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Abstract 
Riemann hypothesis (RH) is a difficult problem. So far one doesn’t know how 
to go about it. Studying ζ  and using analysis method likely are two incor-
rect guides. Actually, a unique hope may study Riemann function 

( ) u ivξ τ = + , itτ β= + , 1 2β σ= −  by geometric analysis, which has the 

symmetry: 0v =  if 0β = , and basic expression ( ) ( )
0

, , dtv t u t r r
β

β = −∫ . 

We show that u  is single peak in each root-interval 1,j j jI t t + =    of u for 

fixed ( ]1 20,β ∈ . Using the slope tu , we prove that v has opposite signs at 

two end-points of jI . There surely exists an inner point such that 0v = , so 

{ },u v β  form a local peak-valley structure, and have positive lower bound 

( ), 0ju v tξ β µ β= + ≥ >  in jI . Because each t must lie in some jI , 

then 0ξ >  is valid for any t (i.e. RH is true). Using the positivity 

( ) 0Re ξ ξ′ >  of Lagarias (1999), we show the strict monotone 

( ) ( )0, ,t tξ β ξ β>  for 0 0β β> ≥ , and the peak-valley structure is equiva-

lent to RH, which may be the geometric model expected by Bombieri (2000). 
This research follows Liuhui’s methodology: “Computing can detect the un-
known and method”. 
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1. Introduction. Difficulty and New Idea 

Riemann conjecture concerns two functions ( )sζ  and ( )sξ . In 1737, Euler 
proved the product formula over all prime numbers p 

How to cite this paper: Chen, C.M. (2020) 
Local Geometric Proof of Riemann Con-
jecture. Advances in Pure Mathematics, 10, 
589-610. 
https://doi.org/10.4236/apm.2020.1010036 
 
Received: August 25, 2020 
Accepted: October 16, 2020 
Published: October 19, 2020 
 
Copyright © 2020 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/  

  
Open Access

https://www.scirp.org/journal/apm
https://doi.org/10.4236/apm.2020.1010036
http://www.scirp.org
https://www.scirp.org/
https://doi.org/10.4236/apm.2020.1010036
http://creativecommons.org/licenses/by/4.0/


C. M. Chen 
 

 

DOI: 10.4236/apm.2020.1010036 590 Advances in Pure Mathematics 
 

( )
1

1

1 11
n p prime

s
n pσ σζ

−
∞

= ∈

 
= = − 

 
∑ ∏                 (1.1) 

to be convergent for real 1σ > , but divergent for 1σ ≤ . In 1859, Riemann con-
sidered the complex variable , 1s itσ σ= + > , using Gamma function ( )2sΓ , 
and got 

( ) ( ) ( ) 22 1 2 1
0

1 1
d , e .

2
s s s n x

n n

ss n x x x x
∞ ∞∞− − − −

= =

ππ  = = Γ = 
 

∑ ∑∫ζ ψ ψ
 

Using the functional equality of Jacobi (1828) 

( ) 1 2 12 1 2 1 ,x x
x

ψ ψ−   + = +  
  

                 (1.2) 

and transforming the integral by 1z x=  

( ) ( ) ( )12
0 1

21 2 1 1d d ,
1

s sz z z x x x
s s

∞− − −= +
−∫ ∫ψ ψ

 
Riemann derived the first expression 

( ) ( ) ( ) ( )2 1 2 1 2
1

1 21 d ,
2 1

s s sss x x x x
s s

ζ ψ
∞− − − −   = Γ + +   −   

π ∫      (1.3) 

which is already analytically extended to the whole complex plane except for 
0,1s = . Clearly, the pole points 2, 4, 6,s = − − −   of ( )2sΓ  are the trivial 

zeros of ( )sζ . 
Furthermore, Riemann introduced the entire function 

( ) ( ) ( ) ( ) ( )21 1 , 1 .
2 2

s ss s s s s sξ ζ ξ ξ−  = − Γ =


π −


         (1.4) 

Through replacing by ζ  and integrating by parts twice, it follows that 

( ) ( ) ( ) ( )

( )( )

1 2

1 2

2 1 2
1

2 1 2 2
1 1

11 d
2 2

2 3 d ,

s s

s s

s s
s x x x x

r x x x x x

ξ ψ

ψ ψ

∞ − − −

∞ − − −

−
= + +

′′ ′= + + +

∫

∫
          (1.5) 

where ( ) ( )1
1 1 4 1 0
2

r ψ ψ ′= + + =  derived by (1.2). Riemann had gotten the 

second expression 

( ) ( ) ( ) ( )2 1 22 2
1

1 d , 2 3 ,s ss x x f x x f x x xξ ψ ψ
∞ − − − ′′ ′= + = +∫       (1.6) 

which is symmetric with respect to 1 2s = . He took 1 2σ = , then ( )Im 0ξ =  
(I think this is the most important symmetry for ξ ). 

Riemann thought that a number of zeros of ( )sζ  in the critical region 
{ }: 0 1,0s it tσ σΩ = = + ≤ ≤ ≤ < ∞  have an estimate 

( ) ( )1 ln ln , ,
2 2

TN T T T O T t T = − + ≤ 
 π π

            (1.7) 

(proved by Mangoldt in 1905) then (see our basic theorem and 4.1). 

Riemann Hypothesis (RH). All non-trivial zeros of ( )sζ  lie on the critical 
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line 1
2

σ = . 

RH is a very difficult problem, which has stimulated the untiring research in 
the areas of the analytic number theory and the complex functions, even the 
scientific computation. Smale [1] (1998) reported 18 mathematical problems for 
next century. The first one is RH. Cray Mathematics institute (2000) announced 
the seven problems of the Millennium, in which RH is reviewed by Bombieri [2]. 
“Science” (2018) listed 125 science problems, in which 5 mathematics problems 
include RH. 

There have been many theoretical researches for RH, e.g. the reviews [2] [3] 
and books [4] [5]. A lot of numerical experiments verified that RH is valid. 
However, RH has not been proved to be true or false in theory. 

1.1. Theoretical Research 

We list some important progressions as follows, see [4]. 
1) Hardy (1914) for the first time proved that ( )sξ  has the infinite number 

of zeros on critical line, by Mellin transform and an important property 

( )2 0zψ → , as 4 0eiz π +→ . Later Selberg (1942) introduced the correct function 
near 2z i=  and proved the number of zeros to be about cT if 0 t T< ≤ , where 

0.01c ≈ . Later Levinson (1974) improved with 1 3c =  and Conrey (1989) with 
2 5c = . But they are far less than ( )N T  in (1.7). 

2) Poissin (1899) proved no zero of ζ  on line 1σ = , by an interesting 

equality and singularity decomposition ( ) ( )1
1

gζ σ σ
σ

= +
−

 near 1σ = . But  

it is very hard to extend this conclusion to 1σ < . Up to 1958, Vinogradov and 
Korobov independently proved no root of ζ  in ( ) ( )1 ln 1c t

α
σ α≥ − + , 

where 2 3α > . 
3) The moment method of ζ . Levinson (1975) proved that a number of the 

roots on critical line attains 34.74%. Conrey (1989) improved to 40%, and then 
he [3] (2003) pointed out that 99% of all roots lies in 8 n1 2 l tσ − ≤ . This is 
the best result up to now. 

4) The Müntz method. A. Durmagambetrov [6] (2016) had proved ( ) > 0sζ , 
if ( ) 1 2 1Re s R> + , 1 s Rδ+ < < . This is an important progression after Vi-
nogradov and Korobov. 

We have seen that except for critical line, most works focus to ζ . We think 
that the appointing ζ  in formulation of RH is a historic misguide, because 
which has gone against the original thinking of Riemann (Actually, he focused to 
ζ , rather than ζ , see 5, and ζ  behaves badly, see 6). This is likely the 
first misguide in studying RH. 

In recent twenty years, many new methods appeared and the research of RH 
has taken some important progressions. But RH has not been solved yet. 

1.2. Computational Research 

We can see from (1.7) that the average spacing between two zeros is less than 
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2 lnTπ . To study the distribution of these zeros, there were lots of large scale 
numerical experiments, e.g. Lune et al. in [7] [8] searched out 1.5e+9 roots on 
the critical line, where all roots were single, no double. These computations were 
finished by Euler-Maclaurin formula outside the critical line and Riemann-Siegel 
formula on the critical line. Here note that Riemann formula (1.6) has not been 
used! They emphasized that no non-trivial zeros were found in the critical strip 
{ }0 1,0 5.6 8t eσ≤ ≤ ≤ ≤ + , which make people have the reason to believe RH is 
true. The authors listed lots of computed data and drew many curve figures, 
which have greatly inspired us to understand the function ( )sζ . There have 
two surprising phenomena on the critical line. 

1) There are a high peak in each segment of the graph and 1 - 9 smaller peaks 
between two high peaks. They found that the ratio of the high-peak and 
low-peak can reach 1000 times. 

2) There are 1 - 8 roots between two high-peaks. They found a pair of large 
zeros, these two zeros are very close to each other, and look like a double zero. 
e.g. in Fig.7, p.678, [8], the spacing between two zeros is less than 0.00011, and 
the value ( )* 0.0000002218Z t = −  at the peak point  

* 1048499112.88896415t = . 
To face so terrible micro-structures near critical line, we has always met a 

wide gap: how to prove no zeros of the infinite series, analysis method is power-
less. Corney [3] (2003) pointed out that “It is my belief, RH is a genuinely arith-
metic question that likely will not succumb to methods of analysis”. This likely is 
the second misguide in studying RH. We should give up the infinite summation 
analysis. 

1.3. A unique Hope is to Study ξ 

Although ζ  diverges for ( ) 1Re s ≤ , but can be estimated as follows, see [5] 
(p.185, 200) 

( )

( )

1 4 2 ln , 0 1, 1 2,

1 , 1 6 or 19 116,
2

it Ct t

it O t

β

λ

ζ σ σ β σ

ζ λ λ

−+ ≤ ≤ ≤ = −

 + = = = 
 

         (1.8) 

which are possibly expressed in the form 

( ) 1 6 3 ln , 0 1 2 1 2.it Ct tβζ σ β σ−+ ≤ ≤ = − ≤           (1.9) 

Denote 1 2β σ= − . Using an asymptotic expansion 

( )( )
2 1 4

4 12 e e 1 ,
2 2

t is t O t
β

φ
−

− −ππ   Γ = +   
   

          (1.10) 

(1.4) and (1.10), there has an important estimate with exponential decay [4] 

( )
1

4
23 2 6

e ln , 1 2if .
2

tts C t
β

ξ βπ
+

− ≤ ≤ 
 

          (1.11) 

Due to the decay 4e t− π , it is very hard to compute ( )sξ  for large t. Proba-
bly this is the reason why there are few work to discuss ξ . With the same rea-
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son, analysis method is also powerless for ξ . Bombieri [2] (2000) pointed out 
that “We do not have algebraic and geometric models to guide our thinking, and 
entirely new ideas may be needed to study these intriguing objects”. This is a 
valuable inspiration. We hope to establish a geometric framework. 

We know that ξ  has the most important symmetry on critical line. We point 
out that the positivity ( ) 0Re ξ ξ′ >  of Lagarias [9] (1999) is an essential  

progression for ξ , which also is a unique result to be cited in our proof for RH, see 
3. Assume that RH is true, denoting u ivξ = +  and itτ β= + , 1 2β σ= − , 

then 

( ) 2
2 0, for 0,Re Re t

 ′ ′   = = > >      

ξ ξ ξ ψ ξ β
ξ ξ  

where positive quadratic form 

( ) 0, for 0.t tt uu vv uv vuσ σψ ξ ξ β′= = + = − > >         (1.12) 

plays an important role in our proof. 

1.4. Local Geometric Model for ξ 

From these difficulties and advices of Conrey and Bombieri, we should give up ζ
-function and pure analysis methods, while turn to geometric analysis. What is geo-
metric analysis? We no longer regard the summation process of series, while prefer 
the geometric property and structure of ξ -curve itself. That is, “Explain the essence 
by figure” (Liuhui’s words). This is a big change of our recognition. We compute 
and study by Liuhui thinking, i.e. “computing can detect the unknown and method” 
(see 7), finally find a local geometric model for u ivξ = + , which contains four 
basic concepts as follows. 

1. Root-interval. For any fixed [ ]1 20,β ∈ , the sub-interval 1,j j jI t t + =    
is called the root-interval, if the real part ( ), 0ju t β = , ( )1, 0ju t β+ =  and 
( ), 0u t β >  inside jI . 
2. Single peak. If u  in each root-interval jI  only has one peak, called sin-

gle peak, else called multiple peak (It is proved that the multiple peak case does 
not exist, see theorem 2). 

The single peak u has the following geometry property. 
3. Slope tu . For single peak u and any 0β ≥ , there are 0tu >  from nega-

tive peak to positive one, and 0tu <  from positive peak to negative one. 
Using Newton-Leibnitz formula, ( ),0 0v t =  and C-R condition tv uβ = − , 

we have 
4. Analytic property. The imaginary part v has a basic expression 

( ) ( ) ( ]
0

, , d , 0,1 .2tv t u t r r
β

β β= − ∈∫              (1.13) 

Because tu  has opposite signs at two end-points of jI , then v also has oppo-
site signs. 

Corollary. ( ),v t β β  is uniformly bounded with respect to ( ]1 20,β ∈ . 
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In numerical experiments we found an important geometry structure as fol-
lows. 

Peak-valley structure (PVS). For fixed ( ]1 20,β ∈  and in each root-interval 

1,j j jI t t + =   , u  is a peak. While ( ),v t β  has opposite signs at two end-point 
of jI  and 0v =  at some inner point, v β  is a valley. Then { },u v β  form 
a local PVS and have a local positive lower bound ( ), 0ju v tξ β µ β= + ≥ >  
in jI  (i.e. RH is valid in jI ). 

Using 4 items above, we have proved the PVS (see theorems 1-3).  
Sequence principle. As the zeros of u do not have finite condensation point, 

each t must lie in some jI , then 0ξ >  is valid for any t. 
We have gotten 
Basic Theorem. All zeros of Riemann ξ -function lie on the critical line. 
Besides, by (1.12) we have 
Equivalence theorem. The peak-valley structure and RH are equivalent. 
Theorem 4. The strict monotone ( ) ( )0, , 0t tξ β ξ β> ≥  for 0 0β β> ≥ . 
We think that the strict monotone is the deepest description for RH. The PVS 

may be the geometric model to be expected by Bombieri, which makes the proof 
of RH get concise and intuitive, and many difficulties are avoided, e.g. need not 
discuss the summation process of the infinite series and so on. 

The PVS and RH in single peak case were shown in our previous paper [10]. 
This paper wants to give a full proof of RH, including PVS, nonexistence of mul-
tiple peak case, the equivalence and strict monotone. I think that I have realized 
the original thinking line of Riemann, see 5. Beside we also add the reasons to 
give up ζ  in 6. Why I want to study RH? My initial aim is to examine that 
can Liuhui’s thinking solve the most difficult problem? which makes me persist 
in studying in whole four years. 

2. Detect Local Peak-Valley Structure by Computing 

Denote , 1 2itτ β β σ= + = − . We consider the Riemann kernel integral ( )K f  
to define 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 3 4
1

2 2 3 4
1

2 2 3 4 2
1

d ,

1 ln d ,
2
1 ln d ,
4

K f x x x f x x u iv

K f x x x xf x x u iv

K f x x x xf x x u iv

τ τ

τ τ
β β

τ τ
ββ ββ

ξ τ

ξ τ

ξ τ

∞ − −

∞ − −

∞ − −

= = + = +

′ ′= = − = +

′′ ′′= = + = +

∫

∫

∫

   (2.1) 

here and below the Cauchy-Riemann conditions are used many times. If 0β = , 
obviously 

2 2 2 22cos ln , 2 sin ln ,
2 2

it it it itt tx x x x x i x− −   + = − =   
     

we have the following analytic property. 
The symmetry. If 0β = , then 

0, 0, 0, .t ttv u v v vβ ββ= = = = − =                 (2.2) 
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These properties are essential. Especially we have the basic expression (1.12). 
The norm ( )1 22 2u vξ = +  is used in complex analysis. Now define a 

strong norm 

( ] [ )
( ) ( ) [ )

, if 0, , 0, ,
,0 ,0 ,

1
i

2
f 0, 0, ,t

u v t
u t u t t

β β
ξ

β
 + ∈ ∈ ∞=  + → + ∈ ∞

        (2.3) 

where three conditions of norm are satisfied. Its advantage is that u  and 
v β  are of the same order and ξ  is stable with respect to 0β > . Note that 

if 0β = , ( ),0 0ju t = , ( ),0 0jv t = , then 0ξ = , but probably 0ξ > , if 

( ),0 0t ju t ≠ , see Figure 2. 
Firstly we compute u ivξ = + . Take a changing scale ( )23 12 0 48 2 e tM t + − π=  

(where M is independent of β , different from [10]), when drawing curves of 
ξ , x-axis is t, y-axis is u M  such that 1u M ≤ . No longer explain later. Figure 
1 exhibits the curve ( ),0u t  and 20 zeros. Note that the zeros of u (real line) and 
v β  (dot line) for 0.1β =  are alternative and have “positive phase-difference”, 
which implies RH. But we do not know how to describe it. After three years, we 
have suddenly waken up that this is a local PVS. 

To explain the local PVS, we consider a smaller root-interval [ ]2 2 3,I t t=  in 
Figure 2 with 0.1,0.3,0.5β = . We see that ( )2 , 0u t β = , ( )3 , 0u t β =  at two 
end-points of 2I , and ( ), 0u t β >  inside 2I , u is a positive peak. We also see 
that ( )2 , 0v t β < , ( )3 , 0v t β > , and ( )2 , 0v t β′ =  at some inner point 2 2t I′ ∈ , 

0v β ≥  is a valley. Then { },u v β  form a local PVS in 2I  and there is the 
lower bound ( )2

min 0.0876t I u v Mβ∈ + ≥ , i.e. RH is valid in 2I . 
Nextly we compute the derivative ( ) t ti i u iv u ivβ βξ ′ = + = + . We see that tu  

and tv  have also alternative zeros and a local PVS in Figure 3. 

3. Local Geometric Proof of RH 

We regard ( ) ( ){ }, , ,u t v tβ β  as a continuous changing process from 0β =  to  
 

 
Figure 1. Left: ( ),0u t . Right: u (real line) and v β  (dot line) for 0.1β = . 
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Figure 2. Curves { },u v , { },u v β , { },u v β  and 0u v β+ > . 

 

 

Figure 3. Curves { },t tu v  and { },t tu v , compare with Figure 2. 
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1 2β = . For any ( ]1 20,β ∈ , all zeros jt  of ( ),u t β  form an irregular infi-
nite sequence dependent on β  

1 1 1 20 ,j j j jt t t t t− + +< < < < < < < →∞   
which have not the finite condensation points, else 0u ≡ . We take them as the 
base in studying PVS. 

Theorem 1 (single peak case). If ( ),u t β  is single peak for any ( ]1 20,β ∈ , 
then 0ξ >  for any ( ) [ ) ( ], 0, 10, 2t β ∈Ω = ∞ × . 

Proof. Below it is enough to discuss 0u >  inside the root-interval 1,j j jI t t + =   . 
For any fixed 0β > , using the analytic property (1.12), we consider two cases as 
follows. 

As 0tu >  near the left node jt , we have 

( ) ( )

( ) ( )
0

0

1, , d 0,

lim , ,0 0.

j t j

j t j

v t u t r r

v t u t

β

β

β β
β

β β
→+

 = − <

 = − <


∫
               (3.1) 

As 0tu <  near the right node 1jt + , similarly 

( ) ( )

( ) ( )
1 10

1 10

1, , d 0,

lim , ,0 0.

j t j

j t j

v t u t r r

v t u t

β

β

β β
β

β β

+ +

+ +→+

 = − >

 = − >


∫
             (3.2) 

They are valid and numerically stable for ( ]1 20,β ∈ . 
Because ( ),v t β  has opposite signs at two end-points in jI , there certainly 

exists an inner point ( )j jt t β′ ′=  such that ( ), 0jv t β′ = . Clearly in jI , u  is a 
peak and ( ),v t β β  is a valley, thus { },u v β  form a local PVS. We regard 

( ),tξ β  as a continuous function of ( ),t β , which certainly has a positive 
lower bound independent of jt I∈ , 

( ) ( ) ( ]min , , > 0, 0,1 .2
j

jt I
t tξ β µ β β

∈
= ∈             (3.3) 

This is a fine local geometric analysis. 
Thus in each root-interval 1,j j jI t t + =   , we can determine a positive lower 

bound ( ), 0jtµ β > , which form the positive infinite sequence 

  ( ) ( ) ( ) ( )1 2 1, , , , , , , , ,j jt t t tµ β µ β µ β µ β+             (3.4) 

Because each t must lie in some jI , thus 0ξ >  for any t. In this way, the 
summation process of the infinite series ξ  is completely avoided.   

Theorem 2. The multiple peak case does not exist for [ ]1 20,β ∈ . 
Proof. Assume that ( ), 0u t β >  for 0β >  inside some root-interval 

1,j j jI t t + =    and has odd number of extreme values ( ), 0jp jpu t aβ = >  at the 
inner points jpt , 1,2, , 2 1p k= + , see Figure 4. Clearly, 0u >  in 

1 ,2 1,j j j kI t t +′  =   , while in two sub-intervals 1,j jt t    and ,2 1 1,j k jt t+ +    we have 
(3.1) and (3.2). So 0ξ >  in jI  and RH is still valid for any t. 

Below we prove that the multiple peak case does not appear. For this, we con-
sider the minimum extreme value ( ), 0ji jiu t aβ = >  at some point jit t′ = , in  
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Figure 4. Different convexities. 

 
there 0tu =  and 0ttu > , i.e., u is locally convex downwards, see Figure 4. By 
basic expression we have 

( ) ( )
0

, , d 0.t ttv t u t r r
β

β′ ′= − <∫                  (3.5) 

On the other hand, because RH is valid as before, using (1.12), we have 

( ) 0, 0.t tt uv vuψ β= − > >                   (3.6) 

But now, 0, 0, 0t tu u v> = <  at t t′= , which lead to contradiction 
0tuvψ = < . Thus ( ),u t β  for any 0β >  is single peak and its limit ( ),0u t  

is also single peak.   
Why need to deny the multiple peak case? We see in Figure 4 that when β  

grows, the curve ( ), 0u t β >  near 2jt t=  will decrease towards its local convex 
direction (see proof in theorem 3). This will bring a dangerous possibility to be 
close to t-axis such that 0u v= = . 

Theorem 3. The peak curve ( ),0u t  in a small root-interval (including 
double root) will remove in parallel towards its convex direction for 0β >  so 
that ( ), 0tξ β > . 

Proof. Assume that ( ),0u t  has a solitary small root-interval 0 0 0
1,j j jI t t + =    

such that ( )0 ,0 0ju t = , ( )0
1,0 0ju t + = , and ( ),0 0u t ≥  in 0

jI . Let the maximum 
value ( ),0 0u t′ = >  at some inner point 0

jt I′∈ , then ( ),0 0tu t′ =  and 
( ),0 0ttu t′ < . Consider a little enlarged sub-interval 0

jI I⊃ , in which 
( ),0 0ttu t <  and ( ),0u t ≤   is convex upwards. See Figure 5. So 0tu >  for 

t t′<  and 0tu <  for t t′> . Note that double zero ( ),0 0u t′ = =  is admiss-
ible. 

Take a small 0β > . By basic expression in I we have 

( ) ( ) ( )
0

, , d 0, as , 0,t tt ttv t u t r r u t r
β

β = − > <∫            (3.7) 

and 
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Figure 5. Artificial example ( ),u v . 

 

( ) ( ) ( ) ( )

( )( )
0 0

0 0

, ,0 , d , d , as ,

, d d 0.

t t

r
tt

u t u t u t r r v t r r u v

u t r r r d

β β
β β

β

β − = = =

′ ′= − = >

∫ ∫

∫ ∫
      (3.8) 

So ( ),u t β  has removed ( ),0u t  in parallel upwards by a distance 0d >  
(i.e. towards its convex direction). 

Note that ( ),0 0u t <  outside 0
jI . For 0β > , ( ),u t β  has already removed 

upwards by 0d > , so there surely exists an enlarged sub-interval  
0

1,j j j jI t u I+ = ⊃   such that, 
at the left node ( ) 0

j j jt t tβ= < , ( ), 0ju t β =  and ( ), 0t ju t β > , 
at the right node ( ) 0

1 1 1j j jt t tβ+ + += > , ( )1, 0ju t β+ =  and ( )1, 0t ju t β+ < , 
i.e. 0

1,j j j jI t t I+ = ⊃   is new root-interval of ( ),u t β , and ( ), 0u t β >  in-
side jI , see Figure 5. 

Besides, by basic expression and the slope tu , we know 

( ) ( ) ( ) ( )1, 0 as 0 , , 0 as 0 .j t j tv t u v t uβ β+< > > <          (3.9) 

So there surely exists an inner point *
j jt I∈  such that ( )* , 0jv t β = , i.e., 

v β  still is a valley. Therefore { },u v β  in jI  form a local PVS and 
0ξ >  is valid in jI .   

Lune et al. [8] pointed out that all roots on critical line are single, no double. 
Maybe, in the future, some double roots are found, but in this case, theorem 3 
still confirms 0ξ >  for 0β > . This is one of the most mysterious property 
for ξ . 

Summarizing three theorems above, our basic theorem is proved.   
Remark. In the proof of Theorem 1 we have seen that the Riemann integral 

( )K fξ =  has the symmetry, which is independent of the speciality of f. So we 
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guess that for the very wide class of the fast decay function f, RH is still valid for 
( )K f . We have two examples. For 110t ≤ , there are larger low bounds 

( ) 0.20u v Mβ ββ + ≥  and 0.28Mξ ′′ ≥ . 
Haglund [11] has discussed Ξ  and other functions with numerical experi-

ments, and proposed a conjecture: If function NF  has monotonic zeros, then 
which implies RH. Sarnak [12] has analyzed the Grand RH of L-function, which 
are more difficult. 

4. Lagarias Theorem and Other Conclusions 

In the proof of RH, we have used a unique new result to be the following. 

Lagarias theorem (1999). If RH is true, then ( )
( )

0Re
ξ τ
ξ τ
′ 

>  
 

 for any 0β > . 

This is a unique equivalence to RH for ξ , we think that this is an essential 
progression along research line of ξ  after Hadamard (1893) and Mongoldt 
(1905), which cannot be directly derived from the integral form (1.6). The mul-
tiplication and division operations for the integral form of ξ  are impossible. 

A simplified proof. If RH is true, Hadamard (1893) proved a product expres-
sion 

( ) e 1 e ,A Bs sss ρ

ρ
ξ

ρ
+  

= − 
 

∏                   (4.1) 

here ρ  runs over all roots of ( ) 0ξ ρ = , and A and B are some constants. 
Now, we transform 1 2s itτ β= − = + , their roots are conjugate, 

,j j j jit itτ τ= = − , i.e. 0j jτ τ τ τ+ = . All positive zeros jt  form an infinite se-
ries 

1 2 30 14.134 jt t t t< = < < < < <   
Lune et al [8] pointed out that all zeros are single, no double. But below 

double zeros are admissible. Then it is simplified to 

( ) e 1 1 , .A B

j j j

it+
  

= − − = +    
  

∏τ τ τξ τ τ β
τ τ

 
If 0β = , ξ  is real, then 0B = . So we get a product expression 

( ) ( )
1

0 1 1 , 0 , 0 .1 2
j j j

tτ τξ τ ξ β
τ τ

∞

=

    = − − < ≤ ≤ < ∞         
∏      (4.2) 

Taking logarithm and derivation, we have 

( )
( )

( )
( )2 22 21 1

1 1 ,j j

j jj j j j

i t t i t t

t t t t

∞ ∞

= =

 − − − + ′    = + = +   
− −  + − + +    

∑ ∑
β βξ

ξ τ τ τ τ β β
 

then 

( ) ( )2 22 21

1 1 0.
j

j j

Re
t t t t

ξ β
ξ β β

∞

=

 ′   = + >  
  + − + +  

∑          (4.3) 
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It remains to explain its convergence. In fact, by the estimate  

( ) ln
2 2e
T TN T
π π

 ≈  
 

, the average spacing between two adjacent zeros is about 

2 lnTπ . For j suitably large, the zero point jt  has an approximate estimate 

( )ln 2 .jt j j≈ π  
Thus for any fixed 0t ≥ , the series is convergent.   
Proof of strict monotone. 
Denote u ivξ = + , using the positive quadratic form 0uu vvβ βψ = + > , we 

have 

( ) ( ) ( )
0

22
0 0, , 2 d 0, 0,t t uu vv− = + > > ≥∫

β
β ββ

ξ β ξ β β β β
 

then ( ) ( )0, ,u t u tβ β> .   
Figure 6 exhibits the positivity ( ) 0Re ξ ξ′ >  and the strict monotone for 

0.1,0.3,0.5β = . Note that in there the changing scale ( )23 21 0 48 2 e tM t + − π=  

should be independent of β . (Note that if take ( ) ( )23 21 6 48 2 e tM t ββ + − π= , we 

find that ( ) ( )Mξ τ β  does not have the monotone with respect to β )! 

Proof of the equivalence theorem. 
Assume that RH is valid and 0u >  inside root-interval 1,j j jI t t + =    (si-

milarly for 0u < ). By Lagarias theorem, the quadratic form 0t tuv vuψ = − >  
in jI  for 0β > , and geometric property of tu , we have the following facts. 

At the left node jt , 0, 0tu u= >  and 0tvuψ = − > , then 0v < ; 
At the right node 1jt + , 0, 0tu u= <  and 0tvuψ = − > , then 0v > . 
Thus v has opposite signs at two end-points, there certainly exists an inner 

point j jt I′ ∈  such that 0v = , which implies local PVS. Thus the equivalence 
of both is proved.   

 

 

Figure 6. Positivity and strict monotone ( ) ( )0, , 0t tξ β ξ β> >  if 0 0β β> > . 
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From the view-point of complex analysis, RH requires 0ξ > , while from the 
view-point of geometry, the peak-valley structure requires strong norm 0ξ > . 
Both are equivalent. However, the local geometry property is of extreme impor-
tance, which makes the proof be concise and intuitive. I greatly appreciate the 
mathematical beauty of the symmetry. 

5. Follow Riemann Thinking 

Riemann’s paper “On the number of primes less than a given magnitude” is a 
classic work [5], we consider a part of it, and give remarks with 5 items. 

1) In fact 

( )2 12
0

1 1 e d ;
2

ss nn x
s

s x x
n

∞ −− π Π − =


π 
 ∫

 
So when one sets 

( )
1

e ,nn x x− π
∞

=∑ ψ
 

it follows that 

( ) ( ) ( )2 12
0

1 d
2

sss s x x x
∞ − Π π− = 

  ∫ζ ψ
 

or, because 

( ) 1 2 12 1 2 1 ,x x
x

−   + = +    
ψ ψ

 
that 

( )

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

2

1 12 1 3 2 3 2 2 1

1 0 0

1 22 1
0

1
2

1 1d d d
2

1 d .
1

s

s s s s

ss

s s

x x x x x x x x
x

x x x x
s s

∞ − − − −

∞ − +−

 Π − 
 

 = + + −

π

 
 

= + +
−

∫ ∫ ∫

∫

ζ

ψ ψ

ψ
 

2). I now set 1
2

s it= +  and 

( ) ( ) ( )21
2

ss s s t Π − π = 
 

ζ ξ
 

so that 

( ) ( ) 3 4
1

1 1 1cos log d
2 2 2

t tt x x t x x
∞ −   = − +   

   ∫ξ ψ
 

or also 

( )
( )3 2

1 4
1

d 14 cos log d .
d 2

x x
t x t x x

x
∞ −

 ′   =  
 ∫

ψ
ξ

 
This function is finite for all finite values of t and can be developed as a power 

series in tt which converges very rapidly. 
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3) Now since for values of s with real part greater than 1,  
( ) ( )log log 1 ss pζ = − −∑  is finite and since the same is true of the other fac-

tors of ( )tξ , the function ( )tξ  can vanish only when the imaginary part of t  

lies between 1
2

i  and 1
2

i− . The number of roots of ( )tξ  whose real parts lie 

between 0 and T is about 

log ,
2 2 2
T T T

π
= −

π π  
because the integral ( )d log tξ∫  taken in the positive sense around the domain 

consisting of all values whose imaginary parts lie between 1
2

i  and 1
2

i  and  

whose real parts lie between 0 and T is (up to a fraction of the order of magni-
tude of 1/T) equal to ( )log 2T T T i−π    and is, on the other hand, equal to 
the number of roots of ( ) 0tξ =  in the domain multiplied by 2 iπ . 

4) One finds in fact about this many real roots within these bounds and it is 
very likely that all of the roots are real. One would of course like to have a rigor-
ous proof of this, but I have put aside the research for such a proof after some 
fleeting vain attempts, because it is not necessary for the immediate objection of 
my investigation. 

5) If one denotes by α  the roots of the equation ( ) 0ξ α = , then one can 
express ( )log tξ  as 

( )log 1 log 0tt − + 
 

∑ ξ
αα  

because, since the density of roots of size t grows only like ( )log 2t π  as t 
grows, this expression converges and for infinite t is only infinite like logt t ; 
Thus it differs from ( )log tξ  by a function of tt which is continuous and finite 
for finite t and which, when divided by tt, is infinitely small for infinite t. This 
difference is therefore a constant, the value of which can be determined by set-
ting 0t = . 

Remark. 1) It is strange that Riemann had not given a complete integral ex-
pression (1.6) of ( )sξ . I think this is a neglect, which will bring misunders-
tanding later. 2) He took 1 2s it= +  and derived a complete expression ( )tξ , 
which is an even real function and ( ) 0Im ξ = , this is an important symmetry. 
3) Riemann had a conjecture on the number ( )N T  of zeros (proved by Man-
goldt, 1905). This estimate was applied to the product expression. 4) The RH is 
the greatest mystery. Later Siegel (1932) had found a computational formula 
unpublished in Riemann’s manuscript (now called Riemann-Siegel formula, 
which is still to discuss ξ ) and the first several zeros computed. Siegel had quite 
surely pointed out that his manuscript had not any steps to go to proof of RH. 5) 
Riemann had proposed another conjecture on the product expression of ξ  
(proved by Hadamard, 1893), which is the base to prove the positivity by Laga-
rias(1999). 

Now, when RH is already proved, we would make the following three com-
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ments: 
1) In these 5 items, Riemann had always discussed ξ , rather than ζ . I don’t 

know that from what time, RH had become to study ζ . This has gone against 
the original thinking of Riemann and was a historic misguide. Maybe, there is a 
possibility that due to the decay of ξ , computing ξ  is too hard, while compu-
ting ζ  is easier, but analysis method for ζ  is hopeless. Actually, a unique 
hope is to study ξ . 

2) Except for local PVS to be proposed by us, Riemann had already prepared 
the main tools needed in proving RH, e.g. the entire function ( )sξ , the sym-
metry, The number of zeros and the product expression and so on. What wise 
Riemann was! 

3) How to find RH? I think that Riemann had proposed RH likely based on 
the finite numerical results and theoretical consideration for the symmetry. In 
my opinion, Riemann’s thinking, really, looks a little like to the eastern mathe-
matical thinking. Fortunately, I have detected the essence of ( )sξ  and proved 
RH by use of Liuhui methodology, see 7. 

Finally we recall several key progressions along Riemann thinking as follows. 
Riemann (1859) constructed ξ  and proposed several conjectures, of key RH; 
Hadamrd (1893) proved the product formula of ξ ; 
Mangoldt (1905) proved a number ( )N T  of zeros of ξ ; 
Siegel (1932) found R-S formula on critical line for ξ ; 
Lagarias (1999) found and proved the positive ( ) 0Re ξ ξ′ >  outside critical 

line; 
Author (2020) found PVS and proved RH by local geometric analysis for ξ . 

6. Why to Give Up ζ? 

It is known that ζ  has 2 m-order Euler-Maclaurin evaluation [4] 

( )

( ) ( ) ( )

11
12

1

2 12
2

1
1 2 2

1 2 2 ,
2 !

sN
s s s

n

s mm
m

BNs n N sN
s

B
s s s m N R

m

ζ
−−

− − − −

=

− − +

= + + + +
−

+ + + − +

∑ 



        (6.1) 

with the remainder 

( ) ( )
( ) { }( ) 2

2 2

1 2 1
d ,

2 !
s m

m mN

s s s m
R B x x x

m
∞ − −+ + −

= − ∫


        (6.2) 

where ( )iB x  is ith Bernoulli polynomial, iB  is ith Bernoulli number and {x} is 
fractional part of x. It is an analytic continuation and the most efficient compu-
ting formula up to now. Clearly, it is impossible to prove RH by so complicated 
double series. 

Taking 2 10m =  and 10N t≥  and neglecting its remainder, the desired ac-
curacy can be attained. Denote ( )s U iVζ = + . Figure 7 exhibits U (real line) 
and V (dot line) (and their absolute values) on critical line 9990 9995t< <  and 
6 roots are found. Their structure near zeros is very different from ξ : 
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1). U and V are of same order, even if on critical line, V does not disappear, 
no symmetry. 

2). ζ  behaves badly near zeros, sometimes U and V are almost tangent. 
What geometry structure it is? No PVS. 

To draw curves, we use the norm ( )s U Vζ = + . Edwards [5] (p. 178-179) 
had discussed two roots(“near” double zero) 1 17143.786536t =  and  

2 17143.821844t =  for 0β = , and 2 1 0.035308t t− =  is very small, see the left 
of Figure 8. He wrote that: “there is no obvious reason why the exception to this 
statement could not include a counterexample to the Riemann hypothesis”. I 
think that he had considered only approximation of the infinite series, while 
neglected the property of ζ  itself. Actually, we have computed this case, see 
the right of Figure 8, its lower bound min 0t ζ >  monotone increases for 

 

 
Figure 7. U (real line) and V (dot line) on critical interval ( )9990,9995t∈ . 

 

 
Figure 8. Growth of “near” double roots for 0,0.005,0.01β = . 
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0.005,0.01β = . This is a mystery to be hidden behind ζ , which consists with 
theorem 3. 

7. Guide Role of Liuhui Thinking in Proving RH 

Greek preferred the deduction. To face so difficult RH, where did the idea of 
proof come from? The Greek mathematics does not give any inspiration. But the 
eastern mathematics may do it! Because Chinese emphasized the combination of 
computing and analyzing, in particular, Liuhui thought that “can detect the un-
known and method by computing”. We shall show how to reveal the essence of 
RH by Liuhui methodology. 

7.1. Liuhui Was the Greatest Mathematician in Ancient China 

Chinese “Nine Chapters Mathematics” (at least B.C.4-2 century) and Greek 
“Geometry Original” (B.C. 3-2 century) are two mathematical classics over the 
world, and also are different systems of mathematical idea and method. Liuhui 
(A.D.225-295) made about one hundred remarks in “Nine Chapters” (A.D.263) 
[13], and basically formed a mathematical system including geometry, computa-
tion, algebra and analysis. By analyzing these remarks, we found that his deep 
idea had already surpassed that period so that cannot be understood by posteri-
ty, and forgotten about 1500 years. Up to recent 50 years, it is gradually recog-
nized newly [14]. We list five items of Liuhui’s discovery as follows. 

1) Sum and take limit to prove the existence of π. 
In B.C.11 century, Shanggao theorem (Pythagoras theorem, in B.C.5 century) 

was proposed and extensively applied. Liuhui in “cut circle” (1600 words. Eng-
lish version [15]) had computed the area of 96-polygons to get 96 3.14π =  (the 
area is more intuitive than the circumference) and then 3072 3.1416π = . He for 
first time had proposed the limit concept: 

“The more finely is cut, the less loss there is. Cut it again and again until one 
is unable to cut further, that is, when the shape coincides with that of the circle 
and there is no loss”. 

He introduced a small square T (rather than circumscribed polygons) and 
proved the existence of π  by pressing of both sides, see Figure 9 

2 22 2n n n n nT Tπ π π π π π= + < < + = −∑ ∑ , i.e. linear interpolation 

Although Archimedes computed the circumference 96 3.14π = , Dauben [16] 
pointed out that he used “exhaustion”, no limit concept. Walis proposed the 
limit concept in 1655. 

2) Discover extrapolation (Richardson proposed extrapolation in 1927). 
Liuhui considered the ratio of two small squares (found by Wang [17], 1996) 

24 12
12

48 24

3.95r π π
π π

−
= =

−
, theoretical value 4, 

and got the extrapolation value ( ) ( )*
192 192 192 96 12 1 3.1416rπ π π π= + − − = . But 

he felt anxious, finally computed 3072 3.1416π =  and said “the ratio obtained is 
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Figure 9. A small “square” T = ABCD and role of T/2. 

 
the same as the previous one; in this way, the ratio is again verified”. This is the 
prediction-correction idea. 

The extrapolation is an important idea of modern scientific computation. We 
[18] proposed the extrapolation prediction multiple grid method to solve PDE. 

3) New elimination method for linear system of equation. 
He used the arrangement (like the present augmented matrix) and elimina-

tion. This was a classical algorithm in ancient China (Gauss elimination ap-
peared in 18 century). 

4) Compute the area and volume, the seed of defined integral. 
Liuhui proposed the “irreducible method” and limit to prove the tetrahedron 

volume 1
3

V SH= . After 200 years, Zuchongzi (A.D. 429-500) proved the 

sphere volume 34
3

V R= π  by this method. The both play an important role in  

completing Chinese mathematical system (although Archimedes has already ob-
tained). While Liu-Zu principle, “the area and hight are same, then their volume 
is also same”, called Cavalieli principle (1635) in the west. 

5) Use “rate” and “multiple difference” to study the ratio of difference, 
the seed of the “slope”. Ancient Greek did not have these concepts. 

“Nine Chapters” discussed practical problems, the “relation” of two quantities 
just is function, and the piecewise expression of function was used. While the 
“rate” (called “lv” in ancient China) is difference ratio of function (averaging  

slope or velocity) ( ) ( ) ( )f x f a
K x

x a
−

=
−

. e.g. ( )f x Ax B= +  has the rate A.  

The linear interpolation was extensively applied in “Nine Chapters”. Fibonacci 
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in “Calculus classic” (1202) had one chapter “Chida algorithm”, i.e. linear inter-
polation, Chida just is China. Liuhui supplemented “multiple difference” as 
Chapter 10 in “Nine Chapters”. 

Multiple difference is a difference ratio of several values. 
e.g. 2y Ax B= +  has the rate ( ) ( )K x A x a= + . But using bi-section method 

and three data(called “thrice watchings” in ancient China) 2
1y Ah B= + ,  

( )2
2 2y A h B= + , ( )2

3 4y A h B= + . One gets their differences  

( )2 2
1 2 4y y A h h− = − , ( )2 2

2 3 4 16y y A h h− = − , and multiple difference(now 
called mathematical invariant) 

1 2

2 3

1 1 4
1 4 1 1

4
6

.
y y
y y
− −

= =
− −  

which just is Liuhui’s extrapolation coefficient 4r = . We [18] adapted the pre-
diction ( )3 2 15 4y y y= −  and conjugate gradient method (CG, as a correction) 
to solve PDE. 

We have seen that Chinese ancient mathematical thinking was very different 
from Greek. In that period, Liuhui had studied these two “infinitesimal 
processes”. But nobody could understand his thinking 50 years ago. 

7.2. Liuhui Methodology (Historic Contribution) 

Liuhui’s preface (800 words) is a wonderful paper through ages, and expounded 
his deep mathematical thinking. 

1) “Scientific discovery is a recognition process of the prediction and correc-
tion”. Liuhui’s extrapolation is a typical prediction method. 

2) Mathematical methodology: “Computing can distinguish tiny and detect 
the unknown and method”. “And analyze the reason by logic, explain the es-
sence by figures”. 

This is an open, progressive and creative methodology (do not stipulate con-
clusion in advance), very different from Greek idea. Chinese academician Z. C. 
Shi pointed out [19]: “Scientific computation, experiments and theory, like a 
tripod, supplement each other, and become three methodologies in modern 
science actions”, and emphasized: “Scientific computation not only is a numeri-
cal method, but also a method of research”. Liuhui’s idea just is third method, 
which plays an important guide role in studying modern mathematics [14]. 

When study a difficult problem, because for lack of understanding, we should 
detect its properties by computing in various directions, then analyze these re-
sults and look for key properties, finally find the idea of proof. This just is Liuhui 
thinking. 

7.3. Detect the Essence of RH by Liuhui Thinking 

I studied ancient Chinese mathematical thinking for 10 years. I believe that Li-
uhui methodology has powerful vitality. How to detect the mystery of RH? Dur-
ing four years, my recognition process is as follows. 

1) Studying ζ  is hopeless, see 6. A unique hope is to study ξ. 
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2) We found that the real and image parts of ξ  have the positive 
phase-difference, which implies RH. But we don’t know how to describe it. A 
chance of local geometry analysis is missed. At that time we always wanted to 
use the asymptotic analysis. 

3) To attain the exponential decay ( )4e tO − π , we used Riemann technique of in-
tegration by parts and Jacobi equality to get high-order expression, 2 2m k= + , 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )

( ) ( )( )

( ) ( ) 2

1

2 3 4
1

0

2
,

1 1

1 , ,

d ,

2 1 4 2 1 4 ,

e ,

k
k m m

m m m

k

k
j

m j n x
m m j

n j k

P W W it

W K f x x f x x

P j j

f x d n x

− + −

∞± ± ± −

=

∞
−

= = +

π

 = − + = +

 = =

 = + + − + +

 = − π


∫

∏

∑ ∑

τ

ξ τ τ τ τ τ β

τ

τ τ τ

 
where the coefficients mjd  are defined by recurrence formula. For any t we can 
look for suitable m such that ( ) ( )41 e t

kP Oτ− − π≈ . Thus need not cancel each 
other in the integral, while directly use asymptotic analysis. But ( )mf x  for 
large m is too complicated. We adapted the incomplete gamma function, Laplace 
integral and saddle point method etc., all fail. 

4) We considered the integrals ( )W τ±  along complex lines ( )1z a ib r= + ± , 
and found that ( )mf z  condenses into a solitary high peak, I’m excited for this. 
We have constructed a simple function ( ) eA Bz

mg z Cz −=  to simulate the high 
peak with relative residue 1/80, where A, B and C are some constants indepen-
dent of τ , and ( )mK g±  can be approximately expressed by Gamma function, 
as a dominated function. When 100t ≤ , using a comparison criterion, it seems 
RH is proved. But for large t, the asymptotic analysis is also hopeless. 

5) In these researches, we have always met a wide gap: How to prove no zero 
for the infinite series? It is impossible. Finally, in 2019 Oct.2, we have suddenly 
waked up that 

Give up the summation process, study the geometry structure of ξ itself. 
Actually we come back to the positive phase-difference once again. But now, 

we have found the local peak-valley structure and the importance of symmetry, 
and then proved RH by geometry method, where t is arbitrary. 
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