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Abstract 
The author presents a new approach which is used to solve an important Di-
ophantine problem. An elementary argument is used to furnish another fully 
transparent proof of Fermat’s Last Theorem. This was first stated by Pierre de 
Fermat in the seventeenth century. It is widely regarded that no elementary 
proof of this theorem exists. The author provides evidence to dispel this be-
lief. 
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1. Introduction 

Define n to be any integer such that 1n > . Suppose that , ,a b c  are positive in-
tegers satisfying  

,n n na b c= +                             (1) 

where a b c> > . It was first conjectured by Pierre de Fermat in the 1630s that 
no solutions of (1) exist for 2n > . Fermat once claimed to have found proof of 
this conjecture, and so it was regarded as a theorem. Because all Fermat’s other 
theorems were subsequently proved, this statement became known as Fermat’s 
Last Theorem. Some special cases of the insolubility of (1) have been examined 
in both [1] and [2]. The first full proof of Fermat’s Last Theorem was established 
as being a consequence of the modularity theorem for semistable elliptic curves, 
which was proved in [3] and [4] by Wiles and Taylor. This was succeeded by the 
proof of the full modularity theorem (in [5] [6] [7]) which settled a longstanding 
conjecture formulated by Taniyama, Shimura and Weil. The methods in this paper 
do not involve elliptic curves. Instead, a very simple argument is used to deal with 
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(1). A brief history of the subject is given in [8]. A new proof showing that (1) is 
insoluble for 2n >  is provided in the subsequent section. The author has pre-
viously discovered another simpler proof [9] of Fermat’s Last Theorem by de-
riving the fact that (1) has no solutions for n c≥ . A completely different ap-
proach is used here. The following lemmas are fundamental results that are ne-
cessary for the novel argument employed in the proof of the theorem that follows. 
Note that the trivial case b = c is discarded by considering Lemma 3. 

2. Analysis 

Lemma 1. If (1) holds only for 2n > , then it may be assumed without loss of 
generality that n is an odd prime.  

Proof. Suppose that 2 n p m< = ⋅ , where p is prime and m is some positive 
integer. It is possible to rewrite (1) as  

( ) ( ) ( ) .
p p pm m ma b c= −                         (2) 

Suppose that q is some odd prime. The integer n, being at least 3, is divisible 
by an integer y such that { }4,y q∈ . It is proved in [1] that (1) cannot be satis-
fied by 4n = . The desired result follows from the last two statements together 
with the last equation.                                               □ 

Lemma 2. Suppose that (1) is true. Then ( ) 2a b c a< + < .  
Proof. Since 1a b c> > > , it is clear that ( ) 2b c a+ < . By using (1), it is easi-

ly seen that  

( ) .nn n na b c b c= + < +                         (3) 

The statement of the lemma follows immediately.                      □ 
Lemma 3. Suppose that (1) is true. Then it may be assumed without loss of 

generality that , ,a b c  are pairwise coprime.  
Proof. Divide , ,n n na b c  in (1) by their greatest common divisor. The state-

ment of the lemma follows immediately.                                □ 
The following theorem is an important result which is established in an origi-

nal and simple manner. 
Theorem 1. Suppose that 2n > . Then (1) has no solution.  
Proof. Suppose that (1) holds. By considering Lemma 1, it may be assumed 

without loss of generality that n is an odd prime. Since n is odd,  

( ) ,n n na b c M b c= + = +                        (4) 

where  

( )1 2 1 .n n nM b b c c− − −= − + +�                      (5) 

It can be deduced from (1) that  

( ) ,n n nb a c L a c= − = −                        (6) 

where  

( )1 2 1 .n n nL a a c c− − −= + + +�                      (7) 
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By considering Lemma 2 with the fact that 0a b c> > > , it can be deter-
mined that ( )1 a c b< − < . It can also be deduced from (1) that  

( ) ,n n nc a b K a b= − = −                        (8) 

where  

( )1 2 1 .n n nK a a b b− − −= + + +�                      (9) 

By considering Lemma 2 with the fact that 0a b c> > > , it can be deter-
mined that ( )1 a b c≤ − < . It follows from (4) that ( ) | nb c a+ , so that there ex-
ists some integer ap  which is a common factor of a and ( )b c+  such that 

1ap > . The last three pairs of equations can be used to distinguish various cases. 
First suppose that ( )b c M+ ⊥ . Then it follows that there exists some ap  such 
that |ap M . Given that ( )b c M+ ⊥ , it may then be assumed without loss of 
generality in the subsequent argument that ap  can be chosen such that  

( )0 mod .aM p≡                          (10) 

Because ( )|ap b c+ , it is evident that  

( )mod .ab c p≡ −                          (11) 

By considering the last two equations with (5), it can be established that  

( )1 0 mod ,n
aM nb p−≡ ≡                      (12) 

so that ( )1| n
ap nb − . Since |ap a  and a b⊥  by an application of Lemma 3 

(so that , ,a b c  are assumed without loss of generality to be pairwise coprime), 
it is clear that 1n

ap b − . It follows from the last two sentences that |ap n . By 
recalling that n is an odd prime and that 1ap > , it is immediately apparent that 

an p= . Hence, if ( )b c M+ ⊥  then an p= , where ap  is the unique com-
mon prime factor of a, ( )b c+  and M. Suppose that ( )b c M+ ⊥ . Then it fol-
lows from (4) that there exists no prime factor of ( )b c+  which is also a factor 
of M, so that  

( ) ,nb c d+ =                            (13) 

for some positive integer d such that nd M⊥ . Recall that ap  is some common 
factor of a and ( )b c+ , and that, since ( ) | nb c a+  (where 1b c> ≥ ), it is clear 
that 2ap ≥ . However, since ( )b c M+ ⊥ , ap  cannot be assumed to be prime. 
It follows from Lemma 2 that ( ) 2a b c a< + < , which implies that ( )b c+  is 
not an integer multiple of a. Since ( )a b c+  and |ap a , where ap  is a 
common factor of a and ( )b c+  such that 2ap ≥ , it follows that 2 4aa p≥ ≥ . 
By considering (4) with (13), it can then be determined that there exists some 
positive integer 1d  such that  

1 ,n n na d d= ⋅                           (14) 

where 1 1d d> >  (since it is clear from applying Lemma 2 with (13) that  

2na d a< <  so that, by considering (14), it is apparent that 
1

1
12

n
n na d a

−
−< < ,  

where 4a ≥ ). By using a similar argument to the one used earlier with ap , it 
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follows from (6) and (7) that if ( )a c L− ⊥  then bn p= , where bp  is the 
unique common prime factor of b, ( )a c−  and L. Also, if ( )a c L− ⊥  then it 
follows from (6) that there exists no prime factor of ( )a c−  which is also a fac-
tor of L, so that  

( ) ,na c h− =                             (15) 

for some positive integer h such that nh L⊥  and nh b<  by considering 
Lemma 2. By considering (6), this implies that there exists some positive integer 

1h  such that  

1 ,n n nb h h= ⋅                             (16) 

where 1h h>  since 1 nh b< < . By using a similar argument to the one used 
earlier with ap , it follows from (8) and (9) that if ( )a b K− ⊥  then cn p= , 
where cp  is the unique common prime factor of c, ( )a b−  and K. Also, if 
( )a b K− ⊥  then it follows from (8) that there exists no prime factor of ( )a b−  
which is also a factor of K, so that  

( ) ,na b k− =                             (17) 

for some positive integer k such that nk K⊥  and nk c<  by considering 
Lemma 2. By considering (8), this implies that there exists some positive integer 

1k  such that  

1 ,n n nc k k= ⋅                             (18) 

where 1k k>  since 1 nk c≤ < . By considering Lemma 3, it follows that at most 
one of , ,a b cp p p  can be equal to n. Hence, at least two of (13), (15) and (17) 
hold. These cases can be distinguished as follows:  

Case i) Suppose that both (15) and (17) hold. By subtracting (17) from (15), it 
is clear that  

( ) 0.n nb c h k− = − >                         (19) 

Note that  

( )( )1 2 1 .n n n n nb c b c b b c c− − −− = − + + +�                (20) 

It can be deduced from the last two equations that ( ) ( )|n n n nh k b c− − . It 
follows from the last statement together with (16) and (18), for which 

11 n nh h b< < <  and 11 n nk k c≤ < ≤ , that either  

( )( )1 1 ,n n n n n nh k h k b c− + = −                     (21) 

or  

( )( ) ( )1 1 1 1 .n n n n n n n n n nh k h k h k k h b c− + − ⋅ − ⋅ = −             (22) 

It follows from (16), (18) and (21) that  

1 1 ,n n n nh k k h⋅ = ⋅                             (23) 

where 11 h h< <  and 11 k k≤ < . By an application of the statement of the fun-
damental theorem of arithmetic [1], it follows that 1 1

n nh k⊥ . By considering (16) 
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and (18), it is clear that the last statement leads to a contradiction because it vi-
olates the condition established earlier from an application of Lemma 3 that 

n nb c⊥ . Therefore, (21) cannot hold. Since ( ) ( )|n n n nh k b c− − , it is evident 
that (22) can be satisfied only if 1 1

n nh k= . However, this also leads to a contra-
diction because 1 1

n nh k⊥  by using (16) and (18) with the fact that n nb c⊥ . 
Hence it is not possible for both (15) and (17) to hold. Therefore this case can be 
eliminated.  

Case ii) Suppose that both (13) and (15) hold. By adding (13) and (15), it is 
clear that  

( ) .n na b d h+ = +                           (24) 

Note that  

( )( )1 2 1 .n n n n na b a b a a b b− − −+ = + − + +�                (25) 

It can be deduced from the last two equations that ( ) ( )|n n n nd h a b+ + . It 
follows from (14) and (16) that  

( )( )1 1 1 1 .n n n n n n n n n nd h d h d h d h a b+ + − ⋅ − ⋅ = +              (26) 

Since 1 1
n nd h⊥  by using the fact that n na b⊥  (from an application of Lem-

ma 3 made earlier), where both 1d  and 1h  have been proved to be integers 
strictly greater than 1, it is clear from the last equation that ( ) ( )n n n nd h a b+ + . 
Therefore, it is impossible for all of the last three equations to hold, and so a 
contradiction has been reached. Hence it is not possible for both (13) and (15) to 
hold. Therefore this case can be discarded.  

Case iii) Suppose that both (13) and (17) hold. This case is equivalent to re-
placing 1, ,b h h  in the previous case with 1, ,c k k , respectively. It follows that 
this case can also be eliminated. 

The statement of the theorem follows immediately.                     □ 

3. Conclusion and Discussion 

A Diophantine problem known as Fermat’s Last Theorem has been solved by 
using a new elementary proof by contradiction. It was motivated by considering 
factoring an equation with odd exponents. The method of proof involved ana-
lyzes three pairs of cases before using them to formulate a novel proof by con-
tradiction. This method is more economical than using more advanced tech-
niques to prove the desired result that the original Diophantine equation has no 
solutions for 2n > . Despite several attempts to obtain readers spanning the 
course of almost a year, the author could not find anyone who was prepared to 
properly read and check this proof of Fermat’s Last Theorem. As the author has 
not been aware of any possible mistakes in the proof before publication, a deci-
sion has been made to publish this paper in case it may be noticed. Only in this 
instance can the proof be properly checked. It is mentioned here that the author 
has established Fermat’s Last Theorem in a completely different manner in [9]. 
In this paper, the author has attempted to supply another elementary proof which 
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is intended to be of a more conventional nature than the proof in [9]. 
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