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Abstract

We define new integral operators on the Haydy space similar to
Szego projection. We show that these operators map from HP to
H? for some 1 < p < 2, where the range of p is depending on a
growth condition. To prove that, we generalize the Hausdorff-Young
Theorem to multi-dimensional case.
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1. Introduction

Let C™ denote the Euclidean space of complex dimension n. The inner
product on C™ is given by
(zyw) := 21wy + -+ + 2, Wy,

where z = (21,...,2,) and w = (wy, ..., w,), and the associated norm
is |z| :== v/(z, 2z). The unit ball in C™ is the set

B, ={zeC":|z| <1}
and its boundary is the unit sphere
S, ={z€C":|z|=1}.

In case n = 1, denote D in place of B;. Let o, be the normalized
surface measure on S,,.
For 0 < p < oo, the Hardy space HP(B,,) is the space of all holo-

morphic function f on B,, for which the “norm”

1/p
T { LG dan<<>}
o<r<1Js,,

is finite. As is well-known, the space H?(B,,) equipped with the norm
above is a Banach space for 1 < p < co. On the other hand, it is a
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complete metric space for 0 < p < 1 with respect to the translation-
invariant metric (f, g) — || f — gll%»-

For a function f in HP(B,,), it is known that f has a radial limit f*
almost everywhere on S,,. Here, the radial limit f* of f is defined by

fr(¢) = lim f(r¢)
r—1

provided that the limit exists for ( € S,,. Moreover the mapping
f— f*is an isometry from HP(B,) into L?(S,,,do,). Consequently,
each HP(B,,) can be identified with a closed subspace of LP(S,,,doy,).

Since H?(B,) can be identified with a closed subspace of
L?(S,,,do,,), there exists an orthogonal projection from L2(S,,do,)
onto H?(B,,). By using a reproducing kernel function, which is called
the Szego kernel, we also obtain a function f from its radial function
f*. More precisely,

1) =) = [ (1_f<(<)<>) 4o, Q)

for f € H?*@B,). We usually call this integral operator as the
Szego projection. It is well known that for 1 < p < oo the Szegd
projection maps LP(S,,,do,) boundedly onto H?(B,,). For more de-
tails, we refer the classical text books [1,2].

In this paper we consider a class of integral operators defined by

P m—+N
Tl = [ 2 Q) de) (L)

s, (1=(z0)"

form =1,2,...,n and a positive integer N. Compared with the Szego
projection, the growth condition in the denominator factor is better.
Thus these operators are bounded on H?(B,,).

Interestingly these operators map from H'(B,) to H?(B,,) for any
positive integer N when 1 < m < 4. More precisely we have the
following result.

n

Theorem 1.1. Let m be a positive integer with 1 < m < 5. Then
there exists a constant C = C(n) > 0 such that

T v [l g2 < CN™F (| f |l o

for any positive integer N .

For § < m < n, the operator T}, x maps from H?(B,,) to H'(B,),
but the range of p is depending on m, which determines the growth
condition of the kernel function. Explicitly we have the following
theorem.

%§m<nand

< p < 2. Then there exists a constant C = C(n,p) > 0 such

Theorem 1.2. Let m be a positive integer with
2
3n7n2m

that

T N () g2 < ONP | o

for any positive integer N. Here p' is a negative number defined by
p ::m+n(% - %)

To prove the Theorem 1.2, we generalize the Hausdorff-Young The-
orem to the multi-dimensional case using the Stein interpolation the-
orem.

DOLI: 10.4236/apm.2020.109030

493 Advances in Pure Mathematics


https://doi.org/10.4236/apm.2020.109030

J. Yang

2. Preliminary Results
We use the conventional multi-index notation. For a multi-index
a=(a1,...,qp)
with nonnegative integers «;, the following are common notations;
la] = a1 4+ -+ + ap,
al:=aq!---apl.

For z € C", the monomial is defined as

(0%

2% = Zfl cegOn

n

At first, we show that the Szegd type operators T}, ny defined in
(1.1) are actually coefficient multipliers.

Lemma 2.1. Let m, N be positive integers with 1 < m < n. For a
multi-index o, there exists Ao, = Ao (m,n, N, |a|) such that

T N[C%](2) = A2
Proof. From the definition of T}, n, we have

(z, Q)™ ¢

a- oy ol

T lC?l() = | n

for a multi-index «. Note that
1 — (k+m— 1> X
e = 20k,
=m0 Z( A

Since the monomials are orthogonal on L?(S,,, do,); see ( [1] Propo-
sition 1.4.8), we have T, n[(*](z) = 0 if |a] < m + N. In case of
|| > m 4+ N, we have

T = [ 3

(") Goreee dn(o
n k=0

“1-N
(20 [ o e dno,

Expanding the term inside the above integral as

« |Oé|' 8

we obtain that

R e
(el oo

o] =m =N/ (n—1+|a|)!” "’

|O[|—1—N>|O[' a a2d
: /S 11 don ()

1

see ( [1] Proposition 1.4.9) for the last equality. Putting A, as

for |a|<m+ N

0
Ao = Aa(m,n, N, |a|) = {(a|_1—N) ((n—1)1\a|! for |a|>m+ N,

|a]—=m—N/ (n—1+|a|)!
(2.1)
we conclude the lemma. O
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To prove the main theorems, we need the Hausdorff-Young Theorem
for the multi-dimensional Hardy space. For a holomorphic function f
in the unit disk, we have the Taylor series expansion as

flz) = Z anz".
n=0

For the Hardy space defined in the unit disk, a relationship between
the functions in H?(D) and the growth condition of their coefficients
are given by the Hausdorff-Young Theorem, see ( [3] p.76, Theorem
A).

Theorem 2.2 (Hausdorff-Young Theorem for H?(D)). For 1 <p <
00, let q be the conjugate exponent, with % + % =1.

1) If1 <p <2, then f € H?(D) implies {an} € 1%, and ||{an}|jia <
1N o

2) If 2 < p < oo, then {an} € 19 implies f € H?(D), and || f|| y» <

[{an}lia-

Before proceeding, we introduce some notation. Let Ni be the prod-
uct set of nonnegative integers.
Define a weight function w,, on N by

 (n=1)lk!
o) = G T e

for a € Nij. Using the weight w,,, we define a norm on Ni by

lellpe =D le(@)l” wh(a)

aeNy

for 1 < p < oo and a positive real number ¢. For p = co, we define

lelloc,e == sup |e(a)fw, (a).
aeNY

Let [P* be the collection of all function ¢ defined on N} with the
norm ||¢f|p¢ < 00.
For a holomorphic function f on B,,, whose Taylor series is given

by
fz)= Z Ca?®,

we define the coefficient function cy¢ of f defind on Ni by
crl(a) == cq.
Proposition 2.3 (Hausdorff-Young Theorem for H?(B,,)). For 1 <
1.

p < 00, let q be the conjugate exponent, with % + % =

1) If p =1, then f € H'(B,,) implies cy € 1°', and ||ct|loo1
[aiyee

2) If 1 < p < 2, then f € HP(B,) implies cy € 19971, and
lerlla.q— < 11 -

3) If 2 < p < oo, then ¢y € 19971 implies f € HP(B,,), and
1l < llellgg-1-

IN
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Proof. For a multi-index «, we note that

/S I don(¢) = wn(a). (2.2)

n

From the orthogonality of monomials on S,,, we get

/S FOT dom(C) = cr(a)wa(a),

for f € H'(B,,). Thus we obtain

lerlloon < ILfllg s

which prove the Proposition (1).

leplloor < MFNars  llerllza < W fllm2, (2.3)

and proved (1). Now we apply an interpolation theorem in the Equa-~
tions (2.3). Since the defined norms have weight functions, we use the
Stein interpolation theorem; see ( [4] Theorem 3.6). Then we have

lesllgq—1 < [1fllar

for 1 < p <2 and proved (2).
Now we prove (3). For 1 < ¢ < 2 we let ¢; be given with ||cf||g,q—1 <
oo and define

fe(2) = Z caz®

|| <k

for a positive integer k. Since each f, € H?(B,,), for any g € H?(B,,)
with coefficient function ¢, we have

‘/ fkg dan
S

n

= Z cy (Q)Cg(a)wn(a)

< leyl

q7q—1||9||H‘1

by above proved Proposition (2). Since for 1 < p < oo the dual space
of H?(B,,) is H1(B,,), we have

Il fellze < llepllgq-1

for any positive integer k. Moreover w,, < 1 and ¢ < 2 implies that

llerllg,are < llegllgq—1 < oo,

so we have
[flle2 = llegll2,n < oo

Consequently ||f — fxllg2 goes to zero as k increase. Hence fj
converges to f pointwise and by applying Fatou’s lemma we finish the
proof. [
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3. Proofs

For a holomorphic function f on B,, with Taylor series
f(z) = Z Ca?®,
[e%
we define j** partial sum of f by
S;if(z) = Z Caz® (3.1)
ler| <y

for a positive integer j.
Now we are ready to prove the Theorem 1.1. Here we restate the
Theorem 1.1 for convenience.

Theorem 3.1. For1 < m < 2

5, there exists a constant C = C(n)
depending only on n such that

T N[z < ON™% | fl s
for any positive integer N.

(2,0 N

Proof. For a given z € B,,, the kernel function o is bounded

in{ €8S,. So for p > 1, we have

<Z7C>m+N g _ Q. P do
< ooy 1o - snor ano
<C. [ 150 = S Q) don(©)
S,
— .~ 57,

where C, is a constant depending on z € B,,. However the Talyor
series S; f converges to f in the norm H? when p > 1; we refer ( [5]
Theorem 1.1). Thus for f € HP(B,,) with p > 1 we have

Tin,N[f](2) = lim Ty v Z cr(@)C™| (=)

‘]*)OO
| <
= Jim, 3 er(@) Tnlc)2)
Ay

=Y ¢s(a) A(m,n, N, |al) 2%,

where we used the Lemma 2.1. So we have

T [z = Y Almyn, N, |a)?leg(@)Pwa(e)  (3.2)
|a|>m+N

<lleplZon- Y. Amyn, N, |af)?wn(e) ™!
|a|>m+N

By Proposition 2.3 and the Equation (2.1), we have

1 (n—14 |a|)!
2 2
T Vs < CO) I Y iy e
|a|>m+N
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where C'(n) is a constant depending on n. By the multinomial theorem
we know that
1 on
2 Gt

|l =k

so we get

Z 1 (n—1+|al)!

oSy 127 ol
al>m

oo

< C(n) Z 1 (n—1+k)

2(n—m |
k=m+N k2 ) k!

= 1
S C(n) Z kn72m+1
k=N

< C(n)Nmen’

where the series is bounded by the assumption m < 3. And the
constant C'(n) is also depending only on n. Thus we have

| T [z < C)N™ 2| fll a1,

for f € H?(B,,) with p > 1.

Now we fix po > 1. Since H?0 is dense in H' and T N is uni-
formly continuous from H?® to H 2. there exists the unique continuous
extension Tp, n from H L to H? defined as

Tm,N[f} = kILrIolo Tm,N[fk]a

for any fr — f with each fy is in HP°. In particular, fm,N[f] =
lim, ;- Tp, n[f"] where f7(2) := f(rz) for 0 < r < 1. By Fatou’s
lemma we have Tp, n[f](2) = lim, ;- T n[f7](2) for any z € B,,.

Moreover using the similar argument in the beginning of the proof,
for any z € B,, we have

Ton N [f1(2) = T N [f71(2)] < Ce|[f = f" 0,

where C, is a constant depending on z. Since ||f — f"||g: = 0asr —
17, we also have T, n[f](2) = lim,_,1- To,, N [f"](2). Consequently we
have Ty, n[f](2) = T n[f](2) for any f € H' and

[T, n [l < CR)N™ 2| fl 111,
for any f € HY(B,,). O

Since T}, v is an integral operator with conjugate symmetric kernel,
we have the following corollary by using its adjoint operator.

Corollary 3.2. For 1 < m < &, there exists a constant C = C(n)
depending only on n such that

| T 51l Brr0 < ON™7% || f| g2

for any positive integer N. Here || - |paro means the BMOA norm.

Remark. For 0 < p; < ps < 0o, we have

[ f e < | fll e < N fllBMO-
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By Theorem 3.1 and Corollary 3.2 we obtain that if 1 <m < 7,

| Ton v [ 27 O BMOY S HJC”F;(%C)—{EW7
for 1 < p < co. That is, the Szego type operators makes the norm
decrease quickly as N goes large when m < 3.

We prove the Theorem 1.2. Here we restate the Theorem 1.2 for
convenience.

2n
3n—2m

Theorem 3.3. Let % <m < n and
exists a constant C = C(n,p) such that

T [l 2 < ONP' || f 120

for any positive integer N. Here p' is a megative number defined by
P :zm—i—n(}lJ -3).

Proof. We begin with the Equation (3.2). Then we have
T [ flEz = Y Alm,n, N, Jal)?les (@) Pwn(a)

< p < 2. Then there

|a|>m+N
2/q
<1 D lep(@)[tw ()
la|>m+N
1/r
> A(m,n, N, o)) wp(a) ™! ,
la|>m+N

where ¢ is the conjugate index of p and r is of ¢/2. By Proposition
2.3 and the Equation (2.1), we have

1/r

T 112 < CO) 13- | S 1 (n=1+]a])

Wil |a‘2r(n7m) al
al>m

where C(n) is a constant depending on n. By the multinomial theo-

rem, we know that
2
> T w

o=k
So we get

|a|2r(n7m) al
|a|>m+N
oo
1 (n—1+k)!
k=m+N
= 1
= C(TL) Z k2r(n—m)—n+1’
k=N
where a constant C(n) is depending on n. Since p > ?mQ_#, we have
r> ﬁ So the above series converges and bounded by
N—2r(n—m)+n
2r(n—m)—n’
Thus we prove
13
T, [flllezz < C(nyp) N G2 f .
O
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