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Abstract 

( )e nϕ  is a function similar to Euler function ( )nϕ . We discussed and ob-

tained all the odd solutions of the equations ( ) ( ) ( )2e e exy x yϕ ϕ ϕ= + , 

( ) ( ) ( )2 3e e exy x yϕ ϕ ϕ= +  and ( ) ( ) ( ) ( )e e e exyz x y zϕ ϕ ϕ ϕ= + +  by using 

the methods and techniques of elementary number theory. 
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1. Introduction 

Euler function is an important function in number theory. For the past few 
years, many scholars have discussed the solvability of equations involving Euler 
function and achieved some results. The solvability of the equation  
( ) ( ) ( )1 2xy k x k yϕ ϕ ϕ= +  for given values of 1 2,k k  has been discussed in the 

literature [1] [2] [3] [4] [5]. The positive integer solutions of the equation 
( ) ( ) ( ) ( )1 2 3xyz k x k y k zϕ ϕ ϕ ϕ= + +  for given values of 1 2 3,,k k k  have been dis-

cussed in the literature [6] [7] [8] [9]. 
( )e nϕ , which is extremely similar to Euler function, is defined in the literature 

[10]. Function ( )e nϕ  is the number of positive integers i not greater than n, 
such that ( )( ),cd 1 1g i i n+ = , i.e.,  

( )
( )( )

1
1 , 1

1
n

e
i

i i n

nϕ
=

+ =

= ∑ . 

Define ( )1 1eϕ =  for the convenience. When the positive integer 1n > , let 

1
ik a

i in p
=

=∏ . Then [10]  
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( ) ( )1

1
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e i
i

in p pϕ −

=

= −∏ . 

By the definition of ( )e nϕ , we have ( ) 0e nϕ =  if n is even. So we are only 
interested in the case when n is odd. Here we consider the odd solutions of the 
equation containing ( )e nϕ  and we obtain the following results. 

Theorem 1 For the equation 

( ) ( ) ( )2 ,e e exy x yϕ ϕ ϕ= +                    (1) 

there are three odd solutions, which are ( ) ( ) ( ) ( ), 5,9 , 9,5 , 3,3x y = . 
For the equation 

( ) ( ) ( )2 3 ,e e exy x yϕ ϕ ϕ= +                    (2) 

there are ten odd solutions, which are  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), 11,5 , 11,9 , 11,15 , 27,5 , 33,5 , 9,3 , 15,3 , 5,5 , 5,15 , 15,5x y = . 

Theorem 2 For the equation 

( ) ( ) ( ) ( ) ,e e e exyz x y zϕ ϕ ϕ ϕ= + +                 (3) 

there are three odd solutions, which are ( ) ( ) ( ) ( ), , 1,3,3 , 3,1,3 , 3,3,1x y z = . 

2. Lemmas 

Lemma 1 [10] If the positive integers x and y satisfy that ( )gcd , 1x y = , then 
we have 

( ) ( ) ( )e e exy x yϕ ϕ ϕ= . 

Lemma 2 Let 3x ≥  be an odd integer, then ( )e xϕ  is odd. Let 2x ≥  be an 
integer, we have ( )e x xϕ < . 

Proof By the definition of ( )e nϕ . 
Lemma 3 If |x y , for any odd positive integer x and positive integer y. Then 

we have ( ) ( )|e ex yϕ ϕ . 
Proof When 1x =  and |x y , ( ) ( )|e ex yϕ ϕ  holds because of ( ) 1e xϕ = .  
When 1x >  and |x y , suppose that 

1 , 1, 1, 2, ,ik a
i iix p a i k

=
= ≥ =∏   and 

1 1
, 0, 1.i i i

k t
a b
i

c
i i i

i i k
y p p b c+

= = +

= ≥ ≥∏ ∏  

(Especially when 1t k< + , suppose that 
1

i ik a b
iiy p +

=
=∏ , we can easily prove 

the lemma by calculation.) Then 

( ) ( )1

1
2 ,i

i

k
a

e i
i

x p pϕ −

=

= −∏  

( ) ( ) ( )1 1

1 1
2 2 ,i i i

k t
a b c

e i i i
i k

i
i

y p p p pϕ + − −

= = +

= − −∏ ∏  

Obviously ( ) ( )|e ex yϕ ϕ . 
Lemma 4 Let ( )gcd ,d x y=  be an odd integer, then 

( ) ( ) ( )
( )

e e
e

e

d x y
xy

d
ϕ ϕ

ϕ
ϕ

= . 
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Proof When 1d = , by lemma 1 we have 

( ) ( ) ( ) ( ) ( )
( )

.e e
e e e

e

d x y
xy x y

d
ϕ ϕ

ϕ ϕ ϕ
ϕ

= =  

When 1d > , let 
1

ik a
iid p

=
=∏ , 

1 1
i i ik ta b d

i ii i kx p p+
= = +

=∏ ∏ , 

1 1 ,, 1, , 1.,0i i ik s
i
a c e

i i i i i ii i ky p q a b c d e+
= = +

= ≥ ≥ ≥∏ ∏  

(Especially when 1t k< + , 
1

i ik a b
iix p +

=
=∏ . When 1s k< + , 

1
i ik a c

i iy p +
=

=∏ . 
We can easily prove the lemma by calculation.) Then according to 
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we have 

( ) ( ) ( )
( )

e e
e

e

d x y
xy

d
ϕ ϕ

ϕ
ϕ

= . 

This completes the proof of Lemma 4. 
Lemma 5 The odd solutions of the equation ( ) 1e xϕ =  are 1,3x = . 
The odd solutions of the equation ( ) 3e xϕ =  are 5,9,15x = . 
The odd solutions of the equation ( ) 5e xϕ =  are 7,21x = . 
The odd solutions of the equation ( ) 9e xϕ =  are 11,27,33,45x = . 
Proof Here we take the equation ( ) 1e xϕ =  for example. The other three eq-

uations can be obtained similarly. 
If 1x = , ( ) 1e xϕ = . It is easy to see that 1x =  is the solution of the equa-

tion. 
If 1x > , suppose that 

1 , 1, 1, 2, ,ik a
i iix p a i k

=
= ≥ =∏  , then 

( ) ( )1

1
2 1.i

k
a

e i i
i

x p pϕ −

=

= − =∏  

Thus we have ( )2 |1ip − , and then 3ip = . Let 3x α= . Then 

( ) 13 1 1e x αϕ − ⋅= = . 

Hence 1α =  and then 3x = . 
So we obtain the solutions of ( ) 1e xϕ =  are 1,3x = . 
This completes the proof of Lemma 5. 

3. Proof of Theorems 
3.1. Proof of Theorem 1 

Proof Let ( )gcd ,d x y= . When d is even, ( ) 0e dϕ = , (1) holds. So there are 
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infinity even solutions of (1). Therefore we only consider the odd solutions of it. 
Since | , |d x d y , by Lemma 3, we have 

( ) ( ) ( ) ( )| , |e e e ed x d yϕ ϕ ϕ ϕ . 

Thus there exist ,a b Z +∈ , such that 

( ) ( ) ( ) ( ),e e e ex a d y b dϕ ϕ ϕ ϕ= = . 

Then, 

( ) ( ) ( ) ( )2 2e e ex y a b dϕ ϕ ϕ+ = + . 

By Lemma 4, we know that 

( ) ( ) ( )
( ) ( )e e

e e
e

d x y
xy abd d

d
ϕ ϕ

ϕ ϕ
ϕ

= = . 

Combining the two equations above,  

( ) ( ) ( )2e eabd d a b dϕ ϕ= + . 

Dividing ( )eab dϕ  both sides, we have 

2 1d
a b

= + .                          (4) 

It is easy to see that the equation has no integer solutions when 3d > . So we 
only need to consider the two cases that 1,3d = . 

Case 1 If 1d = , then 1b > . (4) can be simplified as 

22
1

a
b

= +
−

, 

Therefore its solutions are 
4
2

a
b
=

 =
, 

3
3

a
b
=

 =
. 

For 
4
2

a
b
=

 =
, we have 

( )
( )

4

2
e

e

x

y

ϕ

ϕ

=


=
. By the definition of ( )e xϕ , ( ) 0e xϕ =  

when x is even. By Lemma 2, when x is odd, ( )e xϕ  must be odd. Thus there is 
no integer solutions. 

As for 
3
3

a
b
=

 =
, we have 

( )
( )

3

3
e

e

x

y

ϕ

ϕ

=


=
. By Lemma 5, we know that 

5,9,15
5,9,15

x
y
=

 =
. 

By ( )gcd , 1x y = , the odd integer solutions are ( ) ( ) ( ), 5,9 , 9,5x y = . 

Case 2 If 3d = , then ( ) 1e dϕ = . The positive integer solution of (4) is 

1
1

a
b
=

 =
. 

Then 
( )
( )

1

1
e

e

x

y

ϕ

ϕ

=


=
. By Lemma 5, we have 

1,3
1,3

x
y
=

 =
. By ( )gcd , 3x y = , the odd 

integer solution is ( ) ( ), 3,3x y = . 

In conclusion, we obtain the three odd integer solutions of  
( ) ( ) ( )2e e exy x yϕ ϕ ϕ= + , which are ( ) ( ) ( ) ( ), 5,9 , 9,5 , 3,3x y = . 
It is similar to get the ten odd integer solutions of (2), which are  
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), 11,5 , 11,9 , 11,15 , 27,5 , 33,5 , 9,3 , 15,3 , 5,5 , 5,15 , 15,5x y = . 
This completes the proof of Theorem 1. 

3.2. Proof of Theorem 2 

Proof We only consider the odd integer solutions of (3). By Lemma 4, 

( ) ( ) ( ) ( )
( )( )

( )( ) ( ) ( ) ( )
( )( ) ( )( )

, , ,
, , ,

e e e e e
e

e e e

xy z xy z xy z x y x y z
xyz

xy z xy z x y
ϕ ϕ ϕ ϕ ϕ

ϕ
ϕ ϕ ϕ

= = . 

From Lemma 2, 

( )( ) ( ) ( ) ( )
( )( ) ( )( ) ( ) ( ) ( )

, ,
, ,

e e e
e e e

e e

xy z x y x y z
x y z

xy z x y
ϕ ϕ ϕ

ϕ ϕ ϕ
ϕ ϕ

≥ . 

So 

( ) ( ) ( ) ( )e e e exyz x y zϕ ϕ ϕ ϕ≥ . 

Then by (3) we have 

( ) ( ) ( ) ( ) ( ) ( )e e e e e ex y z x y zϕ ϕ ϕ ϕ ϕ ϕ+ + ≥ , 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )1 1e e e e e e ex y x y z x yϕ ϕ ϕ ϕ ϕ ϕ ϕ+ ≥ − ≥ − , 

i.e., 

( )( ) ( )( )1 1 2e ex yϕ ϕ− − ≤ . 

Since ( )e xϕ  and ( )e yϕ  are odd, ( )( ) ( )( )1 1e ex yϕ ϕ− −  must be divisible 
by 4. So ( )( ) ( )( )1 1 0.e ex yϕ ϕ− − =  Therefore ( ) 1e xϕ =  or ( ) 1e yϕ = . Take 

( ) 1e yϕ =  for example, the case ( ) 1e xϕ =  is similarly. 
If ( ) 1e yϕ = , then 

( ) ( ) ( ) ( ) ( )1e e e e exyz x z x zϕ ϕ ϕ ϕ ϕ= + + ≥ , 

i.e., 

( )( ) ( )( )1 1 2e ex zϕ ϕ− − ≤ . 

Similarly, we can conclude that ( ) 1e zϕ =  or ( ) 1e xϕ = . Take ( ) 1e zϕ =  for 
example, the case ( ) 1e xϕ =  is similarly. If ( ) 1e zϕ = , (3) is 

( ) ( )2e exyz xϕ ϕ= + .                      (5) 

By 
( )
( )

1

1
e

e

y

z

ϕ

ϕ

=


=
 and Lemma 5, we have 

1,3
1,3

x
y
=

 =
. 

If 
1
1

y
z
=

 =
, we have ( ) ( )2e ex xϕ ϕ= +  by (5). Obviously there is no solution. 

If 
1
3

y
z
=

 =
, we have ( ) ( )3 2e ex xϕ ϕ= +  by (5). If ( )3, 1x = , then by Lemma 

1, we have ( ) ( ) ( )3 2e e ex x xϕ ϕ ϕ= = + , there is no solution. If 3 | x , by Lemma 
4 and Lemma 5, then we obtain 

( ) ( ) ( )
( ) ( )

3 3
3 2

3
e e

e e
e

x
x x

ϕ ϕ
ϕ ϕ

ϕ
= = + . 
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Then ( ) 1e xϕ = , we have 3x =  for 3 | x . Therefore, if 1, 3y z= = , the odd 
solution of (3) is ( ) ( ), , 3,1,3x y z = . 

If 
3
1

y
z
=

 =
, we have ( ) ( )3 2e ex xϕ ϕ= +  by (5). If ( )3, 1x = , then by Lemma 

1, we have ( ) ( ) ( )3 2e e ex x xϕ ϕ ϕ= = + . There is no solution. If 3 | x , then by 

Lemma 4 and Lemma 5, we obtain 

( ) ( ) ( )
( ) ( )

3 3
3 2

3
e e

e e
e

x
x x

ϕ ϕ
ϕ ϕ

ϕ
= = + . 

Then ( ) 1e xϕ = , we have 3x =  for 3 | x . Therefore, if 3, 1y z= = , the odd 
integer solution of (3) is ( ) ( ), , 3,3,1x y z = . 

If 
3
3

y
z
=

 =
, we have ( ) ( )9 2e ex xϕ ϕ= +  by (5). If ( )3, 1x = , then by Lemma 

1 and Lemma 5, we have ( ) ( ) ( )9 3 2e e ex x xϕ ϕ ϕ= = + . Thus ( ) 1e xϕ = , we 

have 1x =  for ( )3, 1x = . Thus, if 3, 3y z= = , the odd integer solution of (3) 

is ( ) ( ), , 1,3,3x y z = . If 3 | x , by Lemma 4 it is easy to see that 

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
3 3 3 9 3

9 3 3 9 2
3 3

e e e e
e e e e

e e

x x
x x x x

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ

ϕ ϕ
= = = = = + . 

There is no solution. 
Above all, we obtain three odd solutions of ( ) ( ) ( ) ( )e e e exyz x y zϕ ϕ ϕ ϕ= + + , 

which are ( ) ( ) ( ) ( ), , 1,3,3 , 3,1,3 , 3,3,1x y z = . 
This completes the proof of Theorem 2. 

4. Conclusion 

Our method can be used to solve the equations such as  
( ) ( ) ( )e e exy a x b yϕ ϕ ϕ= + , with ,a b  the different parity, and  
( ) ( ) ( ) ( )e e e exyz a x b y c zϕ ϕ ϕ ϕ= + + , with a b c+ +  is odd. For a specific equa-

tion, it is easy to solve it. Whether it can be used to solve all this kind of equa-
tions is what we are interested in. 
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