ( )
( ) ( ) ( )

( ) ( ) ( )( )

, , , , ,

, , , , , , , ,

, , , , , , , .x

x x x

f t x x y f t x

f t x y f t x y x f t x

f t x x f t x y f t x

ω ω

ω ω ω

ω ω ω

= −

= + −

= + + −

+ −




 









 

Note that ( )0 0x = , ⇒   
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( )( ) ( ) ( )( ) ( )( )
0 0

, , d , , , , , d .
t t

xx f s x s x s f s x s y s f s x s sω ω ε ω = + − ∫ ∫   

It follows from limit theorem of stochastic processes (see, [2]),  

( ) ( )( ) ( )( ) ( )( )2
0

1 , , , , , d 0, .
t

f s x s y s f s x s s N tω ε ω σ
ε

 − ∫   

Detailed derivation of ( )2 tσ  is shown in Section 2. The stochastic processes  

( ) ( ) ( ) ,
x t x t

x t
ε

−
≈   

converge in expected sense to the solution ( )x t  that is the solution to the 
integral equation  

( ) ( )( ) ( ) ( )
0

, , d .
t

xx t f s x s x s s tω σ= +∫   

The distribution of ( )x t  is close to the distribution of the stochastic 
processes ( ) ( )x t x tε+   in the sense that  

( )( ) ( ) ( )( ).E x t E x t x tε= +   

Thus ( ) ( ) ( ) ( )x t x t x t oε ε≈ + + , as 0ε → . Thus the nature of this con-
vergence and the sense in which the error in the formula of the expansion x is 
small are in the sense of distributions over some time interval. 

4.1. Forward Euler Scheme for SDE 

The Euler method to approximate the analytic solution of the IVP 

( ) ( )( )
( ) 0

, , ,

0 .

x t f t x y t

x x

ε =


=



                    (4.29) 

We can derive an entire family of discrete numerical methods (including the 
Euler method) by truncating the Taylor series and utilizing Taylor’s Theorem. 
First, we rewrite the Taylor series expansion in differential form,  

( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )( ) ( )( )

( ) ( )( )( )

2

2

3

1! 2! !

, , , , , ,
2

, .
6

nh h hx t h x t x t y t y t
n

hx t hf t x y t f t x y t f t x y t

h f f f f f f

ε ε ε

′ ′′ ′′+ = + + + + +

′= + + +

′′ ′ ′+ + +

 





 

The Euler method is found by truncating Taylor series at the first derivative, 
giving  

( ) ( ) ( )( ) ( )2, , ,x t h x t hf t x y t o hε+ = + +            (4.30) 

where ( )2o h  is the error term, or Taylors remainder term, which is of order 
2h . So if we define ( )nx x t h= + , and ( )1nx x t h+ = + , we obtain  

( )( )1 , , ,n n nx x hf n x y n ε+ = +  
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which has local error term (error at each step) of ( )2o h , giving a global error 
( )o h . 

4.2. Discrete Approximation for SDE 

Numerical schemes for solving SDE can be classified into either explicit or im-
plicit methods. Explicit methods compute approximations that are dependent on 
previous approximations only, whereas the implicit methods compute approxi-
mations that are dependent on previous and current approximations. The Euler 
method presented earlier is also known as the explicit Euler method. The explicit 
Euler method is defined as  

( )1 , , ,i i i i ix x hf t x y ε+ = +                     (4.31) 

where ( )i ix x t=  and ( )1i i hx x t+ += . Here h is the step size. This method has a 
global error ( )o h≈ . The implicit method is defined as  

( )( )1 1 1, , ,i i i i ix x hf t x y ε+ + += +                   (4.32) 

where ( )i ix x t= , and ( )1i ix x t h+ = + . This method has a global error ( )o h≈ .  

4.3. Example 1 

We write the algorithm for the following equation, which we will be used as a 
test equation since it has an analytic solution.  

( ) ( )
( )

,

0 0,

x t y t

x

ε=


=



                       (4.33) 

over [ ]0,1  and then  

( ) ( ) ( ) ( ).x t h x t hy t o hε+ = + +  Now, 

1) choose a step ( )1 0h N= − . Set 0nx nh= + , 0 :n N= .  
2) Generate approximation nx  to from the following recursion:  

( )
( )

( )( )( )

( )( )( )

1
0

1
0

1
0

1
0

0

1 ,
1

n
n k

n
k

h n
l

h n
l

x h y kh

h y kh

hny h y l y

hny H y l y

ε

ε

ε

ε

ε
ε

−

=

−

=

−

=

−

=

= +

=

= + −

= + −

∑
∑

∑

∑

 

for 0 : 1n N= − .  
As 0ε → ,  

( ) ,nx hny H W hn Errorε→ + +  

where h Hε=  in our numerical simulation and W is realized by the normally 
distributed random number whose expectation and variance are 0 and 1, respec-
tively. A computer simulation of the distribution of solution of ( )1,x ε  using 
Euler without max step size, ode15s without max step, and ode15s using max 
step size are given in Figure 1. 
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Figure 1. Horizontal bar plot: x vs. bins. This figure shows the distribution of ( )1,x ε  

represented by the vertical axis of 500 sample paths versus bins in the horizontal axis at 
the final time t = 1 of the system (4.33). In this case, ( )0 1x = , =0.67, 0 1t≤ ≤ , and 

0.1H = , 0.01ε = . The left figure shows the distribution of ( )1,x ε  using Euler 

without max step size. The middle figure shows the distribution of ( )1,x ε  using ode15s 

solver without max step size. The right figure shows the distribution of ( )1,x ε  using 

ode15s using max step size. 

4.4. Example 2 

We consider a stochastic process ( )x tε  is defined by the differential equation  

( ) ( )

( )

0.5 , , , ,

0 1,

tx t tx y f t x y

x

ε
ε

   = − − ≡   
  

 =



             (4.34) 

with  
{ }0,1 ,Y =  

0.8 0.2
,

0.1 0.9
P  
=  
 

 

0.2 0.2
,

0.1 0.1
Q

− 
=  − 

 

and limiting distribution  

{ }1 3, 2 3ρ =  

We want to solve (4.34) numerically over time interval [ ]0,1  using   
1) Forward Euler with smaller time scale.  
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2) evaluate x xε+  , where  

( )1 2
1 2 0.5 , , ,
3 3

x tx y y f t xε = − + − ≡ 
 

               (4.35) 

and  

( ) ( )d , , d d .xx f t x x t t Wε σ= +                    (4.36) 

3) compare 2. with 1., where ( )x t  and ( )x t  are the solutions of (4.35) 
(using large time scale) and (4.36) respectively. And ( )tσ  is computed using 
(2.15) along with , ,f fρ , and ( )d d 0,1W t N= . Comparison of the averaged 
system to the perturbed system as well as error convergence are illustrated in 
Figure 2 and Figure 3.  

4.5. Example 3 

We consider a stochastic process ( )x tε  is defined by the differential equation  

( ) ( ) ( )

( )

1 2 cos cos , , , ,

0 1,

tx t y x f t x y

x

ε
ε

   = + ≡   
  

 =



          (4.37) 

with  
{ }0,1 ,Y =  

 

 
Figure 2. Left figure: x  and x  vs. t. Comparison of the averaged system to the 
perturbed system. Red curve shows the solution of the averaged system; other curves are 
solutions of the perturbed system with different ε . Right figure: horizontal bar plot, 
where the vertical axis represents the distribution of solutions for 500 sample paths of the 
system (4.34) at the final time t = 1. In this case, 0.01ε = , 0 1t≤ ≤ , y  is generated 
with two state Markov process with y  = 0.67.  
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Figure 3. Error plots: ( ) ( ) ( )( )E x t x t x tε− +   represents vertical axis vs ε , which 

represents horizontal axis. Dashed line is the line with the reference slope 1/2. Graphs are 
drawn on log-log scale.  
 

0.8 0.2
,

0.1 0.9
P  
=  
 

 

0.2 0.2
,

0.1 0.1
Q

− 
=  − 

 

and limiting distribution  
{ }1 3, 2 3ρ =  

We want to solve (4.37) numerically over time interval [ ]0,1  using   
1) Forward Euler with smaller time scale.  
2) evaluate x xε+   (using smaller time scale, h), where  

( ) ( )1 2cos 0 cos1 cos , , ,
3

1
3

2x x f t xε = + + ≡ 
 

          (4.38) 

and  

( ) ( )d , , d d .xx f t x x t t Wε σ= +                  (4.39) 

3) compare 2. with 1., where ( )x x  and ( )x t  is the solution of (4.38) (using 
large time scale), and (4.39) respectively. And ( )tσ  is computed using (2.15) 
along with , ,f fρ  and ( )d d 0,1W t N= . Comparison of the averaged system 
to the perturbed system as well as error convergence are illustrated in Figure 4 
and Figure 5.  

4.6. Example 4 

We consider a stochastic process ( )x tε  is defined by the differential equation  
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Figure 4. Left figure: x  and x  vs. t. Comparison of the averaged system to the 
perturbed system. Red curve shows the solution of the averaged system; other curves are 
solutions of the perturbed system with different ε . Right figure: horizontal bar plot, 
where the vertical axis represents the distribution of solutions for 500 sample paths of the 
system (4.37) at the final time t = 1. Here 0.01ε = , 0 1t≤ ≤ , y  is generated with two 
sate Markov process with y  = 0.67.   
 

 

Figure 5. Error plots: ( ) ( ) ( )( )E x t x t x tε− +   represents vertical axis vs ε , which 

represents horizontal axis. Dashed line is the line with slope 1/2. Graphs are drawn on 
log-log scale.  

https://doi.org/10.4236/apm.2022.121003


M. Rahman 
 

 

DOI: 10.4236/apm.2022.121003 43 Advances in Pure Mathematics 
 

( ) ( ) ( )

( )

1 3 cos , , ,

0 1,

t tx t y y x f t x y

x

ε
ε ε

     = + − + ≡     
    

 =



       (4.40) 

with  

{ }0,1 ,Y =  

0.8 0.2
,

0.1 0.9
P  
=  
 

 

0.2 0.2
,

0.1 0.1
Q

− 
=  − 

 

and limiting distribution  

{ }1 3,2 3 .ρ =  

We want to solve (4.40) numerically over time interval [ ]0,1  using   
1) Forward Euler with smaller time scale.  
2) evaluate x xε+   (using smaller time scale, h), where  

( ) ( ) ( )1 3 cos , , .x y y x f t xε= + − + ≡              (4.41) 

and  

( ) ( ) ( )d , , cos d d .xx f t x x x t t Wε σ= +               (4.42) 

3) compare 2. with 1. where ( )x t  and ( )x t  is the solution of (4.41) (using 
large time scale) and (4.42) respectively. And ( )tσ  is computed using (2.15) 
along with , ,f fρ , and ( )d d 0,1W t N= . Comparison of the averaged system 
to the perturbed system as well as error convergence are illustrated in Figure 6 
and Figure 7.  

4.7. Strong Convergence 

In the examples above, directly simulated solution ( )x tε  with smaller time scale 
matches more closely to the solution ( ) ( )x t x tε+  , (where ( )x t  solved using 
larger time scale and ( )x t  is the solution of ( ) ( )d , , d dxx f t y x x t t wσ= +  , us-
ing Euler with large time scale H) as ε  is decreased, the convergence seems to 
take place. Using ( ) ( ) ( )( )E x t x t x tε ε− +  , where E denotes the expected val-
ue, leads the concept of strong convergence. A method is said to have strong or-
der of convergence equal to m if there exists a constants K such that  

( ) ( ) ( )( ) ( ) ,mE x t x t x t Kε ε ε− + ≤              (4.43) 

and ε  is sufficiently small. It can be shown that perturbation method has 
strong order of convergence 1m = . In our numerical tests, we will focus on the 
error at the end point t tfinal= , so let  

( ) ( ) ( )( ) .strongError E x t x t x tε ε= − +             (4.44) 

If the bound in (4.43) holds with 1m =  at any fixed point in [ ]0, tfinal , then 
it certainly holds at the end point, so we have  
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Figure 6. Left figure: x  and x  vs. t. Comparison of the averaged system to the 
perturbed system. Red curve shows the solution of the averaged system; other curves are 
solutions of the perturbed system with different ε . Right figure: horizontal bar plot, 
where the vertical axis represents the distribution of solutions for 500 sample paths of the 
system (4.40) at the final time t = 1. In this case, 0.01ε = , 0 1t≤ ≤ , y  is generated 
with two state Markov process with y  = 0.67. 
 

 

Figure 7. Error plots: The vertical axis represents ( ) ( ) ( )( )E x t x t x tε− +   vs ε , 

which represents the horizontal axis. Dashed line is the line with the reference slope 1/2. 
Graphs are drawn on log-log scale.  
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1,strongError Kε≤                       (4.45) 

for sufficiently small ε . It is shown that perturbation method has strong order 
of convergence 1m = . While experimenting the error strongError , we implicitly 
assumed that number of other sources of error are negligible, including error 
arising from approximating an expected value by sample mean, inherent error in 
the random generator, and floating point roundoff errors. For a typical compu-
tation the sampling error is likely to be the most significant of these three. In 
preparing the programs for these simulations we found that some experimenta-
tion is required to make the number of samples sufficiently large and the time 
step is sufficiently small for the predicted order of convergence to be observable. 
The sampling error decays like 1 n , where n is the number of sample paths 
used. A study in ([19]) indicates that as step size decreases, the lack of indepen-
dence in the samples from a random generator typically degrades the computa-
tion before rounding errors becomes significant. 

Although the definition of strong convergence involves an expected value, it 
has implications for individual simulations. The Markov inequality says that if a 
random variable ξ  has a finite expected value, then for any 0a >  the proba-
bility that aξ ≥  is bounded above by E aξ , that is,  

( ) .
E

P a
a
ξ

ξ > ≤  

Hence taking 1 2a ε= , we see that perturbation method’s strong convergence 
of order 1m =  is  

( ) ( ) ( )( )( )1 2 1 2 ,P x t x t x t Kε ε ε ε− + ≥ ≤  

or, equivalently,  

( ) ( ) ( )( )( )1 2 1 21 .P x t x t x t Kε ε ε ε− + < ≥ −  

This shows that the error at a fixed point in [ ]0, tfinal  is small with probabil-
ity close to 1.  

4.8. Conclusion 

Stochastic approximations for the process ( )x t  with parametric noise can be 
used to analyze aspects of noise. The result of the analysis is an approximation of 
the form ( ) ( ) ( ) ( )x t x t x t oε ε≈ + +  for ( )x t  of the system. This can be 
used to evaluate the impact of parametric noise in the neural network. First of 
all, the system can be averaged. The system for x  may or may not be analyti-
cally solvable but we develop numerical method for its solution. Second, the next 
order term solves a linear system forced by a Gaussian process, whose statistics 
depends on the nature of noise in the model. 

Our systems are characterized by some system components which combine 
very fast and very slow behavior. These systems require adaptable step-size, as 
only in certain phases they require very small step size. It is important to use in-
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tegration method that allows an efficient step size control. A system is called stiff 
when integrated with an explicit algorithm and a local error tolerance 10 n− , the 
step size of the algorithm is forced down to below a value indicated by the local 
error estimate due to constraints imposed on it by the limited size of the numer-
ical stable region. Ode15s is a variable-order solver based on numerical differen-
tiations formulas, optionally uses the backward differentiations formulas (also 
known a Gear’s method) like ode113, ode15s is multi-step solver. If one suspects 
that the problem is stiff or if ode45 fails or is very inefficient, try ode15s. But this 
slow vs. fast time scale problem, if we do not use max step size for the ode15s, 
the method does not give the correct result which is reflected in Figure 1. 

Future work will address systems involving noisy neural network and the im-
pact of noise on a node’s information processing capability which is determined 
by its signal-to-noise ratio which can be estimated by spectral methods. 
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